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Lay Abstract

The problem of distribution learning, also known as density estimation, has been ex-

tensively explored in Statistics over several decades. It involves the task of recovering

the original distribution with minimal error given a set of samples from a distribution

that belongs to a known family of distributions.

More recently, a branch of research has emerged focusing on private distribution

learning. This approach aims to learn a class of distributions while safeguarding the

privacy of individuals in the dataset through the fulfillment of the gold standard of

differential privacy. A fundamental open question in this domain is: Is there a class of

distributions that can be learned without privacy considerations but not with privacy

preservation?

To address this question, we delve into the private learnability of the class of

mixtures of Gaussians, which represents a diverse and complex set of distributions.
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Abstract

We develop a general technique for estimating (mixture) distributions under the con-

straint of differential privacy (DP). On a high level, we show that if a class of dis-

tributions (such as Gaussians) is (1) list decodable and (2) admits a “locally small”

cover (Bun et al., 2021) with respect to total variation distance, then the class of its

mixtures is privately learnable. The proof circumvents a known barrier indicating

that, unlike Gaussians, GMMs do not admit a locally small cover (Aden-Ali et al.,

2021b).

As the main application, we study the problem of privately estimating mixtures of

Gaussians. Our main result is that poly(k, d, 1/α, 1/ε, log(1/δ)) samples are sufficient

to estimate a mixture of k Gaussians in Rd up to total variation distance α while

satisfying (ε, δ)-DP. This is the first finite sample complexity upper bound for the

problem that does not make any structural assumptions on the GMMs.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Density estimation

The problem of density estimation is a foundational issue in statistics that has been

extensively investigated over many decades. Density estimation, also known as dis-

tribution learning, involves the task of inferring an unknown distribution based on

available samples from it. Specifically, when provided with independent samples from

a distribution f , the objective is to derive a distribution f̂ that closely approximates

f in terms of total variation distance. Given that f is a member of, or close to, a

class of distributions F , a crucial question arises: what is the minimum number of

samples required to ensure that f̂ is close to f in total variation distance with high

probability?

Extensive research has been dedicated to characterizing the optimal sample com-

plexity, or the related minimax error rate, of learning different classes of distributions
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(for an overview, see Diakonikolas (2016); Devroye and Lugosi (2001); Ashtiani and

Mehrabian (2018)). However, determining the sample complexity, or even the learn-

ability, of a general class of distributions still poses a significant open problem (e.g.,

Open Problem 15.1 in Diakonikolas (2016)). Recently, Lechner et al. (2023) has

shown that there is no notion of dimension that characterizes the sample complexity

of learning distribution classes.

1.1.2 Private learnability

When working with samples and data derived from a distribution, a crucial concern

is safeguarding the sensitive information of individuals within the dataset. Here, we

consider the problem of density estimation under the constraint of differential privacy

(Dwork et al., 2006a).

At a high level, differential privacy (DP) ensures that modifying the data of any

single individual in the dataset does not significantly affect the outcome of the esti-

mation, thereby preventing an adversary observing the output from uncovering any

sensitive information from the original dataset.

Several formulations of DP exist. The original formulation, pure DP (ϵ-DP), can

be somewhat restrictive. For instance, learning certain simple classes of distributions,

like univariate Gaussians with unbounded mean, is impossible in this model due

to information-theoretic limitations. An alternative formulation is approximate DP

(Dwork et al., 2006b), which is also known as (ε, δ)-DP. Interestingly, we are not

aware of any class of distributions that is learnable in the non-private (agnostic1)

1In the agnostic setting, we do not assume the true distribution belongs to the class that we are
considering. The goal is then finding a distribution in the class that is (approximately) the closest
to the true distribution.

2
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setting but not learnable in the (ε, δ)-DP setting. This is in sharp contrast with other

areas of learning such as classification2. In fact, we conjecture that every class of

distributions that is learnable in the non-private agnostic setting is also learnable in

the (ε, δ)-DP setting. We believe the conjecture to be true for the agnostic setting,

given the recent developments on connections between robustness and privacy Asi

et al. (2023); Hopkins et al. (2023). Recently, the negative result of Bun et al. (2024)

has shown that there is a class of distribution that is learnable (in realizable setting3)

with a constant accuracy but not privately learnable.

Nevertheless, we are still far from resolving the above conjecture. Yet, we know

that some important classes of distributions are learnable in (ε, δ)-DP setting. For

example, finite hypothesis classes are learnable even in the pure DP setting (Bun

et al., 2021; Aden-Ali et al., 2021a). Earlier work of Karwa and Vadhan (2018) shows

that unbounded univariate Gaussians are also learnable in this setting. More gen-

erally, high-dimensional Gaussians with unbounded parameters are private learnable

too (Aden-Ali et al., 2021a), even with a polynomial time algorithm (Kamath et al.,

2022b; Kothari et al., 2022; Ashtiani and Liaw, 2022; Alabi et al., 2023; Hopkins

et al., 2023). A next natural step is studying a richer class of distributions such as

Gaussian Mixture Models (GMMs).

2For example, initial segments over the real line are learnable in the non-private setting but not
in the (ε, δ)-DP model; see Bun et al. (2015); Alon et al. (2019); Kaplan et al. (2020); Bun et al.
(2020); Cohen et al. (2023).

3In the realizable setting, unlike agnostic setting, we assume the ture distribution belongs to the
class that we are considering.

3
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1.1.3 Learning GMMs

In the non-private setting, GMMs with k components in d dimensions are known to be

learnable (with error/TV-distance at most α) with a polynomial number of samples

(in terms of d, k, 1/α). Perhaps surprisingly, nearly tight sample complexity bound

of Õ(d2k/α2) was proved relatively recently using distribution sample compression

schemes (Ashtiani et al., 2018a, 2020). But are GMMs learnable in the (ε, δ)-DP

setting with a polynomial number of samples?

Several relaxed versions of the aforementioned problem have been investigated

in recent years. One idea to resolve the learnability of GMMs is to extend the re-

sult of Aden-Ali et al. (2021a) for high-dimensional Gaussians. In particular, they

show that Gaussians admit a “locally small cover” with respect to the total variation

(TV) distance and therefore the class of Gaussians can be learned privately using

the private hypothesis selection approach of Bun et al. (2021). However, as Aden-Ali

et al. (2021b) demonstrated, GMMs do not admit such a locally small cover with

respect to TV distance. At a high level, this is because there are too many parameter

representations for a single GMM, all of which are close with respect to TV distance.

In addition to this negative result, Aden-Ali et al. (2021b) have shown that uni-

variate GMMs are learnable in the (ϵ, δ)-differential privacy setting with a polynomial

number of samples. Namely, they use stability-based histograms (Bun et al., 2016) in

the spirit of Karwa and Vadhan (2018) to come up with a set of candidate parameters

for the mixture components, and then choose between these candidates using private

hypothesis selection (Bun et al., 2021; Aden-Ali et al., 2021a). While they generalize

this idea to learning axis-aligned4 GMMs, their approach does not work for GMMs

4Where the covariance matrices of the mixture components are diagonal matrices.

4
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with general covariance matrices. In fact, it is not clear if it is possible to extend the

histogram-based approach to handle arbitrary covariance matrices even for learning

a single (high-dimensional) Gaussian.

An alternative approach for private learning of GMMs would be using a sample-

and-aggregate framework such as those proposed by Ashtiani and Liaw (2022); Tsfa-

dia et al. (2022). In particular, Ashtiani and Liaw (2022) show how one can privately

learn Gaussians by aggregating the outcomes of multiple non-private Gaussian esti-

mators and then outputting a noisy version of those parameters. In fact, this is the

basis of the work by Arbas et al. (2023) who showed how to reduce the problem of

private parameter estimation for GMMs into its non-private counterpart. However,

while this reduction is (computationally and statistically) efficient, the non-private

version of the problem itself requires an (unavoidable) exponential number of samples

with respect to the number of components (Moitra and Valiant, 2010). Can we avoid

the (above mentioned) exponential dependence on k if we opt for (private) density es-

timation rather than (private) parameter estimation? We know this is possible in the

non-private setting (Ashtiani et al., 2018a,b, 2020) or when we have access to some

“public data” (Ben-David et al., 2023). One idea is to use a sample-and-aggregate

approach based on a non-private density estimator for GMMs. This turns out to be

problematic as GMMs are not uniquely parameterized: two GMMs may be close to

each other in terms of total variation distance but with a completely different set of

parameters. Thus, it is challenging to use non-private algorithms for learning GMMs

as a blackbox since one cannot guarantee that the outputs of these algorithms are

“stable”.

5
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1.2 Informal problem statement

In this section, we present an informal version of the problem statement following the

provided motivation. Our work addresses the following two questions:

• Is the class of d-dimensional Gaussian Mixture Models (GMMs) is (ε, δ)-privately

learnable with a polynomial number of samples in terms of d, k (the number

of components in the mixture), 1/α (where α is the accuracy parameter), 1/ϵ,

and log(1/δ)?

• Is there a reduction for privately learning a class of (mixture) distributions,

given a non-private learner for that class?

Next, we provide the list of our contributions regarding the above questions.

1.3 List of contributions

In this section we provide the list of our contributions. Indeed, we bypass the barriers

mentioned in earlier sections, and show that:

• The class of d-dimensional Gaussian mixtures is (ε, δ)-privately learnable with

Õ(k
2d4 log(1/δ)

α4ε
) samples, where k is the number of components in the mixture

and α is the accuracy parameter (See Chapter 7). This is the first result for

this problem that does not make any structural assumptions on the GMMs.

• Generally, we show that if a class (such as Gaussians) admits a “locally small

cover” and is “list decodable”, then the class of its mixtures is privately learnable

(See Chapter 6).

6
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• In our main reduction, we define the problem of private common member selec-

tion and propose an algorithm to solve this problem for general (locally small)

metric spaces. We believe this problem would have other applications in private

density estimation. At a high level, given T lists of objects (e.g., distributions),

we say an object is a common member if it is close to a member in each of

the lists. The goal of a private common member selector (PCMS) is then to

privately find a common member assuming at least one exists.(see Chapter 4).

• We show that the class of Gaussians admit a locally small cover (see Chapter 7).

Previously, locally small covers were constructed only for location Gaussians

(Gaussians with identity covariance matrix) and scale Gaussians (zero mean

Gaussians).

• Given a list decoding algorithm for a class of distributions, we construct a

list decoding algorithm for the class of its mixtures with respect to parameter

distance (see Chapter 5).

• Given a locally small cover for a class of distributions, we construct a locally

small cover for the class of its mixtures with respect to parameter distance (see

Chapter 5).

1.4 Thesis organization

We define some notation in Chapter 2 before presenting our main results in Sec-

tion 2.2. Given the subtleties in the proofs, we offer an overview of our technical

contributions in Section 2.3 before delving into the core technical chapters. We also

7
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provide some background information on distribution learning, differential privacy,

and related work in Chapter 3.

The formal proof of our main reduction is presented in Chapter 6. As an applica-

tion of our general framework, we present the first sample complexity upper bound

for privately learning GMMs in Chapter 7.

8



Chapter 2

Problem Formulation and Main

Results

In this chapter, we first introduce some notation and definitions to formally state the

problem and present our main results. Later, we offer an overview of our technical

contributions before delving into the core technical chapters.

2.1 Problem formulation

2.1.1 Notation

For a set F , define Fk = F × · · · × F (k times), and F∗ =
⋃∞

k=1 Fk. We use [k]

to denote the set {1, 2, . . . , k}. We use Sd to denote the positive-definite cone in

Rd×d. Moreover, for two absolutely continuous densities f1(x), f2(x) on Rd, the total

variation (TV) distance is defined as dTV(f1, f2) = 1
2

∫
Rd |f1(x) − f2(x)| dx. For a

matrix A, let ∥A∥F =
√

Tr(ATA) be the Frobenius norm and ∥A∥2 be the induced

9
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ℓ2 (spectral) norm. In this paper, if κ is a metric on F , f ∈ F , and Y ⊆ F then we

define κ(x, Y ) = infy∈Y κ(f, y).

Definition 2.1.1 (κ-ball). Consider a metric space (F , κ). For a fixed f ∈ F , define

Bκ(r, f,F) := {f ′ ∈ F : κ(f ′, f) ≤ r} to be the κ-ball of radius r around f .

Definition 2.1.2 (α-cover). A set Cα ⊆ F is said to be an α-cover for a metric space

(F , κ), if for every f ∈ F , there exists an f ′ ∈ Cα such that κ(f, f ′) ≤ α.

Definition 2.1.3 (Locally small cover (Bun et al., 2021)). Consider an α-cover Cα

for a metric space (F , κ). For γ ≥ α, Cα is said to be (t, γ)-locally small if:

supf∈F |Bκ(γ, f, Cα)| ≤ t

Moreover, if such a α-cover exists, we say F admits a (t, γ)-locally small α-cover.

Definition 2.1.4 (k-mixtures). Let F be an arbitrary class of distributions. We

denote the class of k-mixtures of F by k-mix(F) = ∆k × Fk where ∆k = {w ∈ Rk :

wi ≥ 0,
∑k

i=1wi = 1} is the (k − 1)-dimensional probability simplex.

In this thesis, we abuse notation and simply write f ∈ k-mix(F) to denote a k-

mixture from the class F where the representation of the weights is implicit. Further,

if f ∈ k-mix(F) and g ∈ k′-mix(F) then we write dTV(f, g) to denote the TV distance

from the underlying densities. In other words, if f =
∑

i∈[k] wifi and g =
∑

i∈[k′] w
′
igi

then dTV(f, g) = dTV(
∑

i∈[k] wifi,
∑

i∈[k′] w
′
igi). The purpose of defining mixture dis-

tributions in this way is that it turns out to be convenient to define a distance between

different representations of a distribution (see Definition 5.1.2).

Definition 2.1.5 (Unbounded Gaussians). Let G = {N (µ,Σ) : µ ∈ Rd,Σ ∈ Sd} be

the class of d-dimensional Gaussians.

10
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2.1.2 List decoding distributions

Here, we define the task of list decoding distributions under Huber’s contamination

model (Huber, 1992), where the samples are drawn from a corrupted version of the

original distribution f that we are interested in. The contamination is additive, that

is, with probability 1 − γ we receive samples from f , and with probability γ we

receive samples from an arbitrary distribution h. Upon receiving corrupted samples

from f , the goal of a list decoding algorithm is to output a short list of distributions

one of which is close to the original distribution f . In the next definition, we use a

general metric to measure the closeness; this allow for choosing the metric based on

the application.

Definition 2.1.6 (List decodable learning under Huber’s contamination). Let F

be a class of distributions and κ : F × F → R≥0 be a metric defined on it. For

α, β, γ ∈ (0, 1), an algorithm AF is said to be an (L,m, α, β, γ)-list-decoding algorithm

for F w.r.t. κ if the following holds:

For any f ∈ F and arbitrary distribution h, given an i.i.d. sample S of

size m from g = (1− γ)f + γh, AF outputs a list of distributions F̂ ⊆ F

of size no more than L such that with probability at least 1− β (over the

randomness of S and AF) we have minf̂∈F̂ κ(f̂ , f) ≤ α.

2.1.3 Distribution learning

A distribution learner is a, possibly randomized, algorithm that receives i.i.d. samples

from a distribution f , and outputs a distribution f̂ which is close to f .

Definition 2.1.7 (PAC learning). An algorithm AF is said to (α, β)-PAC-learn a

11
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class of distributions F w.r.t. metric κ with m(α, β) samples, if for any f ∈ F , and

any α, β ∈ (0, 1), after receiving m(α, β) i.i.d. samples from f , outputs a distribution

f̂ ∈ F such that κ(f, f̂) ≤ α with probability at least 1 − β. Moreover, if such an

algorithm exists, we call F to be (α, β)-PAC-learnable w.r.t. κ. The sample complexity

of learning F is the minimum m(α, β) among all such (α, β)-PAC-learners.

Remark 2.1.8. Equivalently, an algorithm AF is said to (α, β)-PAC-learn a class of

distributions F w.r.t. metric κ with m(α, β) samples, if for any α, β ∈ (0, 1), AF is

a (1,m(α, β), α, β, 0)-list-decoding algorithm for F w.r.t. κ.

2.1.4 Differential privacy

Two datasets D,D′ ∈ X n are called neighbouring datasets if they differ by one

element. Informally, a differentially private algorithm is required to have close output

distributions on neighbouring datasets.

Definition 2.1.9 ((ε, δ)-Indistinguishable). Two distribution Y, Y ′ with support Y are

said to be (ε, δ)-indistinguishable if for all measurable subsets E ∈ Y, PX∼Y [X ∈ E] ≤

eεPX∼Y ′ [X ∈ E] + δ and PX∼Y ′ [X ∈ E] ≤ eεPX∼Y [X ∈ E] + δ.

Definition 2.1.10 ((ε, δ)-Differential Privacy (Dwork et al., 2006a,b)). A randomized

algorithm M : X n → Y is said to be (ε, δ)-differentially private if for every two

neighbouring datasets D,D′ ∈ X n, the output distributions M(D),M(D′) are (ε, δ)-

indistinguishable.

12
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2.2 Main results

In this section, we describe our main results. We introduce a general framework for

privately learning mixture distributions, and as an application, we propose the first

finite upper bound on the sample complexity of privately learning general GMMs.

More specifically, we show that if we have (1) a locally small cover (w.r.t. dTV), and

(2) a list decoding algorithm (w.r.t. dTV) for a class of distributions, then the class

of its mixtures is privately learnable.

2.2.1 Privately learning mixtures

Theorem 2.2.1 (Reduction). For α, β ∈ (0, 1), if a class of distributions F admits a

(t, 2α/15)-locally small α
15
-cover (w.r.t. dTV), and it is (L,m, α/15, β′, 0)-list-decodable

(w.r.t. dTV), where log(1/β′) = Θ̃(log(mk log(tL/αδ)/εβ)), then k-mix(F) is (ε, δ)-

DP (α, β)-PAC-learnable (w.r.t. dTV) with sample complexity

Õ

((
log(1/δ) + k log(tL)

ε
+

mk + k log(1/β)

αε

)
·
(
k log(L)

α2
+

mk + k log(1/β)

α3

))
.

Note that in Theorem 2.2.1, we can use a naive (α, β)-PAC-learner that outputs

a single distribution as the list decoding algorithm (see Remark 2.1.8). Therefore, if

we have (1) a locally small cover (w.r.t. dTV), and (2) a (non-private) PAC learner

(w.r.t. dTV) for a class of distributions, then the class of its mixtures is privately

learnable1. The next corollary states this result formally.

1Later in Remark 2.2.4, we explain how Theorem 2.2.1 can sometimes give us a better bound
compared to Corollary 2.2.2.

13
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Corollary 2.2.2. For α, β ∈ (0, 1), if a class of distributions F admits a (t, 2α/15)-

locally small α
15
-cover (w.r.t. dTV), and it is (α/15, β′)-PAC-learnable (w.r.t. dTV) us-

ing m(α/15, β′) samples, where log(1/β′) = Θ̃(log(mk log(t/αδ)/εβ)), then k-mix(F)

is (ε, δ)-DP (α, β)-PAC-learnable (w.r.t. dTV) with sample complexity

Õ

((
log(1/δ)

ε
+

m(α/15, β′)k + k log(1/β)

αε

)
·
(
m(α/15, β′)k + k log(1/β)

α3

))
.

2.2.2 Privately learning GMMs

As an application of the Theorem 2.2.1, we show that the class of GMMs is privately

learnable. We need two ingredients to do so. We show that the class of unbounded

Gaussians (1) has a locally small cover, and (2) is list decodable (using compression).

As a result, we prove the first sample complexity upper bound for privately learn-

ing general GMMs. Notably, the above upper bound is polynomial in all the param-

eters of interest.

Theorem 2.2.3 (Private Learning of GMMs). Let α, β ∈ (0, 1). The class k-mix(G)

is (ε, δ)-DP (α, β)-PAC-learnable w.r.t. dTV with sample complexity

Õ

(
kd2 log(1/δ) + k2d4

α2ε
+

kd log(1/δ) log(1/β) + k2d3 log(1/β)

α3ε
+

k2d2 log2(1/β)

α4ε

)
.

Remark 2.2.4. Note that if we had used Corollary 2.2.2 and a PAC learner as a

naive list decoding algorithm for Gaussians, the resulting sample complexity would

have become worse. To see this, note that G is (α, β)-PAC-learnable using m(α, β) =

O(d
2 log(1/β)

α2 ) samples. Using Corollary 2.2.2 and the existence of a locally small cover
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for Guassians, we obtain a sample complexity upper bound of

Õ

(
kd2 log(1/δ) log(1/β)

α5ε
+

k2d4 log2(1/β)

α8ε

)
.

This is a weaker result compared to Theorem 2.2.3 in terms of α, which was based on

a more sophisticated (compression-based) list decoding algorithm for Gaussians.

It is worth mentioning that our approach is information-theoretic and does not

yield a finite time algorithm for privately learning GMMs, due to the non-constructive

cover that we use for Gaussians. Moreover, designing a computationally efficient

algorithm (i.e. with a running time that is polynomial in k and d) for learning GMMs

even in the non-private setting remains an open problem (Diakonikolas et al., 2017).

2.3 Technical challenges and overview of techniques

Given the subtleties in the proofs, we give an overview of our technical contributions

in this chapter before delving into the core technical sections.

Dense mixtures. As a simple first step, we reduce the problem of learning

mixture distributions to the problem of learning “dense mixtures” (i.e., those mixtures

whose component weights are not too small). Working with dense mixtures is more

convenient since a large enough sample from a dense mixture will include samples

from every component.

Locally small cover for GMMs w.r.t. dTV? One idea to privately learn

(dense) GMMs is to create a locally small cover w.r.t. dTV (see Definition 2.1.3) for

this class and then apply “advanced” private hypothesis selection (Bun et al., 2021).

However, as Aden-Ali et al. (2021b) showed, such a locally small cover (w.r.t.dTV)
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does not exists, even for a mixtures of two (dense) Gaussians.

A locally small cover for the component-wise distance. An alternative

measure for the distance between two mixtures is their component-wise distance,

which we denote by κmix (see Definition 5.1.2). Intuitively, given two mixtures, κmix

measures the distance between their farthest components. Therefore, if two GMMs

are close in κmix then they are close in dTV distance too. Interestingly, we prove that

GMMs do admit a locally small cover w.r.t. κmix. To prove this, we first show that

if a class of distributions admits a locally small cover w.r.t. dTV then the class of its

mixtures admits a locally small cover w.r.t. κmix. Next, we argue that the class of

Gaussians admits a locally small cover w.r.t. dTV. Building a locally small cover for

the class of Gaussians is challenging due to the complex geometry of this class. We

show the existence of such cover using the techniques of Aden-Ali et al. (2021a) and

the recently proved lower bound for the dTV distance between two (high dimensional)

Gaussians (Arbas et al., 2023).

Hardness of learning GMMs w.r.t. κmix. Given that we have a locally small

cover for GMMs w.r.t. κmix, one may hope to apply some ideas similar to private

hypothesis selection for privately learning GMMs w.r.t. κmix. Unfortunately, learn-

ing GMMs w.r.t. κmix, even in the non-private setting, requires exponentially many

samples in terms of the number of components (Moitra and Valiant, 2010).

List decoding (dense mixtures) w.r.t. κmix. Interestingly, we show that

unlike PAC learning, list decoding GMMs w.r.t. κmix can be done with a polynomial

number of samples. To show this, first, we prove that if a class of distributions is list

decodable (w.r.t. dTV), then class of its dense mixtures is list decodable (w.r.t. κmix).

Then for the class of Guassians, we use a compression-based (Ashtiani et al., 2018a)
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list decoding method.

Privacy challenges of using the list decoder. Unfortunately, the list decoding

method we described is not private. Otherwise, we could have used Private Hypothesis

Selection (Bun et al., 2021) to privately choose from the list of candidate GMMs. To

alleviate this problem, we define and solve the “private common member selection”

problem below.

Private common member selection. Given T lists of objects (e.g., distribu-

tions), we say an object is a common member if it is close (w.r.t. some metric κ) to

a member in each of the lists (we give a rigorous definition Chapter 4). The goal

of a private common member selector (PCMS) is then to privately find a common

member assuming at least one exists. We then show (1) how to use a PCMS to learn

GMMs privately and (2) how to solve the PCMS itself. This will conclude the proof

of Theorem 2.2.1.

Private learning of GMMs using PCMS. Given a PCMS, we first run the

(non-private) list decoding algorithm on T disjoint datasets to generate T lists of dense

mixture distributions. At this point, we are guaranteed that with high probability,

there exists a common member for these lists w.r.t. κmix. Therefore, we can simply

run the PCMS method to find such a common member. However, note that not all

the common members are necessarily “good”: there might be some other common

members that are far from the true distribution w.r.t. dTV. To resolve this issue,

in each list we filter out (non-privately) the distributions that are far from the true

distribution. After filtering the lists, we are still guaranteed to have a “good” common

member and therefore we can run PCMS to choose it privately.
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Designing a PCMS for locally small spaces. Finally, we give a recipe for

designing a private common member selector for T lists w.r.t. a generic metric κ. To

do so, assume we have access to a locally small cover for the space w.r.t. κ (indeed, we

had showed this is the case for the space of GMMs w.r.t. κmix). We need to privately

choose a member from this cover that represents a common member. We then design

a score function such that: (1) a common member gets a high score and (2) the

sensitivity of the score function is low (i.e., changing one of the input lists does not

change the score of any member drastically). Using this score function, we apply the

GAP-MAX algorithm of Bun et al. (2021, 2018) to privately select a member with a

high score from the infinite (but locally small) cover.

In the next chapter we give a background on differential privacy, distribution

learning. We also go through some related works.

18



Chapter 3

Background

In this chapter, we present some standard facts on distribution learning and differen-

tial privacy. Later, we discuss related work and results in the field.

3.1 Standard facts

We begin by a well-known result on learning finite class of distributions.

3.1.1 Learning finite classes

The following result on learning a finite class of distributions is based on the Minimum

Distance Estimator (Yatracos, 1985); see the excellent book by Devroye and Lugosi

(2001) for details.

Theorem 3.1.1 (Learning finite classes, Theorem 6.3 of Devroye and Lugosi (2001)).

Let α, β ∈ (0, 1). Given a finite class of distributions F , there is an algorithm that

upon receiving O( log |F|+log(1/β)
α2 ) i.i.d. samples from a distribution g, returns an f̂ ∈ F

such that dTV(f̂ , g) ≤ 3 ·minf∈F dTV(f, g) + α with probability at least 1− β.
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Next, we discuss some known results in differential privacy that are helpful in

understanding the ideas used in this thesis.

3.1.2 Differential privacy toolkit

A known tool for privately choosing a “good” item from a set of candidates is Expo-

nential Mechanism (McSherry and Talwar, 2007), where the “goodness” of candidates

is measured using a score function.

Theorem 3.1.2 (Exponential Mechanism (McSherry and Talwar, 2007)). Let (F , κ)

be a metric space and X be an arbitrary set. Let score : F ×X T → R≥0 be a function

such that for any f ∈ F and any two neighbouring sets D ∼ D′ ∈ X T , we have

| score(f,D)− score(f,D′)| ≤ ∆. Then there is an algorithm, called the Exponential

Mechanism, that is (ε, 0)-DP with the following property. For every D ∈ X T , and

β ∈ (0, 1), it outputs an element f̂ ∈ F satisfying

score(f̂ , D) ≥ max
f∈F

score(f,D)− 2∆ log(|F|/β)
ε

with probability at least 1− β.

However, Exponential Mechanism fails in the regimes where the candidate set

is not finite. This leads us to use the GAP-MAX algorithm of (Bun et al., 2021,

2018) that has the advantage of compatibility with infinite candidate sets. GAP-

MAX guarantees returning a “good” candidate as long as the number of “near good”

candidates is small.

Theorem 3.1.3 (GAP-MAX, Theorem IV.6. of Bun et al. (2021)). Let (F , κ) be

a metric space and X be an arbitrary set. Let score : F × X T → R≥0 be a function
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such that for any f ∈ F and any two neighbouring sets D ∼ D′ ∈ X T , we have

| score(f,D) − score(f,D′)| ≤ 1. Then there is an algorithm, called the GAP-MAX

algorithm, that is (ε, δ)-DP with the following property. For every D ∈ X T and

α′ ∈ (0, 1), if

∣∣∣∣{f ∈ F : score(f,D) ≥ sup
f ′∈F

score(f ′, D)− 5α′T

}∣∣∣∣ ≤ t

then

P
[
score(GAP-MAX(F , D, score, α′, β), D) ≥ sup

f ′∈F
score(f ′, D)− α′T

]
≥ 1− β

provided T = Ω
(

min{log |F|,log(1/δ)}+log(t/β)
α′ε

)
.

In the context of distribution learning, another useful tool for privately selecting

a hypothesis from a set of candidate distributions is the PHS method of Aden-Ali

et al. (2021a).

Theorem 3.1.4. Let α, β ∈ (0, 1), and ε > 0. Given a finite class of distribu-

tions F , there is an (ε, 0)-DP algorithm that upon receiving O( log(|F|/β)
α2 + log(|F|/β)

αε
)

i.i.d. samples from a distribution g, returns an f̂ ∈ F such that dTV(f̂ , g) ≤

3 ·minf∈F dTV(f, g) + α with probability at least 1− β.

3.2 Related Work

In this section, we go through some related works on private learning of Gaussians

and their mixtures.
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3.2.1 Privately learning Gaussians

The very first and simplest case of this problem is the bounded univariate Gaussian.

Indeed, Karwa and Vadhan (2018) proposed a sample- and time-efficient algorithm for

estimating the mean and variance of bounded univariate Gaussians under pure DP.

We cannot hope to privately estimate the mean and variance without boundedness

assumptions. In fact, this is impossible due to information-theoretical lower bounds

for this problem. Furthermore, Karwa and Vadhan (2018) also provide a method for

estimating the mean and variance of univariate Gaussians for the unbounded setting

under approximate DP.

Later, other methods for learning high-dimensional Gaussians with respect to total

variation distance were introduced by Kamath et al. (2019b); Biswas et al. (2020).

They assume the parameters of the Gaussians have bounded ranges. As a result, the

sample complexity of their method depends on the condition number of the covariance

matrix, and the range of the mean.

Afterwards, Aden-Ali et al. (2021a) proposed the first finite sample complexity

upper bound for privately learning unbounded high-dimensional Gaussians, which was

nearly tight and matching the lower bound of Kamath et al. (2022a). Their method

was based on a privatized version of the Minimum Distance Estimator (Yatracos,

1985) and was inspired by the private hypothesis selection approach of Bun et al.

(2021). They indeed proved the existence of a ”locally small” cover for the space of

Gaussian covariance matrices and mean vectors and utilized a stable scoring function

(based on the Minimum Distance Estimator) to privately choose one good element

from that cover.
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One downside of Aden-Ali et al. (2021a) is that their method is not computation-

ally efficient. This is because they did not explicitly construct the cover and only

showed the existence of such a cover using Zorn’s lemma.

There have been several recent results on computationally efficient learning of

unbounded Gaussians (Kamath et al., 2022b; Kothari et al., 2022; Ashtiani and Liaw,

2022), with the method of Ashtiani and Liaw (2022) achieving near-optimal sample

complexity using a sample-and-aggregate-based technique. The framework works as

follows: they run a non-private algorithm for learning Gaussians on many different

datasets, and use the propose-test-release approach to privately check whether the

output distributions are close together or not. If not, their algorithm halts as the

inputs were not good; otherwise, they compute a weighted average of the output

distributions to reduce the sensitivity. Finally, they privately mask the averaged

distribution and output the noisy distribution.

Another sample-and-aggregate framework that can be used for this task is Friend-

lyCore (Tsfadia et al., 2022). The methods of Ashtiani and Liaw (2022); Kothari

et al. (2022) also work in the robust setting achieving sub-optimal sample complexi-

ties. Recently, Alabi et al. (2023) improved this result in terms of dependence on the

dimension. Finally, Hopkins et al. (2023) achieved a robust and efficient learner with

near-optimal sample complexity for unbounded Gaussians.

In the pure DP setting, Hopkins et al. (2022) proposed a method for efficiently

learning Gaussians with bounded parameters. There are some other related works on

private mean estimation w.r.t. Mahalanobis distance in Brown et al. (2021); Duchi

et al. (2023); Brown et al. (2023).

Several other related studies have explored the relationship between robust and
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private estimation, as seen in Dwork and Lei (2009); Georgiev and Hopkins (2022);

Liu et al. (2022b); Hopkins et al. (2023); Asi et al. (2023). Also, there have been

investigations into designing estimators that achieve both privacy and robustness at

the same time (Liu et al., 2021).

3.2.2 Parameter estimation for GMMs

In this setting, upon receiving i.i.d. samples from a GMM, the goal is to estimate

the parameters of the mixture. Note that parameter estimation of GMMs (even in

the non-private setting) is statistically harder than density estimation for GMMs.

In other words, while performing parameter estimation, the exponential dependence

of the sample complexity on the number of components is inevitable (Moitra and

Valiant, 2010). This is because there are so many different parameter representations

for a single GMM, all of which are very close with respect to TV distance. Since

they are very close with respect to TV distance, one cannot hope to distinguish the

underlying parameters unless they have access to an exponentially large number of

samples in terms of the number of components.

In the non-private setting there is an extensive line of research for parameter

learning of GMMs (Dasgupta, 1999; Sanjeev and Kannan, 2001; Vempala and Wang,

2004; Achlioptas and McSherry, 2005; Brubaker and Vempala, 2008; Kalai et al., 2010;

Belkin and Sinha, 2009; Hardt and Price, 2014; Hsu and Kakade, 2013; Anderson

et al., 2014; Regev and Vijayaraghavan, 2017; Kothari et al., 2018; Hopkins and Li,

2018; Liu and Li, 2022; Feldman et al., 2006; Moitra and Valiant, 2010; Belkin and

Sinha, 2010; Bakshi et al., 2022; Liu and Moitra, 2021, 2022).

Under the boundedness assumption there has been a line of work in privately
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learning parameters of GMMs (Nissim et al., 2007; Vempala and Wang, 2004; Chen

et al., 2023; Kamath et al., 2019a; Achlioptas and McSherry, 2005; Cohen et al., 2021).

The work of Bie et al. (2022) approaches the same problem by taking the advantage of

public data. Recently, Arbas et al. (2023) proposed an efficient method for reducing

the private parameter estimation of unbounded GMMs to its non-private counterpart.

They extend the method proposed by Ashtiani and Liaw (2022) for privately learning

Gaussians. Arbas et al. (2023) employ a non-private parameter estimator on various

datasets. Initially, they ensure privately that the outputs are stable and close to each

other. Subsequently, they devise a masking (noising) mechanism for GMMs based on

parameter distance, and finally, they randomly select one output from the non-private

algorithm and apply the masking mechanism to it.

3.2.3 Density estimation for GMMs

In density estimation, which is the main focus of this work, the goal is to find a

distribution which is close to the underlying distribution w.r.t. dTV. Unlike parameter

estimation, the sample complexity of density estimation can be polynomial in both

the dimension and the number of components. In the non-private setting, there has

been several results about the sample complexity of learning GMMs (Devroye and

Lugosi, 2001; Ashtiani et al., 2018b), culminating in the work of (Ashtiani et al.,

2018a, 2020) which gives the near-optimal bound of Θ̃(kd2/α2).

There are some researches on designing computationally efficient learners for one-

dimensional GMMs (Chan et al., 2014; Acharya et al., 2017; Liu et al., 2022a; Wu

and Xie, 2018; Li and Schmidt, 2017). However, for general GMMs it is hard to come

up with a computationally efficient learner due to the known statistical query lower
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bounds (Diakonikolas et al., 2017).

In the private setting, and under the assumption of bounded components, one

can use the Private Hypothesis Selection of Bun et al. (2021) or private Minimum

Distance Estimator of Aden-Ali et al. (2021a) to learn classes that admit a finite cover

under the constraint of pure DP. Bun et al. (2021) also proposes a way to construct

such finite cover for mixtures of finite classes.

Later, Aden-Ali et al. (2021b) introduced the first polynomial sample complex-

ity upper bound for learning unbounded univariate GMMs under the constraint of

approximate differential privacy (DP). They also extended this result to the case of

axis-aligned GMMs, where the covariance matrices of the mixture components are

assumed to be diagonal matrices. They expanded on the idea of stable histograms

used in Karwa and Vadhan (2018) to learn univariate GMMs. At a high level, they

privately output a list of possible parameters (mean and variance) of the GMM at

each coordinate. This is feasible because the utility of stable histograms in the ap-

proximate setting does not depend on the number of bins, which is infinite in this

case. Finally, given a finite set of possible parameters, one can then privately select

a good set of parameters at each coordinate using private hypothesis selection (Bun

et al., 2021; Aden-Ali et al., 2021a).

However, this idea cannot be generalized to general GMMs, as it is not clear how

to learn even a single high-dimensional Gaussian using a stability-based histogram.

This is simply because there is too much room in high dimensions, and samples are

scattered among exponentially many candidate bins, making it difficult to determine

which ones are truly effective.

Another related work is the lower bound on the sample complexity of privately
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learning GMMs with known covariance matrices (Acharya et al., 2021).

In an independent and concurrent work, Ben-David et al. (2023) proposed a pure

DP method for learning general GMMs, assuming they have access to additional

public samples. In fact, they use sample compression (with public samples) to find a

list of candidate GMMs. Since this list is created using public data, they can simply

choose a good member of it using private hypothesis selection. We also create such

lists in the process. However, most of the technical part of this paper is dedicated

to guarantee privacy (with only access to private data). In fact, it is challenging to

privatize compression-based approaches since by definition, they heavily rely on a few

data points in the data set. Ben-David et al. (2023) also study an equivalence between

public-private learning, list decodable learning and sample compression schemes.

We also use sample compression in our list decoding algorithm for Gaussians (w.r.t

component-wise distance).

Our work is the first polynomial sample complexity upper bound for privately

learning mixtures of general GMMs without any restrictive assumptions. Designing

a private and computationally efficient density estimator for GMMs remains an open

problem even in the one-dimensional setting.

In the next few chapters we dive into technical details of our proofs. We start

by introducing the problem of private common member selection, which is the main

component in our reduction.
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Chapter 4

Private Common Member

Selection

In this chapter, we introduce the problem of Common Member Selection, which is

used in our main reduction for privately learning mixture distributions. At a high-

level, given a set of lists, a common member is an element that is close to some

element in most of the lists. The problem of common member selection is to find

such an item.

4.1 Problem statement

Definition 4.1.1 (Common Member). Let (F , κ) be a metric space and α, ζ ∈ (0, 1].

We say f ∈ F is an (α, ζ)-common-member for Y = {Y1, Y2, . . . , YT} ∈ (F∗)T , if

there exists a subset Y ′ ⊆ Y of size at least ζT , such that maxY ∈Y ′ κ(f, Y ) ≤ α.

Definition 4.1.2 (Common Member Selector (CMS)). Let (F , κ) be a metric space,

and α, ζ, β ∈ (0, 1]. An algorithm A is said to be a (T0, Q, α, ζ, β)-common-member
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selector w.r.t. κ if the following holds for all T ≥ T0:

Given any Y = {Y1, Y2, ..., YT} ∈ (F∗)T that satisfies |Yi| ≤ Q for all

i ∈ [T ], if there exists at least one (α, 1)-common-member for Y, then A

outputs a (2α, ζ)-common-member with probability at least 1− β.

Remark 4.1.3. Note that the CMS problem on its own is a trivial task and can be

done using a simple brute force algorithm. However, we are interested in the non-

trivial privatized version of this problem. The formal definition of the private CMS

is give below.

Definition 4.1.4 (Private Common Member Selector (PCMS)). Let (F , κ) be a

metric space. Further, let α, β, ζ, δ ∈ (0, 1] and ε ≥ 0 be parameters. An algo-

rithm A is an (ε, δ)-DP (T0, Q, α, ζ, β)-common-member selector w.r.t. κ if (1) it

is a (T0, Q, α, ζ, β)-CMS and (2) for any T ≥ T0 and any two collections of lists

C1 = {Y1, Y2, ..., YT} ∈ (F∗)T and C2 = {Y ′
1 , Y2, ..., YT} ∈ (F∗)T that differ in only

one list, the output distributions of A(C1) and A(C2) are (ε, δ)-indistinguishable.

4.2 The proposed algorithm

In Algorithm 1, we describe an algorithm for privately fining a common member

provided that one exists. We note that one requirement is that we have access to

a locally small cover C for F . At a high-level, given a family of sets {Y1, . . . , YT},

where each Yt is a set of elements, we can assign a score to each point c ∈ C to be the

number of Yt’s that contain a element close to c. We observe that the sensitivity of

this score function is 1, meaning that by changing one set, the score of each point will

change by at most 1. We remark that this is because the score of a point c is defined
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to be the number of lists that contains an element close to it, not the total number of

elements. Note that any point c with a sufficiently high score is a common member.

Further, since C is locally small, this allows us to apply the GAP-MAX algorithm

(Theorem 3.1.3) to make this selection differentially private 1. In Theorem 4.2.1, we

prove the correctness of this algorithm.

Algorithm 1 Private Common Member Selector (PCMS)

Input: D = {Y1, Y2, ..., YT} ∈ (F∗)T , metric κ over F , (t, 2α)-locally-small α-cover
Cα for F w.r.t. κ.

Output: (2α, 0.9)-common-member of D (assuming D has an (α, 1)-common-
member)

1: For all h ∈ Cα, set score(h,D) := |{i ∈ [T ] : κ(y, h) ≤ 2α for some y ∈ Yi}|.
2: return GAP-MAX(Cα, D, score, 0.1, β)

Theorem 4.2.1. Let (F , κ) be a metric space, α, β, δ ∈ (0, 1], Q ∈ N, ε > 0, and

Cα be a (t, 2α)-locally-small α-cover for F (w.r.t. κ). Algorithm 1 is an (ε, δ)-DP

(T,Q, α, 0.9, β)-common-member selector w.r.t. κ for some T = O
(

log(1/δ)+log(tQ/β)
ε

)
.

Proof. We first prove the utility of the algorithm.

Utility. We show that the output of the Algorithm 1 is an (2α, 0.9)-common-

member provided that there exists an (α, 1)-common-member (recall Definition 4.1.2).

Let the score function be defined as in Algorithm 1. Since Cα is (t, 2α)-locally-small,

we have

|{h ∈ Cα : score(h,D) ≥ 1}| ≤ tQT

since for any i ∈ [T ] and any y ∈ Yi, y contributes to at most t candidates’ scores. As

a result, there are at most tQT candidates with non-zero scores. Assuming that there

exists an (α, 1)-common-member for {Y1, Y2, ..., YT}, we have suph∈Cα
score(h,D) =

1This task can also be done using the Choosing Mechanism of Bun et al. (2015).
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T . Thus,

∣∣∣∣{h ∈ Cα : score(h,D) ≥ sup
h∈Cα

score(h,D)− T/2

}∣∣∣∣
= |{h ∈ Cα : score(h,D) ≥ T − T/2}|

= |{h ∈ Cα : score(h,D) ≥ T/2}|

≤ |{h ∈ Cα : score(h,D) ≥ 1}| ≤ tQT.

Using this bound, we can apply GAP-MAX algorithm in Theorem 3.1.3 with α′ = 0.1,

and T = O
(

log(1/δ)+log(tQ/β)
ε

)
. In particular, if ĥ = GAP-MAX(Cα, D, score, 0.1, β)

then

P
[
score(ĥ, D) ≥ 0.9T

]
= P

[∣∣∣{i ∈ [T ] : ∃y ∈ Yi such that κ(y, ĥ) ≤ 2α
}∣∣∣ ≥ 0.9T

]
≥ 1− β.

Privacy. Note that for any h ∈ Cα and any two neighbouring sets D ∼ D′, we

have | score(h,D)−score(h,D′)| ≤ 1 since each list y ∈ D contributes to any h’s score

by at most 1. Thus, Theorem 3.1.3 implies that GAP-MAX is (ε, δ)-DP.

In the next chapter, we develop some results for mixture distributions. These

properties will be useful later in our reduction.
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Chapter 5

Mixtures Distributions and Their

Properties

In this chapter, we study some general properties of mixture distributions. First,

we introduce a component-wise distance between two mixture distributions which

will be useful for constructing locally small covers. Generally, if we have a locally

small cover for a class of distributions w.r.t. dTV, then there exists a locally small

cover w.r.t. component-wise distance for mixtures of that class. Later, we define dense

mixtures and will show that if a class of distributions is list decodable w.r.t. dTV, then

the dense mixtures of that class are list decodable w.r.t. component-wise distance.

5.1 Component-wise distance between mixtures

Here, we define the class of general mixtures which are the mixtures with arbitrary

number of components, as opposed to Definition 2.1.4, where the number of compo-

nents is fixed.
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Definition 5.1.1 (general mixtures). Let F be an arbitrary class of distributions.

We denote the class of mixtures of F by mix(F) =
⋃∞

k=1 k-mix(F).

Below, we define the component-wise distance between two mixture distributions

with arbitrary number of components. The definition is inspired by Moitra and

Valiant (2010). We set the distance between two mixtures with different number of

components to be ∞. Otherwise, the distance between two mixtures is the distance

between their farthest components.

Definition 5.1.2 (Component-wise distance between two mixtures). For a class F

and every g1 =
∑

i∈[k1] wifi ∈ k1-mix(F), g2 =
∑

i∈[k2] w
′
if

′
i ∈ k2-mix(F), we define

the distance κmix : mix(F)×mix(F) → R≥0 as

κmix(g1, g2) =


minπ maxi∈[k1] max{k1.|wi − w′

π(i)|, dTV(fi, f
′
π(i))} k1 = k2

∞ k1 ̸= k2

(5.1.1)

where π is chosen from all permutations over [k1].

The next lemma states that if two mixture distributions are close w.r.t. κmix, then

they are also close w.r.t. dTV.

Lemma 5.1.3. Let α ∈ [0, 1] and f =
∑

i∈[k] wifi, f
′ =

∑
i∈[k] w

′
if

′
i ∈ k-mix(F). If

κmix(f, f
′) ≤ α, then dTV(f, f

′) ≤ 3α/2.

Proof. Using the definition of κmix, we get that for every i ∈ [k], |wi−w′
i| ≤ α/k and
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dTV(fi, f
′
i) ≤ α. Therefore,

dTV(f, f
′) =

1

2
||f − f ′||1 =

1

2
||
∑
i∈[k]

wifi −
∑
i∈[k]

w′
if

′
i ||1

≤ 1

2

∑
i∈[k]

||wifi − w′
if

′
i ||1

≤ 1

2

∑
i∈[k]

||wifi − w′
ifi||1 + ||w′

ifi − w′
if

′
i ||1

≤ 1

2

∑
i∈[k]

||wifi − w′
ifi||1 + ||w′

ifi − w′
if

′
i ||1

≤ 1

2

∑
i∈[k]

α

k
+

1

2

∑
i∈[k]

2αw′
i = 3α/2.

5.2 Locally small cover for mixtures w.r.t. component-

wise distance

The following simple proposition gives a locally small cover for weight vectors used

to construct a mixture.

Proposition 5.2.1. Let α ∈ (0, 1]. There is an α-cover for ∆k = {(w1, w2, ..., wk) ∈

Rk
≥0 :

∑
i∈[k] wi = 1} w.r.t. ℓ∞ of size at most (1/α)k.

Proof. Partition the cube [0, 1]k into small cubes of side-length 1/α. If for a cube c,

we have c ∩ ∆k ̸= ∅, put one arbitrary point from c ∩ ∆k into the cover. The size

of the constructed cover is no more than (1/α)k which is the total number of small

cubes.

The next lemma states that if a class of distributions has a locally small cover

w.r.t. dTV, then the mixtures of that class admit a locally small cover w.r.t. κmix.
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Note that the choice of the metric is important as the next theorem is false if we

consider the dTV metric for mixtures. In other words, there is a class of distributions

(e.g. Gaussians) that admits a locally small cover w.r.t. dTV but there is no locally

small cover for the mixtures of that class w.r.t. dTV (Proposition 1.3 of Aden-Ali et al.

(2021b)).

Theorem 5.2.2. For any 0 < α < γ < 1, if a class of distributions F has a (t, γ)-

locally-small α-cover w.r.t. dTV, then the class k-mix(F) has a (k!(tk/α)k, γ)-locally-

small α-cover w.r.t. κmix.

Proof. Let Cα be the (t, γ)-locally small α-cover for F , and ∆̂k be an α
k
-cover for the

probability simplex ∆k from Proposition 5.2.1. Construct the set J = {
∑

i∈[k] ŵif̂i :

ŵ ∈ ∆̂k, f̂i ∈ Cα}. Note that J is an α-cover for k-mix(F) w.r.t. κmix since for

any g =
∑

i∈[k] wifi ∈ k-mix(F), by construction, there exists an g′ ∈ J such that

κmix(g, g
′) ≤ α. Moreover, we have |Bκmix

(γ, g,J )| ≤ |BdTV
(γ, fi, Cα)|k · |∆̂k| · k! =

tk · (k/α)k · k!, where the first term is because of composing the cover for a single

component k times. The term |∆̂k| comes from the size of cover for mixing weights

of k components, and the k! term is the result of permutation over k unordered

components in the mixture.

5.3 Dense mixtures

Dense mixtures are mixture distributions where each component has a non-negligible

weight. Intuitively, a dense mixture is technically easier to deal with since given a

large enough sample from the dense mixture, one would get samples from all of the

components. This will allow us to show that if a class of distribution is list decodable
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w.r.t. dTV, then the class of its dense mixtures is list decodable w.r.t. κmix. Later,

we reduce the problem of learning mixture distributions to the problem of learning

dense mixtures.

Definition 5.3.1 (Dense mixtures). Let F be an arbitrary class of distributions,

k ∈ N, and η ∈ [0, 1/k]. We denote the class of k-mixtures of F without negligible

components by (k, η)-dense-mix(F) = {
∑s

i=1 wifi : s ≤ k, wi ≥ η,
∑s

i=1wi = 1, fi ∈

F}.

The next lemma states that every mixture distribution can be approximated using

a dense mixture.

Lemma 5.3.2. For every k ∈ N, g ∈ k-mix(F) and α ∈ [0, 1), there exists γ ∈ [0, α),

g′ ∈ (k, α/k)-dense-mix(F), and a distribution h such that g = γh+ (1− γ)g′.

Proof. For any g =
∑

i∈[k] wifi ∈ k-mix(F), let N = {i ∈ [k] : wi < α/k} be the

set of negligible weights, and γ =
∑

i∈N wi < α. Then g can be written as g = (1 −

γ)
∑

i∈[k]\N
wi

1− γ
fi+γ

∑
i∈N

wi

γ
fi. Note that

∑
i∈[k]\N

wi

1− γ
fi ∈ (k, α

k
)-dense-mix(F).

Theorem 5.2.2 shows that if a class of distributions admits a locally small cover

(w.r.t. dTV) then the class of its mixtures admits a locally small cover (w.r.t. κmix).

In the next lemma, we see that this is also the case for dense mixtures, i.e. if a class

of distributions admits a locally small cover (w.r.t. dTV) then the class of its dense

mixtures admits a locally small cover (w.r.t. κmix).

Lemma 5.3.3. For any 0 < α < γ < 1, and α′ ∈ (0, 1], if a class of distributions F

has a (t, γ)-locally-small α-cover w.r.t. dTV, then the class (k, α
′

k
)-dense-mix(F) has

a (k!(tk/α)k, γ)-locally-small α-cover w.r.t. κmix.
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Proof. Using Theorem 5.2.2 we know that if F has a (t, γ)-locally-small α-cover

w.r.t. dTV, then for every i ∈ [k], there exists an (i!(ti/α)i, γ)-locally-small α-cover Ci

for i-mix(F) w.r.t. κmix. Since (k, α
′

k
)-dense-mix(F) ⊆

⋃
i∈[k] i-mix(F), we get that

J =
⋃

i∈[k] Ci is an α-cover for (k, α
′

k
)-dense-mix(F). Moreover, J is (k!(tk/α)k, γ)-

locally-small since the κmix distance is ∞ for two mixtures with different number of

components.

5.4 List decoding algorithm for dense mixtures

The following theorem is one of the main ingredients used for reducing the problem

of privately learning mixtures to common member selection. It states that if a class

of distributions is list decodable (w.r.t. dTV), then the class of its dense mixtures is

list decodable (w.r.t. κmix).

Theorem 5.4.1. For any α, β, γ ∈ (0, 1), if a class of distributions F is (L,m, α, β, 1−

α/k)-list-decodable w.r.t. dTV, then the class (k, α
k
)-dense-mix(F) is (L′,m′, α, 2kβ, γ)-

list-decodable w.r.t. κmix, where L′ = (kL
α
)k+1 · (10e log(1/kβ)

1−γ
)m, and m′ = 2m+8 log(1/kβ)

1−γ
.

In order to prove Theorem 5.4.1, we need the following lemma, which states that

if a class of distributions is list decodable with contamination level γ = 0, it is also list

decodable with γ > 0, at the cost of additional number of samples and an increased

list size.

Lemma 5.4.2. For any α, β, γ ∈ (0, 1), if a class of distributions F is (L,m, α, β, 0)-

list-decodable w.r.t. κ, then it is
(
L(10e log(1/β)

1−γ
)m, 2m+8 log(1/β)

1−γ
, α, 2β, γ

)
-list-decodable

w.r.t. κ.
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Proof. Let f ∈ F and h be an arbitrary distribution. Consider g = (1 − γ)f + γh,

where γ ∈ (0, 1). Upon drawing N samples from g, let XN be the random variable

indicating the number of samples coming from f . Note that XN has binomial dis-

tribution. Setting N ≥ 2m+8 log(1/β)
1−γ

, results in E [XN ] /2 ≥ m, E [XN ] ≥ 8 log(1/β).

Using the Chernoff bound (Theorem 4.5(2) of (Mitzenmacher and Upfal, 2005)), we

have P [XN ≤ m] ≤ P [XN ≤ E [XN ] /2] ≤ exp(−E [XN ] /8) ≤ β. Meaning that af-

ter drawing N ≥ 2m+8 log(1/β)
1−γ

samples from g, with probability at least 1 − β, we

will have m samples coming from f , which is enough for list decoding F . Let

S1, · · · , SK be all subsets of these N samples with size m, where K =
(
N
m

)
. Now,

run the list decoding algorithm on these subsets and let Li be the outputted list. Let

L = ∪i∈[K]Li. Using the fact that among N samples there are m samples from f ,

we get that there exists f̂ ∈ L such that with probability at least 1 − β, we have

κ(f, f̂) ≤ α. Note that using Stirling’s approximation we have |L| = L ·
(
N
m

)
≤

L · (2em+8e log(1/β)
(1−γ)m

)m ≤ L · (10e log(1/β)
1−γ

)m. Finally, using a union bound we will get that

F is
(
L(10e log(1/β)

1−γ
)m, 2m+8 log(1/β)

1−γ
, α, 2β, γ

)
-list-decodable w.r.t. κ.

Proof of Theorem 5.4.1. Consider the algorithm A to be an (L,m, α, β, 1−α/k)-list-

decodable learner for F . Fix any distribution g =
∑

i∈[s] wifi ∈ (k, α
k
)-dense-mix(F),

where s ≤ k. Note that for any i ∈ [s], g can be written as g = wifi + (1 −

wi)
∑

j ̸=i
wjfj
1−wj

= wifi + (1 − wi)h. Knowing that wi ≥ α
k
, allows us to apply

the algorithm A on the m samples generated from g and get a list of distribu-

tions Ls such that with probability at least 1 − β we have minf ′∈Ls dTV(f
′, fi) ≤

α. Let ∆̂s be an α
s
-cover for ∆s from Proposition 5.2.1. Now construct a set

J =
⋃

s∈[k]{
∑

i∈[s] ŵif̂i : ŵ ∈ ∆̂s, f̂i ∈ Ls}. Note that with probability at least

1 − kβ we have ming′∈J κmix(g, g
′) ≤ max{α, α} = α. Moreover, we have |J | =
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∑
s∈[k] |Ls|s|∆̂s| =

∑
s∈[k] L

s( s
α
)s ≤ (kL

α
)k+1. Thus, the class of (k, α

k
)-dense-mix(F)

is
(
(kL

α
)k+1,m, α, kβ, 0

)
-list-decodable w.r.t. κmix. Using Lemma 5.4.2, we get that

(k, α
k
)-dense-mix(F) is

(
(kL

α
)k+1 · (10e log(1/kβ)

1−γ
)m, 2m+8 log(1/kβ)

1−γ
, α, 2kβ, γ

)
-list-decodable

w.r.t. κmix.

In the next chapter, we put all the pieces together and prove our main theorem

on privately learning mixture distributions.
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Chapter 6

Proof of the Main Reduction

In this chapter, we prove our main reduction which states that if a class of distribu-

tions admits a locally small cover and is list decodable, then its mixture class can be

learned privately. Let us first state the theorem again.

Theorem 2.2.1 (Reduction). For α, β ∈ (0, 1), if a class of distributions F admits a

(t, 2α/15)-locally small α
15
-cover (w.r.t. dTV), and it is (L,m, α/15, β′, 0)-list-decodable

(w.r.t. dTV), where log(1/β′) = Θ̃(log(mk log(tL/αδ)/εβ)), then k-mix(F) is (ε, δ)-

DP (α, β)-PAC-learnable (w.r.t. dTV) with sample complexity

Õ

((
log(1/δ) + k log(tL)

ε
+

mk + k log(1/β)

αε

)
·
(
k log(L)

α2
+

mk + k log(1/β)

α3

))
.

The high level idea of the proof is based on a connection to the private common

member selection problem. To see this, assume class F is list decodable and admits a

locally small cover. Then we show that given some samples from any f ∗ ∈ k-mix(F),

one can generate T lists of dense mixtures (i.e., member of (k, α
k
)-dense-mix(F)) such

that they have a common member (w.r.t. κmix). However, there could be multiple
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common members w.r.t. κmix that are far from f ∗ w.r.t. dTV. Therefore, we filter out

all distributions that have a bad dTV distance with the original distribution f ∗ (This

can be done using Minimum Distance Estimator). Afterwards, we are guaranteed

that all common members are also good w.r.t. dTV. Also, note that changing a data

point can change at most one of the lists. Therefore, by using the private common

member selector, we can choose a common member from these filtered lists while

maintaining privacy. The formal proof is given below.

Proof. Let α′, β′ ∈ (0, 1). If F is (L,m, α′, β′, 0)-list-decodable w.r.t. dTV then using

Lemma 5.4.2, we get that F is (L1,m1, α
′, 2β′, 1 − α/k)-list-decodable w.r.t. dTV,

where L1 = L · (10ek log(1/β′)
α′ )m, and m1 =

2mk+8k log(1/β′)
α′ .

Let f ∗ ∈ k-mix(F) be the true distribution. Using Lemma 5.3.2, we can write

f ∗ = γh + (1 − γ)f , where f ∈ (k, α
′

k
)-dense-mix(F), and γ ∈ [0, α′). Let L2 =

(kL1

α′ )
k+1 · (10e log(1/2kβ

′)
1−α′ )m1 , and m2 = 2m1+8 log(1/2kβ′)

1−α′ . By Theorem 5.4.1, we know

that (k, α
′

k
)-dense-mix(F) is (L2,m2, α

′, 4kβ′, α′)-list-decodable w.r.t. κmix.

Let t1 = k!(tk/α′)k, and T = O
(

log(1/δ)+log(t1L2/β′)
ε

)
. For i ∈ [T ], draw T disjoint

datasets each of size m3 = O
(

log(L2)+log(1/β′)
α′2

)
+ m2. For each dataset, run the

list decoding algorithm using m2 samples from that dataset, and let Li denote the

outputted list.

As mentioned above, we know that (k, α
′

k
)-dense-mix(F) is (L2,m2, α

′, 4kβ′, α′)-

list-decodable w.r.t. κmix. Thus, for each i ∈ [T ], with probability at least 1 − 4kβ′,

we have κmix(f,Li) ≤ α′. To convert this bound back to total variation distance, we

use Lemma 5.1.3 to get that dTV(f,Li) ≤ 3α′/2.

Note that the size of each Li is at most L2. By making use of the Minimum

Distance Estimator (Theorem 3.1.1), we can use the other O( log(L2)+log(1/β′)
α′2 ) samples
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from each datasets to find f̂i ∈ Li such that with probability at least 1− β′ we have

dTV(f̂i, f) ≤ 3 · dTV(f,Li) + α′ ≤ 11α′/2.

We then proceed with a filtering step. For each i ∈ [T ], we define L′
i = {f ′ ∈ Li :

dTV(f
′, f̂i) < 11α′/2} to be the elements in Li that are close to f̂i.

Using a union bound and a triangle inequality, we get that with probability at

least 1− (4k + 1)β′ we have maxf ′∈L′
i
dTV(f, f

′) ≤ 11α′.

Applying a union bound over all T datasets, we conclude that with probability at

least 1−(4k+1)β′T , f is a (α′, 1)-common-member for D = {L′
1, · · · ,L′

T} w.r.t. κmix,

and maxf ′∈L′
i
dTV(f, f

′) ≤ 11α′ for all i ∈ [T ].

The fact that F admits a (t, 2α′)-locally small α′-cover, along with Lemma 5.3.3,

implies that there exists an (t1, 2α
′)-locally small α′-cover C for (k, α

′

k
)-dense-mix(F).

Note that |L′
i| ≤ |Li| ≤ L2. Now, we run the private common member selector

(Algorithm 1) on (D, κmix, C) to obtain f̂ . Using Theorem 4.2.1 and a union bound,

we get that with probability at least 1− ((4k+ 1)T + 1)β′, f̂ is a (2α′, 0.9)-common-

member w.r.t. κmix. Therefore, Lemma 5.1.3 implies that f̂ is a (3α′, 0.9)-common-

member w.r.t. dTV.

Using the fact that for every i ∈ [T ], maxf ′∈L′
i
dTV(f

′, f) ≤ 11α′, we get that

dTV(f̂ , f) ≤ 14α′. Finally, triangle inequality implies that dTV(f̂ , f
∗) ≤ dTV(f̂ , f) +

dTV(f, f
∗) ≤ 15α′ with probability at least 1− ((4k + 1)T + 1)β′ ≥ 1− 6kTβ′. The

total sample complexity is:

T ·m3 = O

(
log(1/δ) + log(t1L2/β

′)

ε
·
(
log(L2) + log(1/β′)

α′2 +m2

))
= Õ

((
log(1/δ) + k log(tL)

ε
+

mk + k log(1/β′)

α′ε

)
·
(
k log(L)

α′2 +
mk + k log(1/β′)

α′3

))
.
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Finally, we substitute α′ = α/15 and β′ = βε
12ek log(6ekt1L2/εβδ)

< 1. Applying Claim A.0.3

with c1 = 6k/ε, c2 = t1L2/δ, we get that dTV(f̂ , f
∗) ≤ α with probability at least

1 − β. Moreover the order of the sample complexity remains unchanged. The given

approach is private since changing one data point alters only one of the T datasets,

and therefore affects at most one L′
i. The privacy guarantee then follows from Theo-

rem 4.2.1.

As an application of our main theorem, we prove the first sample complexity upper

bound for privately learning Gaussian mixtures (GMMs) in the next chapter.
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Chapter 7

Privately Learning GMMs

Prior to this work, there was no a finite sample complexity upper bound for pri-

vately learning mixtures of unbounded Gaussians. As an application of our general

framework, we study the problem of privately learning GMMs. This chapter provides

the necessary ingredients for using our proposed framework. First, we show that

the class of Gaussians is list decodable using sample compression schemes (Ashtiani

et al., 2018a). Second, we show that this class admits a locally small cover. Putting

together, we prove the first sample complexity upper bound for privately learning

GMMs.

7.1 List-decoding Gaussians using compression

As we stated in Remark 2.2.4, it is possible to use a PAC learner as a naive list

decoding algorithm that outputs a single Gaussian. However, doing so, results in

a poor sample complexity for privately learning GMMs. In this section, we provide

a carefully designed list decoding algorithm for the class of Gaussians which results
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in a much better sample complexity for privately learning GMMs due to its mild

dependence on the accuracy parameter (1/α).

We reduce the problem of list decoding a class of Gaussians to the problem of

compressing this class. Next, we use the result of Ashtiani et al. (2018a) that the class

of Gaussians is compressible. Finally, we conclude that this class is list decodable.

Remark 7.1.1. Our reduction is fairly general and works for any class of distribu-

tions. Informally, if a class of distributions is compressible, then it is list decodable.

However, for the sake of simplicity we state this result only for the class of Gaussians

in Lemma 7.1.4.

The method of sample compression schemes introduced by Ashtiani et al. (2018a)

is used for distribution learning. At a high level, given m samples from a distribution

and t additional bits, if there exists an algorithm (i.e., decoder) that can approxi-

mately recover the original distribution given a small subset of (i.e., τ many) samples

and t bits, then one can create a list of all possible combinations of choosing τ sam-

ples and t bits. Then one can pick a “good” distribution from the generated list of

candidates using Minimum Distance Estimator (Yatracos, 1985). Below, we provide

the formal definition of sample compression schemes for learning distributions.

Definition 7.1.2 (Compression schemes for distributions (Ashtiani et al., 2018a)).

For a set of functions τ,m, t : (0, 1) → Z≥0, the class of distributions F is said to

be (τ, t,m)-compressible if there exists a decoder D such that for any f ∈ F and

any α ∈ (0, 1), after receiving an i.i.d sample S of size m(α) log(1/β) from f , with

probability at least 1−β, there exists a sequence L of at most τ(α) members of S and

a sequence B of at most t(α) bits, such that dTV(D(L,B), f) ≤ α.

The following result states that the class of Gaussians is compressible.
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Lemma 7.1.3 (Lemma 4.1 of Ashtiani et al. (2018a)). Let α ∈ (0, 1). The class G

is (O(d), Õ(d2 log(1/α)), O(d))-compressible.

Finally, the next lemma uses the above result to show that Gaussians are list

decodable.

Lemma 7.1.4. For any α, β ∈ (0, 1), the class G is (L,m, α, β, 0)-list-decodable

w.r.t. dTV for L = (d log(1/β))Õ(d2 log(1/α)), and m = O (d log(1/β)).

An important feature of the above lemma (that is inherited from the compression

result) is the mild dependence of m and L on 1/α: m does not depend on 1/α and L

has a mild polynomial dependence on it.

Proof. We will prove that if a class of distributions F is (τ, t, s)-compressible, then it

is

(O((s log(1/β))t+τ ), s log(1/β), α, β, 0)-list-decodable w.r.t. dTV. Let f ∈ F , and S be

a set of s log(1/β) i.i.d. samples drawn from f . Now using the decoder D, construct

the list L = {D(L,B) : L ⊆ S, |L| ≤ τ, B ∈ {0, 1}t}. Using the Definition 7.1.2,

with probability at least 1 − β there exists f̂ ∈ L such that dTV(f̂ , f) ≤ α. Note

that |L| = O((s log(1/β))(t+τ)). Putting together with Lemma 7.1.3 concludes the

result.

7.2 A locally small cover for Gaussians

In this section, we construct a locally small cover for the class of Gaussians using the

techniques of Aden-Ali et al. (2021a). Explicitly constructing a locally small cover

for Gaussians is a challenging task due to the complex geometry of this class. Previ-

ously, Aden-Ali et al. (2021a) constructed locally small covers for location Gaussians
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(Gaussians with Id covariance matrix) and scale Gaussians (zero mean Gaussians).

One might think by taking the product of these two covers we can simply construct

a locally small cover for unbounded Gaussians (see Definition 2.1.5). However, the

product of these two covers is not a valid cover for unbounded Gaussians as the dTV

between two Gaussians can be very large even if their means are close to each other

in euclidean distance.

To resolve this issue, we take a small cover for a small dTV-ball of location gaussians

around N(0, Id) and scale it using a small cover for the dTV-ball of scale gaussians

around N(0, Id). Showing that this is a valid and small cover for a small dTV-ball

of unbounded Gaussians around N(0, Id) is a delicate matter. To argue that this is

a valid cover, we use the upper bound of Devroye et al. (2018) for the dTV distance

between high-dimensional Gaussians. Showing that this is a small cover requires

the recently proved lower bound on the dTV distance of high-dimensional Gaussians

(Arbas et al., 2023).

Once we created a small cover for a dTV-ball of unbounded Gaussians around

N(0, Id), we can transform it to a small cover for a dTV-ball of unbounded Gaussians

around an arbitrary N(µ,Σ). Finally, we use Lemma 7.2.7 to show that there exists

a global locally small cover for the whole space of Guassians.

Definition 7.2.1 (Location Gaussians). Let GL = {N (µ, Id) : µ ∈ Rd} be the class

of d-dimensional location Gaussians.

Definition 7.2.2 (Scale Gaussians). Let GS = {N (0,Σ) : Σ ∈ Sd} be the class of

d-dimensional scale Gaussians.

The next two lemmas propose small covers for location and scale Gaussians near

N(0, I). Recall that BdTV
(r, f,F) stands for the dTV-ball of radius r around f (See
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Definition 2.1.1).

Lemma 7.2.3 (Lemma 30 of Aden-Ali et al. (2021a)). For any 0 < α < γ < c,

where c is a universal constant, there exists an α-cover CL for the set of distributions

BdTV
(γ,N(0, I),GL) of size (

γ

α
)O(d) w.r.t. dTV.

Lemma 7.2.4 (Corollary 33 of Aden-Ali et al. (2021a)). For any 0 < α < γ < c,

and Σ ∈ Sd, where c is a universal constant, there exists an α-cover CS for the set of

distributions BdTV
(γ,N(0,Σ),GS) of size (

γ

α
)O(d2) w.r.t. dTV.

The next theorem provides upper and lower bounds for dTV between two Gaus-

sians, which will be used for constructing a small cover for unbounded Guassians near

N(0, I).

Theorem 7.2.5 (Theorem 1.8 of Arbas et al. (2023)). Let N(µ1,Σ1), N(µ2,Σ2) ∈ G,

and ∆ = max{||Σ−1/2
1 Σ2Σ

−1/2
1 − Id||F , ||Σ−1/2

1 (µ1 − µ2)||2}. Then

dTV(N(µ1,Σ1), N(µ2,Σ2)) ≤
1√
2
∆.

Also, if dTV(N(µ1,Σ1), N(µ2,Σ2)) ≤ 1
600

, we have:

1

200
∆ ≤ dTV(N(µ1,Σ1), N(µ2,Σ2)).

The next lemma proposes a small cover for the unbounded Guassians near N(µ,Σ)

for any given µ and Σ. To do so, we combine the small covers from Lemma 7.2.3 and

Lemma 7.2.4 in a way that it approximates any Gaussian near N(0, I).

Lemma 7.2.6. Let 0 < α < γ ≤ 1
600

, µ ∈ Rd, and Σ ∈ Sd. There exists an α-cover

for BdTV
(γ,N(µ,Σ),G) of size at most (

γ

α
)O(d2).
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Proof. First, we construct a cover for BdTV
(γ,N(0, I),G), then we extend it to a cover

for BdTV
(γ,N(µ,Σ),G) using a linear transformation.

Let γ ∈ (α, 1
600

) and consider the ball B := BdTV
(γ,N(0, I),G). Let γ1 = 200γ and

CL be an
√
2

200
α-cover for BdTV

(γ1, N(0, I),GL) from Lemma 7.2.3. Also, let γ2 = 200γ

and CS be an
√
2

200
α-cover for BdTV

(γ2, N(0, I),GS) from Lemma 7.2.4.

We claim that CB = {N(Σ1/2µ,Σ) : N(µ, I) ∈ CL, N(0,Σ) ∈ CS} is an α-cover

for B. Let N(µ̂, Σ̂) ∈ B so that dTV(N(0, I), N(µ̂, Σ̂)) ≤ γ ≤ 1
600

. Applying the lower

bound of Theorem 7.2.5 with Σ1 = I,Σ2 = Σ̂, µ1 = 0, µ2 = µ̂ gives that

||Σ̂− I||F ≤ 200 dTV(N(0, I), N(µ̂, Σ̂)) ≤ 200γ and (7.2.1)

||µ̂||2 ≤ 200 dTV(N(0, I), N(µ̂, Σ̂)) ≤ 200γ. (7.2.2)

Moreover, applying Theorem 7.2.5 with Σ1 = Σ̂,Σ2 = I, µ1 = µ̂, µ2 = 0 gives that

||Σ̂−1/2µ̂||2 ≤ 200 dTV(N(0, I), N(µ̂, Σ̂)) ≤ 200γ.

Next, applying the upper bound of Theorem 7.2.5 with µ1 = µ2 = 0,Σ1 = I,Σ2 = Σ̂

gives dTV(N(0, I), N(0, Σ̂)) ≤ 1√
2
||Σ̂− I||F ≤ 200√

2
γ < 200γ = γ2. Therefore N(0, Σ̂) ∈

BdTV
(γ2, N(0, 1),GS). Recall that CS is an

√
2

200
α-cover for BdTV

(γ2, N(0, I),GS). Thus,

there exists N(0, Σ̃) ∈ CS such that dTV(N(0, Σ̂), N(0, Σ̃)) ≤
√
2

200
α. Using the lower

bound of Theorem 7.2.5 with Σ1 = Σ̃,Σ2 = Σ̂, µ1 = 0, µ2 = 0 results in

||Σ̃−1/2Σ̂Σ̃−1/2 − I||2 ≤ ||Σ̃−1/2Σ̂Σ̃−1/2 − I||F ≤ 200 dTV(N(0, Σ̂), N(0, Σ̃)) ≤
√
2α.

(7.2.3)

Therefore ||Σ̃−1/2Σ̂Σ̃−1/2||2 = ||(Σ̃−1/2Σ̂1/2)(Σ̃−1/2Σ̂1/2)T ||2 ≤ 1 +
√
2α. Finally, we
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get ||Σ̃−1/2Σ̂1/2||2 ≤
√

1 +
√
2α ≤

√
2.

Now let v̂ = Σ̂−1/2µ̂. From 7.2.2 we know that ||v̂||2 ≤ 200γ. Therefore we

have ||Σ̃−1/2µ̂||2 = ||Σ̃−1/2Σ̂1/2v̂||2 ≤ ||Σ̃−1/2Σ̂1/2||2||v̂||2 ≤ 200γ
√
2. Using the up-

per bound of Theorem 7.2.5 with Σ1 = I, Σ2 = I, µ1 = Σ̃−1/2µ̂, and µ2 = 0 gives

dTV(N(Σ̃−1/2µ̂, I), N(0, I)) ≤ 1√
2
||Σ̃−1/2µ̂||2 ≤ 200γ

√
2√

2
= γ1. Thus N(Σ̃−1/2µ̂, I) ∈

BdTV
(γ1, N(0, 1),GL). Recall that CL is an

√
2

200
α-cover forBdTV

(γ1, N(0, I),GL). There-

fore, there exists N(µ̃, I) ∈ CL such that dTV(N(µ̃, I), N(Σ̃−1/2µ̂, I)) ≤
√
2

200
α. Us-

ing the lower bound of Theorem 7.2.5 with Σ1 = I,Σ2 = I, µ1 = Σ̃−1/2µ̂, µ2 = µ̃,

we can write ||Σ̃−1/2µ̂ − µ̃||2 = ||Σ̃−1/2(Σ̃1/2µ̃ − µ̂)||2 ≤
√
2α. Putting together

with 7.2.3, we can use the upper bound in Theorem 7.2.5 with Σ1 = Σ̃, Σ2 = Σ̂,

µ1 = Σ̃1/2µ̃, and µ2 = µ̂ to get that dTV(N(Σ̃1/2µ̃, Σ̃), N(µ̂, Σ̂)) ≤ α. Note that

N(Σ̃1/2µ̃, Σ̃) ∈ CB. Hence, CB is an α-cover for B. Moreover, we have |CB| =

|CL||CS| ≤ (γ1
α
)O(d)(γ2

α
)O(d2) = ( γ

α
)O(d2).

Now, we propose a cover for BdTV
(γ,N(µ,Σ),G). Note that using Lemma A.0.1,

for any Σ,Σ1,Σ2 ∈ Sd, we have:

dTV(N(0,Σ1/2Σ1Σ
1/2), N(0,Σ1/2Σ2Σ

1/2)) = dTV(N(0,Σ1), N(0,Σ2)).

Note that equality holds since the mapping is bijection. Next, create the set CBΣ =

{N(µ,Σ1/2Σ′Σ1/2) : N(µ,Σ′) ∈ CB}. Note that CBΣ is an α-cover forBdTV
(γ,N(0,Σ),G)

since the dTV distance between every two distributions in CB remains same (i.e. does

not increase) after this transformation. Finally, the set CBµ,Σ = {N(µ + µ′,Σ′) :

N(µ′,Σ′) ∈ CBΣ} is the desired α-cover for BdTV
(γ,N(µ,Σ),G) since it is the shifted

version of CBΣ . Also, we have |CBµ,Σ| = |CBΣ| = |CB| ≤ ( γ
α
)O(d2).
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The next lemma provides a useful tool for creating (global) locally small covers.

Informally, given a class of distributions, if there exists a small cover for a small ball

around each distribution in the class, then there exists a (global) locally small cover

for the whole class.

Lemma 7.2.7 (Lemma 29 of Aden-Ali et al. (2021a)). Consider a class of distribu-

tions F and let 0 < α < γ < 1. If for every f ∈ F the BdTV
(γ, f,F) has an α-cover of

size no more than t, then there exists a (t, γ)-locally small 2α-cover for F w.r.t. dTV.

The proof of the above lemma is non-constructive and uses Zorn’s lemma. An

immediate implication of Lemma 7.2.6 and Lemma 7.2.7 is the existence of a locally

small cover for unbounded Gaussians.

Lemma 7.2.8. For any 0 < α < γ ≤ 1
600

, there exists a ((2γ/α)O(d2), γ)-locally small

α-cover for the class G w.r.t. dTV.

7.3 Learning GMMs

In this section, we prove the first sample complexity upper bound for privately learn-

ing mixtures of unbounded Gaussians. We use the fact that Gaussians are (1) list

decodable, and (2) admit a locally small cover. Putting this together with our main

theorem for learning mixture distributions, we conclude that GMMs are privately

learnable.

Proof. According to Lemma 7.1.4, the class G is (L,m, α, β, 0)-list-decodable w.r.t. dTV

for L = (d log(1/β))Õ(d2 log(1/α)) and m = O (d log(1/β)). Moreover, Lemma 7.2.8
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implies that G admits a (t, 2α)-locally small α-cover, where t = 4O(d2). Using Theo-

rem 2.2.1, we get that k-mix(G) is (ε, δ)-DP (α, β)-PAC-learnable using

Õ

((
log(1/δ) + k log(tL)

ε
+

mk + k log(1/β)

αε

)
·
(
k log(L)

α2
+

mk + k log(1/β)

α3

))
= Õ

((
log(1/δ) + kd2

ε
+

kd log(1/β)

αε

)
·
(
kd2

α2
+

kd log(1/β)

α3

))
= Õ

(
kd2 log(1/δ) + k2d4

α2ε
+

kd log(1/δ) log(1/β) + k2d3 log(1/β)

α3ε
+

k2d2 log2(1/β)

α4ε

)

samples.
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Chapter 8

Conclusion

In this work, we proposed the first sample complexity upper bound for privately

learning unbounded GMMs. We demonstrated that Õ(k2d4) samples are sufficient

to estimate a mixture of k Gaussians in Rd up to a small total variation distance

while satisfying approximate differential privacy. We achieve this through a fairly

general reduction, which posits that if a class of distributions, such as Gaussians, is

(1) list-decodable (or simply learnable) and (2) admits a locally small cover, then the

class of its mixtures is privately learnable.

We also propose and address the problem of common member selection for general

locally small metric spaces. We believe this has future applications and can be utilized

in various private estimation tasks in a black-box manner.

There are still some important open directions related to this work, which we

discuss here.

Firstly, we are not aware of any class of distributions that is learnable in the

non-private (agnostic) setting but not learnable in the (ϵ, δ)-DP setting. In fact,

we conjecture that every class of distributions that is learnable in the non-private
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agnostic setting is also learnable in the (ϵ, δ)-DP setting. We believe this conjecture

to be true for the agnostic setting, given the recent developments on connections

between robustness and privacy Asi et al. (2023); Hopkins et al. (2023). Recently,

the negative result of Bun et al. (2024) has shown that there is a class of distribution

that is learnable (in realizable setting) with a constant accuracy but not privately

learnable.

Another important open question is whether it is possible to privately and robustly

learn GMMs simultaneously.

Furthermore, there is a gap between the sample complexity of private versus

non-private learning of GMMs. For the non-private case, the nearly tight sample

complexity is known to be Θ̃(kd2). This remains an open problem, particularly in

the one-dimensional setting (Aden-Ali et al., 2021b).

Lastly, as stated before, our result is information-theoretic. It remains an open

question to design a finite-time algorithm for the problem of privately learning GMMs.

Designing a computationally efficient algorithm, even in the non-private setting, re-

mains an open problem (Diakonikolas et al., 2017).
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Appendix A

Additional Facts

Lemma A.0.1. Let f be an arbitrary function, and X, Y be two random variables

with the same support. Then dTV(f(X), f(Y )) ≤ dTV(X, Y ).

Proof.

dTV(f(X), f(Y )) = sup
A∈X

P [f(X) ∈ A]− P [f(Y ) ∈ A]

= sup
A∈X

P
[
X ∈ f−1(A)

]
− P

[
Y ∈ f−1(A)

]
≤ dTV(X, Y )

Claim A.0.2. Let x ≥ 1. Then 1 + log 2
x

+ log x
x

< 2.

Proof. Let f(x) = 1+ log 2
x

+ log x
x

. Then f ′(x) = − log 2
x2 + 1−log x

x2 = 1−log(2x)
x2 . Note that

f ′(x) is decreasing so f is concave. In addition, x = e/2 is the only root of f ′ so f is

maximized at e/2. Thus, f(x) ≤ f(e/2) = 1 + 2
e
< 2.

Claim A.0.3. For c1, c2, 1/β ≥ 1, let β′ = β
2ec1 log(ec1c2/β)

, then β′ ≤ β
2ec1

≤ 1
ec1

, and

c1β
′ log(c2/β

′) ≤ β.
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Proof.

c1β
′ log(c2/β

′) = c1
β

2ec1 log(ec1c2/β)
· [log(ec1c2/β) + log(2) + log log(ec1c2/β)]

=
β

2e
·
[
1 +

log 2

log(ec1c2/β)
+

log log(ec1c2/β)

log(ec1c2/β)

]
≤ β/e.

where in the last inequality, we used Claim A.0.2 with x = log(ec1c2/β) ≥ 1.
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