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ABSTRACT

This is a study concerning the modeling of UV-B irradiance at the earth’s surface.
It is timely because stratospheric ozone depletion has oceurred globally as a result of
increasing chlorofluorocarbons in the stratosphere. This reduction allows more UV-B
irradiance (290-325 nm) to reach the earth’s surface and cause detrimental biological
effects. Presently there are few spectral UV-B radiation measurements. Therefore,
irradiance models are useful tools for estimating UV-B irradiances in areas where
measurements are not made. A numerical model to calculate spectral and broadband
irradiances for all sky conditions is described and the results are validated with
measurements for nine Canadian stations (Alert, Resolute Bay, Churchill, Edmonton,
Regina, Winnipeg, Montreal, Halifax and Toronto). The model uses either the discrete
ordinate radiative transfer (DISORT) or the delta-Eddington algorithms to solve the
radiative transfer equation for a 49-layer, vertically inhomogeneous, plane-parallel
atmosphere, with cloud inserted between the 2 and 3 km heights. Spectral calculations are
made at | nm intervals. The model uses extraterrestrial spectral irradiance, spectral
optical properties for each atmospheric layer for ozone, air molecules, and aerosol and
surface albedo. Cloud optical depths r, were calculated separately for overcast irradiance
measurements for nine stations from 26 years of data. The delta-Eddington method
performed well for producing 7, and overcast broadband irradiances. A fixed 7, value of

18.7 was found to be accurate for calculating cloudy sky irradiances at all stations except

in the arctic.
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Twenty-six station years of irradiance measurements and model estimates are
compared. Comparisons are made both for daily totals and for monthly averaged spectral
and broadband irradiances. It is shown that the delta-Eddington method is not suitable for
calculating spectral irradiances under clear skies, at short wavelengths (< 305 nm), where
absorption by ozone is high, and at large solar zenith angles. The errors are smaller for
overcast conditions. The method was found to be adequate for daily total spectral (= 305
nm) and for broadband calculations for all sky conditions, although consistently
overestimating the irradiances. There is a good agreement between broadband
measurements and calculations for both daily totals and monthly averages with mean bias
error (MBE) mainly less than 5% of the mean measured daily irradiance and root mean
square error (RMSE) less than 26%, decreasing to below 15% for monthly averages.
Agreement between mean monthly measured and calculated spectral irradiances is also
good for wavelengths > 305 nm. The accuracy of the Brewer instrument is questioned at
wavelengths <305 nm at most stations.

Comparison of the model broadband irradiances with simultaneous satellite-based
results and Brewer measurements at six stations shows that the model performs as well as
the satellite model but with the advantage that it can provide irradiance estimates

throughout the day and, therefore, daily totals.
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