
McMaster University
DigitalCommons@McMaster

Open Access Dissertations and Theses Open Dissertations and Theses

10-1-2011

Algebraic Constructions Applied to Theories
Quang Minh Tran
McMaster University, tranqm@mcmaster.ca

Follow this and additional works at: http://digitalcommons.mcmaster.ca/opendissertations
Part of the Other Computer Engineering Commons

This Thesis is brought to you for free and open access by the Open Dissertations and Theses at DigitalCommons@McMaster. It has been accepted for
inclusion in Open Access Dissertations and Theses by an authorized administrator of DigitalCommons@McMaster. For more information, please
contact scom@mcmaster.ca.

Recommended Citation
Tran, Quang Minh, "Algebraic Constructions Applied to Theories" (2011). Open Access Dissertations and Theses. Paper 4959.

http://digitalcommons.mcmaster.ca?utm_source=digitalcommons.mcmaster.ca%2Fopendissertations%2F4959&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.mcmaster.ca/opendissertations?utm_source=digitalcommons.mcmaster.ca%2Fopendissertations%2F4959&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.mcmaster.ca/open_diss?utm_source=digitalcommons.mcmaster.ca%2Fopendissertations%2F4959&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.mcmaster.ca/opendissertations?utm_source=digitalcommons.mcmaster.ca%2Fopendissertations%2F4959&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=digitalcommons.mcmaster.ca%2Fopendissertations%2F4959&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.mcmaster.ca/opendissertations/4959?utm_source=digitalcommons.mcmaster.ca%2Fopendissertations%2F4959&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scom@mcmaster.ca


Algebraic Constructions Applied
to Theories





Algebraic Constructions Applied
to Theories

By

Quang Minh Tran, Dipl.-Inf.

A Thesis
Submitted to the School of Graduate Studies

in partial fulfilment of the requirements for the degree of

Master of Science
Department of Computing and Software

McMaster University

c© Copyright by Quang Minh Tran, June 22, 2011



ii

MASTER OF SCIENCE (2011) McMaster University
(Computer Science) Hamilton, Ontario

TITLE: Algebraic Constructions Applied to Theories
AUTHOR: Quang Minh Tran, Dipl.-Inf. (Furtwangen University, Germany)

SUPERVISOR: Dr. William M. Farmer

NUMBER OF PAGES: x, 125



ABSTRACT

MathScheme is a long-range research project being conducted at McMaster University

with the aim to develop a mechanized mathematics system in which formal deduction

and symbolic computation are integrated from the lowest level. The novel notion

of a biform theory that is a combination of an axiomatic theory and an algorithmic

theory is used to integrate formal deduction and symbolic computation into a uniform

theory. A major focus of the project has currently been on building a library of

formalized mathematics called the MathScheme Library. The MathScheme Library

is based on the little theories method in which a portion of mathematical knowledge is

represented as a network of biform theories interconnected via theory morphisms. In

this thesis, we describe a systematic explanation of the underlying techniques which

have been used for the construction of the MathScheme Library. Then we describe

several algebraic constructions that can derive new useful machinery by leveraging

the information extracted from a theory. For instance, we show a construction that

can reify the term algebra of a (possibly multi-sorted) theory as an inductive data

type.

iii



CONTENTS

Abstract iii

1 Introduction 1

1.1 The Mathematics Process . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Theorem Proving Systems vs. Computer Algebra Systems . . . . . . 2

1.3 The MathScheme Project . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Overview of Solution Pieces . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Contributions of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 6

1.7 Font Convention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Theories of Formalized Mathematics 8

2.1 Axiomatic Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Axiomatic Theory . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Theory Development Process . . . . . . . . . . . . . . . . . . 11

2.1.3 Theories as Modules . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Symbolic Computation . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Biform Theory =

Axiomatic Theory + Algorithmic Theory . . . . . . . . . . . . . . . . 17

2.4 Theory Morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.1 Injections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.2 Operations on Theory Morphisms . . . . . . . . . . . . . . . . 21

iv



CONTENTS v

2.5 Approaches to Organizing Mathematical

Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.1 Big Theories Method . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.2 Little Theories Method . . . . . . . . . . . . . . . . . . . . . . 26

2.5.3 Tiny Theories Method . . . . . . . . . . . . . . . . . . . . . . 27

2.5.4 High-Level Theories Method . . . . . . . . . . . . . . . . . . . 29

3 The MathScheme Library 30

3.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Design Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Current Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.1 Abstract Algebra . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.2 Concrete Theories . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Reification of Theories and Theory Interpretations 35

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Reification of a Theory as a Type . . . . . . . . . . . . . . . . . . . . 36

4.2.1 Reification of a Theory as a Dependent Record Type . . . . . 37

4.2.2 Elements of a Reified Theory . . . . . . . . . . . . . . . . . . 39

4.3 Reification of a Theory Interpretation as an Element . . . . . . . . . 40

4.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Generation of Theories of Homomorphisms 43

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2 Generic Definition of Homomorphism . . . . . . . . . . . . . . . . . . 44

5.3 Constructing a Homomorphism via TypeFrom . . . . . . . . . . . . . 46

5.4 Constructing a Homomorphism via Pushout . . . . . . . . . . . . . . 51

5.5 Comparison of the Two Constructions . . . . . . . . . . . . . . . . . 60

6 Generation of Theories of Substructures and Submodels 61

6.1 Motivation for the Generation of a Substructure and a Submodel . . 61

6.2 Generic Definition of a Substructure and a Submodel . . . . . . . . . 62

6.3 Constructing a Theory of a Substructure and a Submodel via TypeFrom 64

6.4 Constructing a Theory of a Substructure Via Pushout . . . . . . . . . 68

6.5 Comparison of the Two Constructions . . . . . . . . . . . . . . . . . 74



vi CONTENTS

7 Theory Syntax Representation and Other Syntactic Machinery 76

7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.2 Definition of the Term Algebra of a Theory . . . . . . . . . . . . . . . 79

7.3 Syntax Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.3.1 Definition of a Syntax Framework . . . . . . . . . . . . . . . . 80

7.3.2 Chiron as a Syntax Framework . . . . . . . . . . . . . . . . . 85

7.3.3 The MathScheme Language as a Syntax Framework . . . . . . 85

7.4 Reification of the Term Algebra of a Theory as an Inductive Data Type 87

7.4.1 Linking the Reified Term Algebra with the

Quotations Set . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.4.2 The Term Algebra of a Multi-sorted Theory . . . . . . . . . . 89

7.4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.5 Useful Syntactic Functions . . . . . . . . . . . . . . . . . . . . . . . . 91

7.6 Theory of Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8 Conclusion and Future Work 94

Appendix : MathScheme Language 98

H.1 Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

H.1.1 Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

H.1.2 Nonterminals . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

H.1.3 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

H.1.4 Alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

H.1.5 Repetitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

H.1.6 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

H.1.7 Identifiers and Operators . . . . . . . . . . . . . . . . . . . . . 99

H.2 Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

H.2.1 Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

H.2.2 Atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

H.2.3 Identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

H.2.4 Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

H.2.5 Tuple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

H.2.6 Record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

H.2.7 Constructor Selector . . . . . . . . . . . . . . . . . . . . . . . 103

H.2.8 Bracketed Expression . . . . . . . . . . . . . . . . . . . . . . . 103



CONTENTS vii

H.2.9 Marked Expression . . . . . . . . . . . . . . . . . . . . . . . . 103

H.2.10 Quotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

H.2.11 Term evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 104

H.2.12 Function Application . . . . . . . . . . . . . . . . . . . . . . . 104

H.2.13 Operator Expressions . . . . . . . . . . . . . . . . . . . . . . . 104

H.2.14 Function Abstraction . . . . . . . . . . . . . . . . . . . . . . . 104

H.2.15 Case Expression . . . . . . . . . . . . . . . . . . . . . . . . . . 105

H.2.16 Definite And Indefinite Description . . . . . . . . . . . . . . . 106

H.3 Type Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

H.3.1 Function Type . . . . . . . . . . . . . . . . . . . . . . . . . . 107

H.3.2 Dependent Function Type . . . . . . . . . . . . . . . . . . . . 107

H.3.3 Type Applications . . . . . . . . . . . . . . . . . . . . . . . . 108

H.3.4 Sum Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

H.3.5 Record Type . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

H.3.6 Tuple Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

H.3.7 Inductive Data Type . . . . . . . . . . . . . . . . . . . . . . . 109

H.3.8 Power Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

H.3.9 Type of Term Algebras of a Theory . . . . . . . . . . . . . . . 110

H.4 Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

H.5 Facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

H.6 Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

H.6.1 Type Declaration . . . . . . . . . . . . . . . . . . . . . . . . . 113

H.6.2 Type Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 113

H.6.3 Function Definition Declaration . . . . . . . . . . . . . . . . . 114

H.6.4 Axiom Declaration . . . . . . . . . . . . . . . . . . . . . . . . 115

H.6.5 Inductive Data Type Declaration . . . . . . . . . . . . . . . . 115

H.6.6 Concept Declaration . . . . . . . . . . . . . . . . . . . . . . . 116

H.6.7 Variable Declaration . . . . . . . . . . . . . . . . . . . . . . . 116

H.6.8 Fact Declaration . . . . . . . . . . . . . . . . . . . . . . . . . 116

H.6.9 Definition Block Declaration . . . . . . . . . . . . . . . . . . . 116

H.7 Theory Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

H.7.1 Theory Name . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

H.7.2 Empty Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 117

H.7.3 Theory Extension . . . . . . . . . . . . . . . . . . . . . . . . . 118

H.7.4 Parameterized Theory . . . . . . . . . . . . . . . . . . . . . . 118



viii CONTENTS

H.7.5 Theory Application . . . . . . . . . . . . . . . . . . . . . . . . 118

H.7.6 Theory Renaming . . . . . . . . . . . . . . . . . . . . . . . . . 119

H.7.7 Theory Combination . . . . . . . . . . . . . . . . . . . . . . . 119

H.8 Theory Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

H.8.1 Declaration of Theory Identifier . . . . . . . . . . . . . . . . . 121

H.8.2 Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

H.8.3 Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

H.8.4 Theory Instance of Parameterized Theory . . . . . . . . . . . 122

Bibliography 122



LIST OF FIGURES

2.1 Example of a Theory Combination . . . . . . . . . . . . . . . . . . . 14

2.2 Example of an Identity Injection . . . . . . . . . . . . . . . . . . . . . 20

2.3 Example of a Renaming Injection . . . . . . . . . . . . . . . . . . . . 21

2.4 Composition of Theory Morphisms . . . . . . . . . . . . . . . . . . . 21

2.5 Example of a Composition of Theory Morphisms . . . . . . . . . . . . 22

2.6 Pushout of Theory Morphisms . . . . . . . . . . . . . . . . . . . . . . 23

2.7 Example of a Pushout of Theory Morphisms . . . . . . . . . . . . . . 24

2.8 Example 2 of a Pushout of Theory Morphisms . . . . . . . . . . . . . 25

2.9 Example of the Little Theories Method . . . . . . . . . . . . . . . . . 28

2.10 Example of the Tiny Theories Method . . . . . . . . . . . . . . . . . 28

3.1 The Construction of a Theory of a Monoid . . . . . . . . . . . . . . . 33

4.1 Type of Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Reification of a Theory Interpretation . . . . . . . . . . . . . . . . . . 41

5.1 Constructing a Group Homomorphism via Pushout . . . . . . . . . . 52

5.2 Constructing a Group Epimorphism via Pushout . . . . . . . . . . . . 54

5.3 Constructing a Group Monomorphism via Pushout . . . . . . . . . . 54

5.4 Constructing a Group Isomorphism via Pushout . . . . . . . . . . . . 55

5.5 Constructing a VectorSpace Homomorphism via Pushout . . . . . . . 56

5.6 Constructing a T-Homomorphism via Pushout . . . . . . . . . . . . . 59

5.7 Constructing a T-Epimorphism via Pushout . . . . . . . . . . . . . . 59

ix



x LIST OF FIGURES

5.8 Constructing a T-Monomorphism via Pushout . . . . . . . . . . . . . 60

5.9 Constructing a T-Isomorphism via Pushout . . . . . . . . . . . . . . 60

6.1 Constructing a Group Substructure via Pushout . . . . . . . . . . . . 70

6.2 Constructing a Vector Space Substructure via Pushout . . . . . . . . 72

6.3 Constructing a Sub-T -Structure via Pushout . . . . . . . . . . . . . . 74

7.1 An Interpreted Language . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.2 A Syntax Representation . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.3 A Syntax Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.4 A Syntax Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.5 Chiron As A Syntax Framework . . . . . . . . . . . . . . . . . . . . . 86

7.6 MathScheme Language As A Syntax Framework . . . . . . . . . . . . 86

7.7 Theories in the MathScheme Language . . . . . . . . . . . . . . . . . 87



CHAPTER 1

INTRODUCTION

Mathematics is undoubtedly one of the most crucial tools for science and engineering.

The scientific and technological advancement we are enjoying today is largely, directly

or indirectly, driven by mathematics. The importance and immense size of mathe-

matics has led to the need for mechanizing mathematics, namely the development of

software systems that assist the user in using mathematics.

The purpose of this chapter is to give a brief introduction to the mechanizing

mathematics project entitled MathScheme as well as the focus and organization of

this thesis. We start the chapter by explaining the mathematics process, that is, the

process-oriented way of perceiving mathematics.

We compare theorem proving systems and computer algebra systems. Then we

introduce the MathScheme project, whose main goal is to combine the functionali-

ties of theorem proving systems and computer algebra systems in one system. The

objective and goals of the project are stated and explained.

We give an overview of the solution pieces which have been developed to achieve

the project’s goals. Finally, we discuss the scope of this thesis as well as how it is

organized.

1.1 The Mathematics Process

So what is mathematics? The common definition of mathematics is an enormous

body of knowledge containing definitions and facts. However, such a descriptive view

1



2 1. Introduction

of mathematics does not capture the process by which mathematical knowledge is

produced. Since we are concerned with developing a mechanized mathematics system,

we are extremely interested in the mathematics process. In [13], Dr. Farmer defines

mathematics as a “process of creation, exploration, and connection” which consists

of three intertwined activities:

(1) Model creation. Mathematical models representing mathematical aspects of the

world are created.

(2) Model exploration. The models are explored by stating and proving conjectures

and by performing computations.

(3) Model connection. The models are connected to each other so that results

obtained in one model can be used in other related models.

The mathematics process has produced an immense body of mathematical knowl-

edge that is constantly being enlarged. Mathematical knowledge in turn provides

materials for the mathematics process to create new knowledge.

The importance and immense size of mathematics naturally lead to the need for

the development of mechanized mathematics systems (MMSs), software systems that

assist the user in doing mathematics. We believe that a mechanized mathematics

system should ideally support all of these three activities of the mathematics process.

1.2 Theorem Proving Systems vs. Computer Al-

gebra Systems

Contemporary mathematics software systems can be categorized into two major

groups: theorem proving systems and computer algebra systems.

Theorem proving systems emphasize proving conjectures. A theorem proving

system is usually built upon the axiomatic method which will be discussed in more

detail in Chapter 2. Essentially, the axiomatic method is applied with an underlying

formal logic in which mathematical knowledge is formalized as axiomatic theories. A

conjecture is expressed as a formula in some axiomatic theory and then one tries to

prove it from the axioms of the theory by applying the inference rules of the logic.

This proving process is also referred to as formal deduction. The biggest advantage of

a theorem proving system is that, since theorems and their proofs are well-grounded



1. Introduction 3

in a formal logic, they can be mechanically checked. Moreover, the proving process

can also be assisted by the use of computers. Consequently, the confidence in the

correctness of the proofs increases significantly.

On the other hand, computer algebra systems emphasize performing computation.

A computer algebra system implements symbolic computation, i.e. implements a col-

lection of algorithms for manipulating expressions. An algorithm takes an expression

as input, symbolically manipulates it and returns the result. As opposed to theorem

proving systems, computer algebra systems usually do not have a formal underlying

logic. As a result, the behavior of algorithms cannot usually be easily formalized and

reasoned about. Furthermore, stating and proving conjectures in a computer algebra

system is usually not supported or even possible.

Formal deduction and symbolic computation are two intertwined aspects of math-

ematics. The unnatural separation of them into two different kinds of systems severely

limits the ability of doing mathematics in either kind of system. In responding to the

problem, instead of trying to add formal deduction to an existing computer algebra

system or symbolic computation to a theorem proving system as an afterthought, we

follow the more radical approach, namely, developing a new system in which formal

deduction and symbolic computation are integrated from the ground up.

1.3 The MathScheme Project

The MathScheme Project [4] is a long-range research project lead by Dr. Carette and

Dr. Farmer at McMaster University with the following stated objective [18]:

The Objective of MathScheme: The objective of the project is to develop a new

approach to mechanized mathematics in which computer algebra and computer theo-

rem proving are integrated at the lowest level.

Toward that end, the project has five goals [10]:

Goal 1 Design a framework for integrating formal deduction and symbolic computa-

tion.

As mentioned previously, formal deduction is the core functionality of a theorem

proving system and symbolic computation is the core functionality of a computer



4 1. Introduction

algebra system. In order to integrate formal deduction and symbolic computation, a

framework needs to be developed that treats these in a uniform manner.

Goal 2 Design and implement a logic that, among other things, supports reasoning

about the syntax of expressions.

Since symbolic computation is about manipulating the syntax of expressions, the in-

tegration of formal deduction and symbolic computation inevitably requires reasoning

about syntactic expressions. Most contemporary logics such as first-order logic, ZF

set theory, simple type theory etc. do not directly support reasoning about syntax and

thus cannot be easily used as the underlying logic for our new system. The solution

for this is to design and implement a new formal logic that supports reasoning about

the syntax of expressions.

Goal 3 Build a library of formalized mathematics.

A framework for the integration of formal deduction and symbolic computation and

a logic supporting reasoning about the syntax of expressions would provide an ade-

quate infrastructure for building a library of formalized mathematics. For instance,

the library would contain formalizations of algebraic structures, natural numbers,

real numbers and lots of other mathematical structures. The unique characteristic

of the library is that mathematical knowledge is expressed both axiomatically and

algorithmically and is stored side-by-side.

Goal 4 Build a mechanized mathematics system based on this framework, logic and

library.

The next step is to leverage the framework, logic and library to build a mechanized

mathematics system. The system should be easy to use with a graphical user interface

and visualization support, among other things. Most importantly, it should possess

the power both of a theorem proving system and of a computer algebra system.

Goal 5 Build an interactive mathematics laboratory on top of the mechanized math-

ematics system.

This is a long-term vision proposed by Dr. Farmer in [7]. In the paper, he defined an

interactive mathematics laboratory as “a computer system with a set of integrated

tools designed to facilitate the mathematics process”. Such a laboratory, once real-

ized, would provide an interactive environment for the user, especially students, to

create and explore mathematics and possibly “revolutionize mathematics education”

[7, page 5].



1. Introduction 5

1.4 Overview of Solution Pieces

This section gives an overview of the solution pieces that have been developed within

the scope of MathScheme that address the goals mentioned previously.

Solution Piece 1 The notion of a biform theory [8] is used to integrate formal deduc-

tion and symbolic computation. A biform theory is a generalization of an axiomatic

theory and an algorithmic theory. We discuss axiomatic and algorithmic theories in

Chapter 2.

This solution piece addresses Goal 1. We discuss biform theories in Chapter 2.

Solution Piece 2 A formal logic called Chiron [9] that supports reasoning about the

syntax of expressions via quotation and evaluation has been developed.

This solution piece addresses Goal 2. Formalizing biform theories requires a logic

with support for reasoning about syntax [8]. Since Chiron supports reasoning about

the syntax of expressions, it is well suited for formalizing biform theories [9].

Solution Piece 3 A high-level specification language called the MathScheme Lan-

guage (MSL) has been developed on top of Chiron. MSL is used for specifying and

relating theories in a library of formalized mathematics.

This solution piece addresses Goal 3. The motivation for having MSL is that for-

malizing biform theories directly in Chiron can be very verbose because Chiron is

a low-level logic. MSL, which can be seen as high-level syntactic sugar for Chiron,

is more convenient for specifying and relating theories when building the library of

formalized mathematics. The Appendix contains the language description of MSL.

Solution Piece 4 A library of formalized mathematics called the MathScheme Li-

brary has been developed. It contains, among other things, formalization of abstract

algebra and basic data structures in MSL.

This solution piece also addresses Goal 3. We discuss the MathScheme Library in

Chapter 3.

Solution Piece 5 There is an implementation of Chiron and MSL as well as a par-

tial translation from MSL to Chiron in OCaml [1].

This solution piece addresses Goal 4. This implementation will eventually become

the core of the MathScheme mechanized mathematics system.



6 1. Introduction

1.5 Contributions of the Thesis

The contribution of this thesis is twofold. First, we explain the techniques that have

been developed and used to construct the MathScheme Library. In particular, we

explain biform theories and the little theories method that are the key techniques

behind the MathScheme Library. We give the definition of a theory morphism as well

as several operations involving them.

Then we explain several algebraic constructions that construct new useful machin-

ery by leveraging the information extracted from theories. In particular, we explain

constructions for (1) reifying a theory as a dependent record type and a theory in-

terpretation as a member of a dependent record type, (2) generating a theory of

homomorphisms (as well as epimorphisms, monomorphisms, isomorphisms) from an

existing theory, (3) generating a theory of substructures from an existing theory and

(4) reifying the term algebra of a theory as an inductive data type as well as generating

other useful syntactic machinery.

1.6 Organization of the Thesis

The thesis is organized as follows. Chapter 2 introduces axiomatic theories as building

blocks for constructing a library of formalized mathematics. Here, the novel structure

of a biform theory is introduced which is an extended version of an axiomatic theory

augmented with symbolic computation. Different approaches to organizing mathe-

matics such as the big theories method, the little theories method etc. are discussed.

Chapter 3 explains the library of formalized mathematics called the MathScheme

library that has been developed within the scope of the MathScheme project. The

requirements and design goals of the library are discussed. The formalizations of

abstract algebra and concrete theories in the library are briefly explained.

Chapter 4 explains the algebraic constructions for reifying a theory as a dependent

record type and a theory interpretation as an element of a dependent record type,

respectively.

Chapter 5 explains the algebraic construction for deriving the notion of a homo-

morphism from an existing theory. Two generation approaches are discussed: one

using the reification of theories as types developed in Chapter 4 and one using the

pushout of theory morphisms introduced in Chapter 2.

Chapter 6 explains the algebraic construction for deriving the notion of a substruc-



1. Introduction 7

ture from an existing theory. Also two generation approaches are discussed: one using

the reification of theories as types and one using the pushout of theory morphisms.

Chapter 7 explains the algebraic construction for reifying the term algebra of a

thery as an inductive data type. Here, the notion of a syntax framework is introduced

and used to analyze the presented reification purpose.

Chapter 8 concludes the thesis and discusses possible future work.

1.7 Font Convention

The following font conventions are used in the thesis:

• Italics : for a term that is being defined in a definition.

• Sans serif: for expressions of the MathScheme Language.

• Bold sans serif: for keywords of the MathScheme Language.



CHAPTER 2

THEORIES OF FORMALIZED

MATHEMATICS

Constructing a library of formalized mathematics is one of the biggest challenges

of mechanizing mathematics. A library of formalized mathematics is where math-

ematical knowledge is organized and stored and thus can be seen as the heart of a

mechanized mathematics system. This chapter aims to give a brief overview of the

existing techniques and our techniques that have been developed and used for this

purpose. In particular, we review the axiomatic method, introduce biform theories as

well as morphisms between them. Approaches to organizing mathematical knowledge,

most notably the little theories method, are discussed.

2.1 Axiomatic Method

Mathematical knowledge is an enormous network of definitions and facts that are

related to each other in some way. Some mathematical concept may be seen as

an extension of another concept. For instance, the concept of a monoid can be

regarded as the concept of a semigroup augmented with an identity element. Some

mathematical concepts can also be seen as a combination of several other concepts.

A vector space has both the concept of a field and the concept of a vector in it.

Representing mathematical knowledge in a computer system appears to be an

impossible task at first since a lot of mathematical concepts are infinite. How could

8



2. Theories of Formalized Mathematics 9

we store all (uncountably many) reals or even naturals in a computer? The solution

to this question is a method called the axiomatic method.

The axiomatic method was first used by Euclid in his work on presenting the

mathematics of his time in his series of books called Elements. In particular, in

presenting euclidean geometry, he carefully chose a small set of assumptions called

axioms which are assumed to be intuitively true, e.g. the parallel axiom. All further

theorems are derived from these axioms. In the 90s, A. N. Whitehead and B. Russell

axiomatized a portion of mathematics in the Principia Mathematica [25].

Basically, in the axiomatic method, a mathematical concept is formalized as an

axiomatic theory in some formal logic, a process referred to as axiomatization. Con-

jectures are stated as formulas and proved by applying the inference rules of the

logic.

The majority of theorem proving systems, most notably Isabelle [22], IMPS [11]

etc. are based on the axiomatic method. Specifically, most of them are built upon

either first-order logic, set theory or higher-order type theory. Mathematical concepts

are formalized as axiomatic theories in the chosen logic.

2.1.1 Axiomatic Theory

The following gives the formal definition of an axiomatic theory:

Definition 2.1.1 (Axiomatic Theory) Given a logic, an axiomatic theory is a pair

(L,Γ) in which

• L is a language (set of concepts) of the logic.

• Γ is a set of formulas formalized in the logic called axioms.

Example 2.1.2 The natural number can be axiomatized as an axiomatic theory of

Peano Arithmetic where the language L = {nat, zero, suc} and Γ = {A1, A2, A3}.
In MSL, it may look as below:

Nat := Theory {
Concepts

nat : type ;

z e r o : nat ;

suc : nat −> nat ;



10 2. Theories of Formalized Mathematics

Facts

axiom ax1 : f o r a l l x : nat . not ( z e r o = suc ( x ) ) ;

axiom ax2 : f o r a l l x , y : nat . ( suc ( x ) = suc ( y ) )

imp l ies ( x = y ) ;

axiom ax3 : f o r a l l p : nat ? .

( p ( z e r o ) and ( f o r a l l n : nat . p ( n ) => p ( suc ( n ) ) )

=> f o r a l l n : p ( n ) ) ;

}

�

Example 2.1.3 The concept of monoid can be represented by the following ax-

iomatic theory expressed in MSL where L = {M, *, e} is the language of monoid

whereas the set of axioms Γ = {associativity * , identity e } specifies the monoid

axioms:

Monoid := Theory {
M : type ;

∗ : (M,M) −> M;

e : M;

axiom a s s o c i a t i v i t y ∗ : a s s o c i a t i v e ( ( ∗ ) ) ;

axiom i d e n t i t y e : i d e n t i t y ( (∗ ) , e ) ;

}

�

An axiomatic theory can be seen as a specification of its models. It captures one

model or a collection of models by specifying its or their concepts in the language

part and their required properties in the axiom part.

We distinguish between two types of theories, categorical and non-categorical

theories:

Definition 2.1.4 A theory having exactly one model up to isomorphism is called a

categorical theory. A theory that is not categorical is called a non-categorical theory.

The structure of natural numbers N = (N, 0, suc) as well as all structures iso-

morphic with it are models of Nat. Furthermore, any other structure that is not

isomorphic with N is not a model of Nat. As a result, Nat is a categorical theory.

Here, the intention of Nat is to describe a single model, the natural numbers.



2. Theories of Formalized Mathematics 11

On the contrary, Monoid describes a collection of non-isomorphic models. For

instance, both non-isomorphic structures (N,+, 0) and (R, ∗, 1) are models of Monoid.

Therefore, Monoid is non-categorical.

2.1.2 Theory Development Process

According to Dr. Farmer’s CAS 760 lecture notes [15] , the mathematics process, as

mentioned in Chapter 1, can be regarded as the theory development process where

theory creation corresponds to model creation, theory exploration corresponds to

model exploration and theory connection corresponds to model connection. In the

following sections, we briefly explain these three activities of the theory development

process.

Theory Creation

Also according to [15], an axiomatic theory can be constructed by:

• Building it from scratch.

• Extending an existing theory (theory extension).

• Renaming an existing theory (theory renaming).

• Combining several existing theories (theory combination/union).

• Instantiating a parameterized theory (theory instantiation).

It is noteworthy that these theory constructions are actually syntactic operations

on theories.

Build from Scratch Building a theory from scratch is the most straightforward

way of creating a theory. We start from the empty theory and add concepts and

axioms that describe the mathematical concepts we are interested in.

Theory Extension Theory extension is analogous to inheritance in object-oriented

programming in the sense that a theory extension extends an existing theory with

further conceptual units.



12 2. Theories of Formalized Mathematics

Definition 2.1.5 Formally, let T1 = (L1,Γ1) and T2 = (L2,Γ2) be two theories. T2

is a theory extension of T1 (and T1 is a subtheory of T2) if L1 ⊆ L2 and Γ1 ⊆ Γ2.

Intuitively, the theory extension T2 is the obtained by adding new machinery, i.e.

vocabulary and axioms, to T1.

For instance, if we extend the concept of a semigroup with the property that its

binary operation has an identity element we have the concept of a monoid. Conse-

quently, the theory of monoid is the theory extension of the theory of semigroup with

the added identity element.

In MSL, this may look as follows:

Semigroup := Theory {
M : type ;

∗ : (M,M) −> M;

axiom a s s o c i a t i v e ∗ : a s s o c i a t i v e ( ( ∗ ) ) ;

}
Monoid := Semigroup extended by {

e : M;

axiom i d e n t i t y ∗ : l e f t I d e n t i t y ( (∗ ) , e ) and

r i g h t I d e n t i t y ( (∗ ) , e ) ;

}

Theory Renaming Theory renaming creates a new theory from an existing theory

by renaming some or all of its primitive symbols. Theory renaming helps make the

language of a theory more intuitive and convenient for the user.

For instance, let BinaryRelation be the theory of a binary relation:

Empty := Theory {}
C a r r i e r := Empty extended by {

U : type

}
B i n a r y R e l a t i o n := C a r r i e r extended by {

R : ( U, U)?

}

Here, R : (U, U)? represents a predicate, R : (U, U) −> Bool, in the base logic.

Now, we want to define a theory of an ordered relation capturing the mathematical

structure (U, <=). It is obvious that the theory BinaryRelation has almost everything



2. Theories of Formalized Mathematics 13

we need: a carrier set and a binary relation. However, we would like to call the binary

relation <= to emphasize the ordering instead of the general notation of relation

R. That is precisely what theory renaming is good for. Using theory renaming,

OrderRelation is the theory resulted from renaming R to <= in BinaryRelation .

In MSL, it may look as below:

O r d e r R e l a t i o n := B i n a r y R e l a t i o n [ R |−> <= ]

In expanded form, it is equivalent to:

O r d e r R e l a t i o n := Theory {
U : type ;

<= : ( U, U ) ? ;

}

Theory Combination Theory combination is the most sophisticated way of cre-

ating a new theory. Basically, a theory combination generates a new theory by com-

bining a list of theories over a common subtheory. The common subtheory specifies

the part commonly occurring in the combined theories that we would like to have

only one copy in the resulting theory.

For instance, let ReflexiveOrderRelation be the theory of an order relation be-

ing reflexive and TransitiveOrderRelation be the theory of an order relation being

transitive:

R e f l e x i v e O r d e r R e l a t i o n := O r d e r R e l a t i o n extended by {
axiom f o r a l l x : U . x <= x

}
T r a n s i t i v e O r d e r R e l a t i o n := O r d e r R e l a t i o n extended by {

axiom f o r a l l x , y , z : U . ( x <= y and y <= z )

imp l ies x <= z

}

The theory Preorder can be defined by combining ReflexiveOrderRelation and

TransitiveOrderRelation over OrderRelation as illustrated in Figure 2.1.

In MSL, Preorder would look as follows:

P r e o r d e r :=

combine R e f l e x i v e O r d e r R e l a t i o n , T r a n s i t i v e O r d e r R e l a t i o n

over O r d e r R e l a t i o n



14 2. Theories of Formalized Mathematics

OrderRelation

ReflexiveOrderRelation TransitiveOrderRelation

Preorder

Figure 2.1: Example of a Theory Combination

And in the expanded form, it is:

P r e o r d e r := Theory {
U : type ;

<= : ( U, U ) ? ;

axiom f o r a l l x : U . x <= x ;

axiom f o r a l l x , y , z : U . ( x <= y and y <= z imp l ies x <= z ) ;

}

Notice that the common part U and <= in ReflexiveOrderRelation and

TransitiveOrderRelation are not duplicated (because they occur in the common sub-

theory OrderRelation), but only one declaration for each of them is transported to the

combined theory.

Theory Instantiation A theory can be constructed by instantiating a parameter-

ized theory. This way of constructing a theory is actually not relevant to this thesis.

Nevertheless, for the sake of completeness, it is briefly explained here.

For instance, the following parameterized theory/functor Comm, introduced by

Jian Xu in [26], adds the commutative axiom to any theory with a binary operation

over a set. Since parameterized theories are not yet implemented in MSL, we use

pseudo code to declare Comm:

Comm := Theory (T : t h e o r y t y p e { e l e : type ; ∗ : ( C, C) −> C)} )

extended by {
axiom : f o r a l l x , y : e l e . x ∗ y = y ∗ x ;

}



2. Theories of Formalized Mathematics 15

The theory of Monoid defined previously is compatible to the theory signature

required by Comm since it has a binary operation over a set. Applying Comm to

Monoid, we get the theory of a commutative monoid:

CommMonoid := Theory {
U : type ;

∗ : ( U,U ) −> U ;

e : M;

axiom a s s o c i a t i v i t y ∗ : a s s o c i a t i v e ( ( ∗ ) ) ;

axiom i d e n t i t y ∗ : l e f t I d e n t i t y ( (∗ ) , e )

and r i g h t I d e n t i t y ( (∗ ) , e ) ;

axiom f o r a l l x , y : U . x ∗ y = y ∗ x ;

}

The MSL syntax for applying a parameterized theory to a concrete theory is theory

instantiation (See Appendix).

Theory Exploration

Exploring an axiomatic theory means stating conjectures in form of formulas and

trying to prove them by applying inference rules.

Theory Connection

Connecting theories is about relating theories to each other so theorems proven in one

theory can be reused in another related theory. The main tool for theory connection

is theory interpretation.

Since theory interpretation is based on theory translation, we first introduce theory

translation.

Definition 2.1.6 A theory translation is a function Φ from a theory T1 to another

theory T2 that maps the primitive symbols of T1 to expressions of T2 satisfying certain

syntactic conditions.

Definition 2.1.7 A theory translation Φ from T1 to T2 is called a theory interpreta-

tion if for all formulas A of T1 such that Φ(A) is defined, T1 |= A⇒ T2 |= Φ(A).

Informally, Φ maps the logical consequences of T1 to consequences of T2 and thus it

can be seen as a semantics-preserving theory translation.



16 2. Theories of Formalized Mathematics

In practice, this condition is usually very hard or even impossible to directly verify

since there can be infinitely many theorems. Instead, normally the following lemma

is used, provided things are set up properly:

Lemma 1 Let Φ be a theory translation from a theory T1 to a theory T2. Φ is a

theory interpretation if and only it maps all the obligations to logical consequences of

T2.

Certainly, the definitions of theory translation and theory interpretation above,

particularly the phrases “satisfying certain syntactic conditions” and “maps all the

obligations into logical consequences”, are very vague. Actually, we cannot give a

precise definition of theory interpretation because such a definition varies from logic

to logic. [6] is an excellent paper to understand theory interpretation. It is noteworthy

that there can be more than one theory interpretation from one theory to another

theory.

Example 2.1.8 Suppose we have a theory of natural numbers:

Nat := Theory {
nat : type ;

z e r o : nat ;

suc : nat −> nat ;

+ : ( n a t , n a t ) −> nat

. . .

}

We define Φ = [M 7→ nat, e 7→ zero, * 7→ +] to be a theory translation from Monoid

to Nat (the definition of Monoid is given previously in this chapter). Furthermore,

the proof obligations (1) + is associative and (2) zero is the identity of + are theorems

of Nat. Consequently, Φ is a theory interpretation from Monoid to Nat.

Φ establishes a connection between Monoid and Nat in the sense that it tells us

how to interpret the model (nat, zero,+) of Nat as a monoid. �

2.1.3 Theories as Modules

It turns out that theories closely resemble modules. Jian Xu, in his PhD thesis

[26], developed a module system named Mei for organizing mathematical knowledge



2. Theories of Formalized Mathematics 17

by combining and further developing good ideas from module systems used in ML-

languages and specification languages. In Mei, theories can be extended, combined

and related to each other in much the same way as modules.

2.2 Symbolic Computation

Axiomatic theories are excellent for representing mathematical structures, algebras

and data types etc. in a declarative way. Nevertheless, they are not suitable for

representing symbolic computation. Basically, symbolic computation is the aspect of

mathematics in which mathematical expressions are transformed in a symbolic way.

Transformation algorithms are implemented by programs that take expressions as

input and return the transformed expression. Computer algebra systems, for example

Maple [16] and Axiom [17] , implement symbolic computation.

A set of algorithms that manipulate expressions can be formalized as an algorith-

mic theory. But first, we formalize the notion of an algorithm. In MathScheme, an

algorithm is formalized as a transformer.

Definition 2.2.1 Formally, a transformer is a pair (π, π̂) in which

• π is a function that maps a list of expressions to an expression,

i.e. π : (E1, . . . , En)→ En+1 where Ei are types of expressions and n ≥ 0.

• π̂ is the associated program that implements an algorithm for realizing π.

For instance, the derivative rule d(u.v)
dx

= du
dx
.v+u. dv

dx
can be represented by a trans-

former prod-diff : DerivExpr → DerivExpr that maps an expression of the form d(u.v)
dx

to the expression du
dx
.v + u. dv

dx
. Corresponding to prod-diff is a program implementing

the algorithm of the derivative rule.

Definition 2.2.2 An algorithmic theory is a pair (L, T ) where L is a language and

T is a set of transformers.

2.3 Biform Theory =

Axiomatic Theory + Algorithmic Theory

So far, we have seen that axiomatic theories and algorithmic theories capture two

key aspects of mathematics: formal deduction and symbolic computation. These two



18 2. Theories of Formalized Mathematics

aspects are often intertwined. Symbolic computation may require formal deduction

and vice versa.

Unfortunately, as we already mentioned before, despite their close relationship,

formal deduction and symbolic computation are treated separately in contemporary

systems. Theorem proving systems focus on formal deduction while computer algebra

systems focus on symbolic computation.

In MathScheme, the integration of formal deduction and symbolic computation is

done via a novel structure called a biform theory which essentially merges an axiomatic

theory and an algorithmic theory. Several papers, most notably [8], are devoted to

explaining biform theories. It is noteworthy that the precise definition of a biform

theory varies in the papers. Perhaps, the simplest definition is the following:

Definition 2.3.1 A biform theory is a triple (L, T ,Γ) in which:

• L is a set of concepts called a language.

• T is a set of transformers.

• Γ is a set of facts that are statements about the concepts and transformers. Since

facts can also be statements about transformers, they can specify programs.

A program can be either written in a programming language such as OCaml, Java,

C++ etc. or expressed directly, for example as a lambda term, in the logic in which

the biform theory is formalized.

If the program is implemented outside of the logic, we have to treat it as a black

box. However, the specification about the program stated using the facts in Γ still

allows us to reason about the properties of the program.

If the program itself is expressed in the logic, then we can reason about the

implemented algorithm and may eventually be able to formally prove its correctness.

An axiomatic theory and an algorithmic theory can be seen as a special case

of a biform theory. If a biform theory has no transformers, i.e. T is empty, it

reduces to an axiomatic theory which contains only an axiomatization but no symbolic

computation. Conversely, if a biform theory has no facts, i.e. Γ is empty, it reduces

to an algorithmic theory which contains only a set of transformers.

Formalizing transformers in a biform theory requires the ability to represent and

reason about the syntax of expressions. Since traditional logics do not directly sup-

port the ability to reason about the syntax of expressions, they are not suitable for



2. Theories of Formalized Mathematics 19

formalizing biform theories. This motivated Dr. Farmer to develop a new formal logic

called Chiron [9]. In Chiron, one can refer to syntactic expressions and reason about

them via quotation and evaluation.

Formalizing biform theories directly in Chiron could be, however, very verbose

since Chiron is very low-level. This is the motivation for the MathScheme Language,

a high-level language defined on top of Chiron, which is more convenient for expressing

biform theories.

From now on, we use the word theory and biform theory interchangeably.

2.4 Theory Morphisms

As we mentioned previously, the axiomatic method allows us to represent mathemat-

ical knowledge as theories. Theories can be constructed from scratch or from other

theories as discussed in 2.1.2. One thing we notice is that a theory only contains

the concepts and axioms of the mathematical concept being formalized but not the

information about the construction path leading to it.

For instance, when looking at the theory of group, the only information we know

is that it contains a carrier set, an associative binary operation, an identity element

and an inverse operation. This theory may have been constructed by extending a

monoid with an inverse operation which is in turn constructed from a semigroup. It

could also be the result of extending semigroup directly by adding an identity element

and inverse function.

The theory interpretations between theories turn out to contain lots of useful

information, especially on how theories are constructed. This is one of the reasons

that, in MathScheme, we are currently experimenting with the idea of placing more

emphasis on these theory interpretations between theories instead of on the theories

themselves.

Definition 2.4.1 We call a theory interpretation (see Definition 2.1.2) a theory mor-

phism.

Informally, a theory morphism is a triple (T, T ′,Φ) consisting of a source theory

T , a target theory T ′ and a semantics-preserving mapping Φ from T to T ′.



20 2. Theories of Formalized Mathematics

Semigroup MonoidΦ = [U 7→ U, ∗ 7→ ∗]

Figure 2.2: Example of an Identity Injection

2.4.1 Injections

There is a special kind of theory morphism which we call an injection. Basically, an

injection is a theory morphism (T, T ′,Φ) in which Φ injectively maps the primitive

symbols of T to primitive symbols (and not expressions) of T ′.

Intuitively, an injection defines an embedding of T into T ′. There are two kinds

of injections:

• Identity injection.

• Renaming injection.

An identity injection is a theory morphism in which Φ maps each symbol of T

to exactly the same symbol in T ′. Such an injection can only exist if T ′ is either

identical to, or a theory extension, of T .

A renaming injection maps symbols between two isomorphic structures T and T ′

by renaming the symbols in T to match those in T ′.

From now on, we use the notation [c1 7→ c′1, . . . , cn 7→ c′n] to express an injection

mapping ci of the source theory to c′i of the target theory. Moreover, [ ] denotes the

empty injection.

Example 2.4.2 We use the example of Semigroup and Monoid given previously,

Monoid is a theory extension of SemiGroup. The theory morphism (SemiGroup, Monoid,

Φ) in which Φ = [U 7→ U, ∗ 7→ ∗], is an identity injection. This is graphically depicted

in Figure 2.2.

We see that the identity injection shows us how SemiGroup is a subtheory Monoid.

�

Example 2.4.3 We use the example of BinaryRelation and OrderRelation above.

OrderRelation is a theory renaming of BinaryRelation . The theory morphism (BinaryRelation ,

OrderRelation, Φ) in which Φ = [U 7→ U,R 7→≤] is a renaming injection. This is

graphically depicted in Figure 2.3.

Here, BinaryRelation and OrderRelation are isomorphic and Φ defines a renaming to

turn the former one into the latter one. �



2. Theories of Formalized Mathematics 21

BinaryRelation OrderRelationΦ = [U 7→ U, ∗ 7→≤]

Figure 2.3: Example of a Renaming Injection

T1 T2 T3Φ1 Φ2

Φ2 ◦ Φ1

Figure 2.4: Composition of Theory Morphisms

Generally speaking, a theory extension T ′ from T is represented by the identity

injection (T, T ′, id) (id is the identity mapping on the language of T ). Furthermore, a

theory renaming T ′ from T is represented by the renaming injection (T, T ′,Φ) where

Φ renames symbols in T to match those in T ′.

2.4.2 Operations on Theory Morphisms

In this section, we introduce some useful operations on theory morphisms.

Projection

For convenience, we define three projection functions source, target and mapping that

return the source theory, target theory and the mapping of a theory morphism, re-

spectively. That means, given a theory morphism M = (T, T ′,Φ), M.source = T ,

M.target = T ′, M.mapping = Φ.

Composition

Another useful operation is composition of two theory morphisms. Intuitively, com-

position of two theory morphisms mimics the action of moving from one theory to

another theory via an intermediate one by following the arrows between them.

Formally, suppose M1 = (T1, T2,Φ1) and M2 = (T2, T3,Φ2) are two theory mor-

phisms where the target theory of M1 and the source theory of M2 are the same, i.e.

M2.target = M1.source = T2. Then M3 = M2◦M1 is called the composition of M1 and

M2 and M3 = (T1, T3,Φ2 ◦Φ1). Here, Φ2 ◦Φ1 is the composition of the two mappings

Φ1 and Φ2. This is graphically shown in Figure 2.4.



22 2. Theories of Formalized Mathematics

BinaryOperation OrderRel. ReflexiveOrderRel.Φ1 = [U 7→ U,R 7→≤] Φ2 = [U 7→ U,≤7→≤]

Φ2 ◦ Φ1 = [U 7→ U,R 7→≤]

Figure 2.5: Example of a Composition of Theory Morphisms

Example 2.4.4 Again, we take the example of BinaryRelation and OrderRelation

above. OrderRelation is a theory extension of BinaryRelation . We define the theory of

ReflexiveOrderRelation by extending OrderRelation with the reflexivity axiom:

R e f l e x i v e O r d e r R e l a t i o n := O r d e r R e l a t i o n extended by {
axiom r e f l e x i v e <= : r e f l e x i v e ((<=))

}

Suppose we have two theory morphismsM1 = (BinaryOperation,OrderRelation,Φ1)

and M1 = (OrderRelation,ReflexiveOrderRelation,Φ1) in which Φ1 is a renaming in-

jection, Φ1 = [U 7→ U,R 7→≤], and Φ2 = [U 7→ U,≤7→≤] is the identity injection.

Then M1 ◦ M2 is the theory morphism (BinaryOperation, ReflexiveOrderRelation,

Φ2 ◦ Φ1) in which Φ2 ◦ Φ1 = [U 7→ U,R 7→≤]. Figure 2.5 graphically depicts this. �

Pushout

Another essential operation is the pushout of two theory morphisms. The combination

of theory morphisms is closely related to a theory combination.

Definition 2.4.5 Formally, let M1 = (T, T1,Φ1) and M2 = (T, T2,Φ2) be two theory

morphisms having a common source theory T . M1

⊕
M2 constructs the whole com-

mutative diagram as graphically depicted in Figure 2.6 and is called the pushout of

M1 and M2.

In the above commutative diagram, the pushout of M1 and M2 is the whole

commutative diagram including the theory T3 and three theory morphisms Φ13,Φ23

and Φ3. These theory morphisms are injections.

For convenience, in the following, we define notations for accessing the components

of the commutative diagram of a pushout of theory morphisms.



2. Theories of Formalized Mathematics 23

T T1

T2 T3

Φ1

Φ2

Φ23

Φ13Φ3

Figure 2.6: Pushout of Theory Morphisms

• (M1

⊕
M2).PushoutTheory = T3.

• (M1

⊕
M2).Right = (T, T2,Φ2).

• (M1

⊕
M2).Left = (T, T1,Φ1).

• (M1

⊕
M2).Diagonal = (T, T3,Φ3).

Let us take a look at some examples of how theory morphism combination works.

Example 2.4.6 Assume that we have two theory morphisms (Magma,

CommutativeMagma, Φ1) and (Magma, Semigroup, Φ2) where Magma, Semigroup and

CommutativeMagma are defined as below:

Magma := Theory {
U : type ;

∗ : ( U, U) −> U ;

}
Semigroup := Magma extended by {

axiom a s s o c i a t i v i t y ∗ : a s s o c i a t i v e ( ( ∗ ) ) ;

}
CommutativeMagma := Magma extended by {

axiom c o m m u t a t i v i t y ∗ : commutat ive ( ( ∗ ) ) ;

}

Moreover, Φ1 and Φ2 are identity injections with Φ1 = [U 7→ U, * 7→ *] and

Φ2 = [U 7→ U, * 7→ *].

Since both theory morphisms have the same source theory Magma, we can calcu-

late their pushout as shown in Figure 2.7.



24 2. Theories of Formalized Mathematics

Magma CommutativeMagma

Semigroup CommutativeSemigroup

Φ1 = [U 7→ U, ∗ 7→ ∗]

Φ2 = [U 7→ U, ∗ 7→ ∗]

Φ23 = [U 7→ U, ∗ 7→ ∗]

Φ13 = [U 7→ U, ∗ 7→ ∗]Φ3 = [U 7→ U, ∗ 7→ ∗]

Figure 2.7: Example of a Pushout of Theory Morphisms

In particular, the pushout contains:

• A theory CommutativeSemigroup which is the theory combination of Semigroup

and CommutativeMagma over Magma.

• A theory injection (CommutativeMagma, CommutativeSemigroup, Φ13) where

Φ13 is an identity injection and Φ13 = [U 7→ U, * 7→ *].

• a theory injection (Semigroup, CommutativeSemigroup, Φ23) where Φ23 is the

identity injection, Φ23 = [U 7→ U, * 7→ *].

• A theory injection (Magma, CommutativeSemigroup, Φ3) where Φ3 is an identity

injection and Φ3 = [U 7→ U, * 7→ *].

The resulting theory CommutativeSemigroup is the theory combination of

CommutativeMagma and Semigroup over Magma:

CommutativeSemigroup := combine CommutativeMagma, Semigroup

over Magma

And in the expanded form:

CommutativeSemigroup := Theory {
U : type ;

∗ : ( U, U) −> U ;

axiom a s s o c i a t i v i t y ∗ : a s s o c i a t i v e ( ( ∗ ) ) ;

axiom c o m m u t a t i v i t y ∗ : commutat ive ( ( ∗ ) ) ;

}

�



2. Theories of Formalized Mathematics 25

Empty Semigroup

Semigroup DoubleSemigroup

Φ1 = [ ]

Φ2 = [ ]

Φ23 = [U 7→ U ′, ∗ 7→ ∗′, assoc ∗ 7→ assoc ∗′ ]

Φ13 = [U 7→ U, ∗ 7→ ∗, assoc ∗ 7→ assoc ∗ ]Φ3 = [ ]

Figure 2.8: Example 2 of a Pushout of Theory Morphisms

Example 2.4.7 Assume that we have a theory morphism M = (Empty, Semigroup,

Φ) such that Empty is the empty theory, Semigroup the theory of semigroup as defined

previously and Φ the empty injection from the Empty to Semigroup. The pushout of

M with itself M
⊕

M is the commutative diagram in Figure 2.8.

In particular, the pushout contains:

• A theory DoubleSemigroup which is the theory combination of Semigroup with

itself over Empty.

• An identity injection Φ13 = [U 7→ U, ∗ 7→ ∗, associativity ∗ 7→ associativity ∗
].

• An identity injection Φ23 = [U 7→ U ′, ∗ 7→ ∗′, associativity ∗ 7→ associativity ∗′

].

• An empty injection Φ3 = [ ].

DoubleSemigroup is the the result of the following theory combination:

DoubleSemigroup := combine S e m i g r o u p , Semigroup over Empty

In expanded form, it is:

DoubleSemigroup := Theory {
U : type ;

U’ : type ;

∗ : ( U, U) −> U ;

∗ ’ : (U’ , U ’ ) −> U ’ ;

axiom a s s o c i a t i v i t y ∗ := a s s o c i a t i v e ( ( ∗ ) ) ;



26 2. Theories of Formalized Mathematics

axiom a s s o c i a t i v i t y ∗ ’ := a s s o c i a t i v e ( ( ∗ ’ ) ) ;

}

Here, since we are disjointly unioning two identical theories, their symbols are re-

named to avoid collision. �

2.5 Approaches to Organizing Mathematical

Knowledge

We have seen that theories are building blocks for formalizing mathematical concepts

in logic. Furthermore, thanks to biform theories, knowledge in the form of formal

deduction and symbolic computation can both be formalized using the same kind

of structure. In this section, we take a look at several approaches to organizing

mathematical knowledge.

2.5.1 Big Theories Method

In the big theories method [14], a set of powerful axioms are chosen such that any

model satisfying these axioms contains all of the objects we are interested in. A

portion of mathematical knowledge is then formalized within the big theory. Fur-

thermore, theorems are stated and proven from the chosen axioms within the big

theory . The most widely used big theory is Zermelo-Fraenkel (ZF) set theory and

its variants. For instance, the prominent Mizar system [23] is built upon the Tarski-

Grothendieck set theory which is ZF set theory augmented with Tarski’s axioms.

2.5.2 Little Theories Method

In the little theories method [14], a number of theories is used in the process of

formalizing a portion of mathematical knowledge. The result of the formalization is

a network of theories in which complex theories are constructed from simpler theories

using theory creation (see subsection 2.1.2).

Theorems proven in one theory are transfered to other contexts via an explicit

construction of a theory interpretation. As a result, in contrast to the big theories

method, in the little theories method, both mathematical knowledge and reasoning

are distributed over the theory network instead of in a single big theory. According

to Dr. Farmer’s CAS 760 course notes [15], the biggest advantage of the little theories



2. Theories of Formalized Mathematics 27

method is that a theory can developed be “in the right language at the right level of

abstraction”.

For instance, suppose we would like to formalize abstract algebra, e.g. semigroups,

monoids, groups, rings, vector spaces. Following the little theories method, we would

construct a network of theories, e.g. theory of a semigroup, theory of a monoid etc.

Over the course of the formalization of a theory, we only focus on the essence of that

theory ignoring information irrelevant to the task at hand.

If we are formalizing a theory of a monoid, the language would consist of a carrier

set M , a binary operation ∗ and an element e. The set of axioms would contain the

monoid axioms, i.e. the associativity axiom of ∗ and the identity axiom of e. In fact,

we are free to choose the right language for the theory. In the example of monoid, we

may call its binary operation ◦ instead of ∗, its identity element a instead of e etc.

Facts about monoids are proven within the local context of the theory and can

then be reused in, say a theory of groups, by establishing a theory interpretation from

the theory of monoids to the theory of groups.

Due to its advantages, we firmly believe in the little theories method over the big

theories method. The paper [14] explains the little theorie method in more detail.

2.5.3 Tiny Theories Method

A special version of the little theories method is called the tiny theories method.

Essentially, the tiny theories method is the extreme version of the little theories

method in the sense that in the tiny theories approach, a theory and its intermediate

descendant theory differs only by a conceptual unit (hence the word “tiny”). By a

conceptual unit, we mean a concept or an axiom.

For instance, suppose that we have already defined the theory of a semigroup.

Now, since a monoid differs from a semigroup by having an identity element e (both

left and right identity), we want to define the theory of a monoid from the theory

of semigroup. In the little theories method, we are allowed to add three conceptual

units (1) an element e, (2) the axiom specifying that e is left identity and (3) an

axiom specifying that e is right identity to the theory of a semigroup at once to build

the theory of monoid as graphically depicted in Figure 2.9.

However, in the tiny theories method, three conceptual units are not added at the

same time. Instead, one conceptual unit is added at a time to construct a descendant

theory. Figure 2.10 depicts one (hyper-theoretical) way of constructing the theory of



28 2. Theories of Formalized Mathematics

Semigroup

Monoid

e : U ; axiom leftIdentity((∗), e); axiom rightIdentity((∗), e);

Figure 2.9: Example of the Little Theories Method

Semigroup

PointedMonoid

LeftMonoid RightMonoid

Monoid

e : U

axiom leftIdentity((∗), e) axiom rightIdentity((∗), e)

Figure 2.10: Example of the Tiny Theories Method

monoid from the theory of semigroup using the tiny theories method.

First, we add the concept e of type U to Semigroup to construct a new theory

called PointedMonoid. Then, we add the axiom of e being the left identity to construct

the theory LeftMonoid. Likewise, we add the axiom of e being the right identity to

construct the theory RightMonoid. The theory of monoids is the theory combination

of LeftMonoid and RightMonoid over PointedMonoid.

It is noteworthy that using the tiny theories approach, it can happen that some

constructed theories may not correspond to any concepts used in mathematics. For

instance, PointedMonoid is an artifical theory whose name has been invented. Further-

more, there are a lot of ways to construct a theory. Figuring out the most meaningful

way of constructing theories and giving them good (possibly artifical) names are two

major challenges when using the tiny theory approach.



2. Theories of Formalized Mathematics 29

2.5.4 High-Level Theories Method

As mentioned previously, the little theories method and its special version the tiny

theories method allow for formalizing mathematical knowledge in the right language in

the right level of abstraction while constructing a library of formalized mathematics.

This is especially convenient for the developer of the library. However, end users

tends to prefer to have a high-level view of the mathematical knowledge stored in

the library. They are mostly not very interested in the implementation detail. This

motivates the work on high-level theories method [2]. Nevertheless, since in this thesis,

our central interest is the little (and tiny) theories method, we do not further discuss

the high-level theories method.



CHAPTER 3

THE MATHSCHEME LIBRARY

In Chapter 2, we discussed the techniques that have been developed for represent-

ing and organizing mathematical knowledge. Within the scope of the MathScheme

Project, a library of formalized mathematics called the MathScheme Library is cur-

rently being developed based on these techniques. This chapter aims to give an

overview of the top-level requirements, the design decisions of the library and the

content of the library. [3] gives a nice overview of the techniques behind the Math-

Scheme Library.

3.1 Requirements

The following are the top-level requirements of the MathScheme Library as stated in

[10]:

Requirement 1 (Usability) The MathScheme Library should serve users who want

to explore and apply the knowledge it contains.

One of the disadvantages of contemporary libraries of formalized mathematics is that

they only serve a handful of experts in the field and are totally inaccessible to a wide

audience. We believe that a library of formalized mathematics is much more valuable

if it can be used by a large group of mathematics practitioners ranging from students

to engineers and mathematicians.

30



3. The MathScheme Library 31

Requirement 2 (Developability) The MathScheme Library should serve develop-

ers who want to organize and expand the knowledge it contains.

The development of the library requires the availability of necessary techniques and

tools. A developer of the library should be able to use these techniques and tools to

organize the library and later on extend the knowledge it contains.

Requirement 3 (Universality) The MathScheme Library should hold mathemati-

cal knowledge of all formalizable forms and kinds.

Mathematical knowledge comes in different forms and kinds. The library should be

capable of holding knowledge of all these forms and kinds so that users and developers

do not have to maintain a significant body of knowledge outside of the library.

3.2 Design Decisions

Having discussed the top-level requirements, the following lists the design decisions

of the MathScheme Library [10] that have been identified by MathScheme’s project

leaders Dr. Carette and Dr. Farmer.

Design Decision 1 The MathScheme Library is a network of biform theories.

The library should be built as a network of biform theories. Each biform theory

captures a mathematical concept that can be in the form of both axiomatization and

symbolic computation. The biform theories are interconnected via theory morphisms.

As a result of the little theories method, mathematical knowledge and reasoning are

distributed over the network. Additionally, a theory and its direct descendant theory

differs only by one conceptual unit.

Design Decision 2 In the library network, complex theories are built from simpler

theories by theory extension, theory combination, theory renaming and theory instan-

tiation.

As we see in Chapter 2, there are different ways of constructing theories. In the pro-

cess of constructing the library, primitive theories are built from scratch. Moreover,

complex theories are built from simpler ones by theory extension, theory combina-

tion, theory renaming and theory instantiation. This way, the theories network can

be constructed in a stepwise manner where more complex theories are built upon

previously constructed simpler theories.



32 3. The MathScheme Library

Design Decision 3 For developers, the MathScheme Library includes a network of

tiny theories.

For developers, who develop and extend the library, the theories network is a network

of tiny theories that show all the details of how the library is constructed.

Design Decision 4 For users, the MathScheme Library will include a collection of

high-level theories [2].

For users, who explore the library, the theories network is a network of high-level

theories that provides a high-level view of the library. The high-level view is more

convenient for users since it hides all implementation details that are irrelevant to

them.

3.3 Current Implementation

At the time of this writing, the MathScheme Library contains formalizations of ab-

stract algebra, which was mainly developed by Dr .Carette and Dr. O’Connor, and

data types such as character, string, stack, queue etc. which were mainly developed

by Filip Jeremic and Vincent Maccio.

The language for formalization is MSL. There is an OCaml implementation of

MSL that can parse a theory file into an internal representation and process it as well

as type check it. There is also an experimental implementation of the translation

from MSL to Chiron. However, here we do not focus on the implementation but

rather on how the mathematical knowledge is formalized in the library.

3.3.1 Abstract Algebra

The portion of abstract algebra in the library is significant in size and is built upon the

tiny theories method. To demonstrate how the formalization works, in the following

we show how the theory of monoid can be built up starting from the empty theory

in a stepwise manner. This is graphically depicted in Figure 3.1. The complete

formalization of abstract algebra can be found at [19].

In the figure, the root theory is the Empty theory which contains nothing:

Empty := Theory {}

Carrier is Empty extended with with a carrier set U:



3. The MathScheme Library 33

Empty

Carrier

BinaryOperation

PointedCarrier Magma

PointedMagma

LeftUnital RightUnital Semigroup

Unital RightMonoid

Monoid

Figure 3.1: The Construction of a Theory of a Monoid



34 3. The MathScheme Library

C a r r i e r := Empty extended by { U : type ; }

PointedCarrier is Carrier extended with an element e of the carrier set:

P o i n t e d C a r r i e r := C a r r i e r extended by { e : U ; }

Monoid is the combination of Unital and RightMonoid over RightUnital :

Monoid := combine U n i t a l , RightMonoid over R i g h t U n i t a l

In expanded form, it is:

Monoid := Theory {
U : type ;

∗ : ( U,U ) −> U ;

e : U ;

axiom l e f t I d e n t i t y ∗ e : l e f t I d e n t i t y ( (∗ ) , e ) ;

axiom r i g h t I d e n t i t y ∗ e : r i g h t I d e n t i t y ( (∗ ) , e ) ;

axiom a s s o c i a t i v e ∗ : a s s o c i a t i v e ( ( ∗ ) ) ;

}

3.3.2 Concrete Theories

As mentioned previously, besides abstract algebra, other concrete theories have also

been formalized. For instance, theories of sequences, bit strings, characters and algo-

rithmic complexity, among other things, have been formalized and can be found in

[20]. Since the concrete theories are not relevant for the purpose of this thesis, we do

not discuss them further.



CHAPTER 4

REIFICATION OF THEORIES AND

THEORY INTERPRETATIONS

This chapter aims to explain the motivation and the algebraic construction for reifiy-

ing theories as types as well as theory interpretations as elements.

4.1 Motivation

Theories are the building blocks for building the library of formalized mathematics.

The true power of theories lies in the fact that since a theory is a specification of a

collection of models, facts proven within a theory are applicable to any of its (possibly

infinitely many) models.

For instance, suppose we have a theory of a group. Within that theory, we can

prove that the identity element is unique. This result is true in any model of the

theory, i.e. in any group. Concretely, since (Z,+, 0,−) is a model of the theory of

a group where 0 is the identity element of +, we know that 0 is the unique identity

element.

Unfortunately, theories have their weakness. A theory allows us to reason about

a concept but not about individual elements belonging to that concept. The theory

of a group allows us to reason about the concept of a group. It does not, however,

allows us to reason about a collection of groups. Specifically, we cannot express such

statements as: for all groups G, property X holds in G or there exists a group G in

35



36 4. Reification of Theories and Theory Interpretations

which property Y holds.

In MSL, theories are represented by theory expressions (see Appendix) and thus

cannot be directly used in an expression. In particular, we cannot declare a group

element, e.g. G : Group. Here, Group is a theory expression and hence, it cannot be

used as a type.

Furthermore, often we want to reason about a particular group. Suppose M is a

structure having a group structure witnessed by a theory interpretation from Group

to M.

Recall that a theory interpretation is our tool for transferring theorems from one

theory to another theory. However, a theory interpretation is defined by establishing

a connection between two theories and is therefore in the meta-language. Hence,

theory interpretations are inaccessible to the reasoning process on the expression

level. In particular, we cannot express the statement on the expression level like Φ

is a theory interpretation from Group toM. In other words, reasoning about theory

interpretations directly in the object language is not feasible.

Finally, since theory interpretation is the only way to transfer results from one

theory to another, the ability to transfer results of Group to another concrete group

structure M depends on whether such a theory interpretation can be established

or not. As discussed in Chapter 2, theory interpretation is defined between two

theories in a very particular way. In particular, M should reside in a theory and its

components should be defined as concepts which should be arranged in a way that a

theory interpretation can be defined.

However, it could happen that even thoughM does exhibit a group structure, its

components may come from different sources, for instance declared as variables, and

hence a theory interpretation from Group to M cannot be defined. In this case, one

obvious solution is to extend the notion of theory interpretation so that it embodies

the above mentioned scenarios. In fact, this technique is implemented in IMPS [11]

and is called a context interpretation. Nevertheless, we want to keep the definition of

theory interpretation simple and solve the problem by reifying theories as types.

4.2 Reification of a Theory as a Type

The previously mentioned weaknesses of theories motivate us to reify theories as

types. Given a theory T , we want to reify it as a type whose elements are models of

T . Intuitively, a reification of a theory makes it accessible on the expression level.



4. Reification of Theories and Theory Interpretations 37

Group

group-type

(Z,+, 0,−)

(C, ◦, 0,−)
reified as

Figure 4.1: Type of Groups

So for instance, reification of the theory of Group above would create a type of

groups, called group-type. All mathematical structures exhibiting a group structure

would be an element of group-type. In particular, (Z,+, 0,−), (C, ◦, 0,−) are both

elements of group-type. This is graphically depicted in Figure 4.1.

Ultimately, reifying a theory as a type means finding a data type to represent a

theory. We notice that not all information in a theory is relevant for reification. In

fact, only the primitive concepts and axioms of a theory are required constituents of

an instance of that concept. Other parts such as theorems etc. are not relevant.

In the example of Group, the concepts define which components a group needs to

have, i.e. a carrier set G, a binary operation ∗, an element e, a unary operation −1.

The axioms dictate what properties these need to have, i.e. ∗ is associative, e is an

identity element and −1 is an inverse operation.

Since both concepts and axioms constitute the essence of a theory, the data type

for representing theories needs to be able to package up both of them.

4.2.1 Reification of a Theory as a Dependent Record Type

A record is the widely used data structure for packaging up various, possibly diverse,

data into a single data structure. For instance, various information on employees can

be represented by a single record:

{ name : s t r i n g ,

age : i n t ,

s a l a r y : f l o a t

. . .

}



38 4. Reification of Theories and Theory Interpretations

At the first attempt, we reify Group as the following record:

{ G : t y p e ,

∗ : ( G, G) −> G,

e : G,
−1 : G −> G

. . .

}

However, this is not a valid record since the definition of ∗ depends on the previ-

ously defined G. This is what dependent records are good for. A dependent record is

similar to a normal record except in a dependent record fields can be dependent on

other fields.

De Bruijn was the first one who used a telescope, which is linearly dependent

record, to package up mathematical structures in his proof development system Au-

tomath [5].

In a telescope, the type declaration of a field may depend on previously declared

fields. As a result, the order of fields matters. So, for instance, (G : type, e : G) is

a valid telescope. On the other hand, (e : G, G : type) is not a valid telescope. The

reason is that, in the later example, the declaration of e requires G to have previously

been declared. However, here G is declared after e.

Since a dependent record type has proven to be a suitable data structure for

packaging up mathematical structures, we use it as the data structure for representing

a reified theory.

The following gives the definition of a dependent record type:

Definition 4.2.1 Formally, a dependent record type is a list of labeled fields {l1 :

type1, . . . , ln : typen} where n ≥ 0, typei is type expression and may contain any lj

such that j < i.

Using dependent records, the declaration of concepts of a theory can be easily

packaged up. For instance, the concepts of Group is reified as:

{ G : t y p e ,

∗ : ( G, G) −> G,

e : G,
−1 : G −> G

}



4. Reification of Theories and Theory Interpretations 39

We still need to figure out how to deal with axioms. As discussed before, the

concepts G, ∗, e,−1 alone only define the language of a group. The axioms specify

the properties they need to have in order for the structure (G, ∗, e,−1 ) to be called a

group. Since axioms are inseparatable from concepts, we package up the concepts and

axioms of a reified theory in the same dependent record. The famous Curry-Howard

correspondence [24] gives a hint on solving that problem.

In the Curry-Howard correspondence, a formula can be seen as a type whose

elements are proofs of that formula. This leads us reify axioms as types of proofs.

For instance, the theory of Group is reified as:

group−type =

{ G : t y p e ,

∗ : ( G, G) −> G,

e : G,
−1 : G −> G,

a s s o c i a t i v i t y ∗ : ProofOf ( a s s o c i a t i v e ( ( ∗ ) ) ) ;

i d e n t i t y e : ProofOf ( i d e n t i t y ( (∗ ) , e ) ) ;

i n v e r s e −1 : ProofOf ( i n v e r s e ( (∗ ) ,−1 ,e ) ) ;

}

Here, ProofOf turns a formula into the corresponding type of proofs of that for-

mula.

In summary, given any theory T , the type of T is represented by a dependent

record in which concepts of T are reified to type declarations and axioms are reified

to types of proofs.

4.2.2 Elements of a Reified Theory

Having a type representing a theory, we are naturally interested in what its elements

are. Obviously, since the type of a theory is a dependent record type, their elements

are records. For instance, an element of the type of group group−type is a record

representing the integer structure (Z,+, 0,−):

{ G = Z ,

∗ = +

e = 0 ,
−1 = −,



40 4. Reification of Theories and Theory Interpretations

a s s o c i a t i v i t y ∗ = p r o o f o b j e c t a s s o c i a t i v e ((+)) ,

i d e n t i t y e = p r o o f o b j e c t i d e n t i t y ( (−) , 0 ) ,

i n v e r s e −1 = p r o o f o b j e c t i n v e r s e ( (∗ ) ,− ,0 )

}

Here, the record contains:

• A type Z.

• A binary operation defined on Z, + : (Z,Z)→ Z.

• An element 0 of Z.

• A unary operation −1 defined on Z, − : Z → Z.

Furthermore, the record contains three proof objects being the proofs about the

associativity of +, identity element of 0 and inverse operation of −, respectively.

Generally, an element of the reified type of a theory is a mathematical structure

along with the proof objects showing that the components of the structure satisfy the

axioms defined in the theory.

4.3 Reification of a Theory Interpretation as an

Element

A theory interpretation Φ from a theory T1 to another theory T2 is a witness that T2

has the structure of T1. We also reify a theory interpretation as a record.

This means that, if a theory T1 is reified as a type t1, a theory interpretation from

T1 to another theory T2 is reified as a member e of t1. This is graphically depicted in

Figure 4.2.

For instance, suppose we have a theory of reals as follows:

R e a l := Theory {
R : type ;

+ : ( R,R ) −> R ;

0 : R ;

− : R −> R ;

. . .

}



4. Reification of Theories and Theory Interpretations 41

T1 T2
Φ

r

reified as reified as

e

Figure 4.2: Reification of a Theory Interpretation

Φ = [G 7→ R, ∗ 7→ +, e 7→ 0,−1 7→ −] is a theory interpretation from Group to Real.

Φ shows that the model (R,+, 0,−) of Real has a group structure or equivalently

(R,+, 0,−) is an element of the reified type group−type above. Φ is reified as a

record of group−type:

{ G = R,

∗ = +

e = 0 ,

−1 = −,

a s s o c i a t i v i t y ∗ = p r o o f o b j e c t a s s o c i a t i v e ((+)) ,

i d e n t i t y e = p r o o f o b j e c t i d e n t i t y ( (−) , 0 ) ,

i n v e r s e −1 = p r o o f o b j e c t i n v e r s e ( (∗ ) ,− ,0 )

}

4.4 Implementation

We have introduced a type constructor TypeFrom to MSL that takes as input a theory

and constructs the dependent record type representing that theory. For example,

TypeFrom(Group) would construct the type group−type. We have generalized MSL’s

record type mechanism to a dependent record type mechanism.



42 4. Reification of Theories and Theory Interpretations

Reification of theory interpretations has not been implemented yet.



CHAPTER 5

GENERATION OF THEORIES OF

HOMOMORPHISMS

Homomorphisms are a very important concept in abstract algebra and model theory.

Basically, a homomorphism between two algebraic structures is a structure-preserving

mapping between their carrier sets. A homomorphism allows results proved in one

mathematical structure to be transfered to another structure, among other things.

Consequently, it is very natural to use and reason about homomorphisms within an

algebraic setting.

The purpose of this chapter is to introduce two algebraic constructions for auto-

matically deriving the theory of a homomorphism as well as its variants epimorphism,

monomorphism and isomorphism from an existing theory. One construction relies on

the construction for reifying a theory as a dependent record types via TypeFrom

(see Chapter 4). The other construction is via calculating the pushout of two theory

morphisms (see Chapter 2).

5.1 Motivation

In the current MathScheme Library, a lot of algebraic structures have been formalized

as theories. By an algebraic structure, we mean a mathematical structure consisting

of one or more carrier sets and operations (functions) defined on them. For example,

the library contains the theory of a monoid, the theory of a group and the theory of a

43



44 5. Generation of Theories of Homomorphisms

vector space etc. It is expected that more algebraic structures will be formalized and

added to the library in the future, both by developers and users.

Eventually, we will need to formalize the notion of a homomorphism for those

theories in order to reason about semigroup and group homomorphisms etc. Moreover,

in the future whenever a new algebraic structure is formalized as a theory T and added

to the library, the corresponding theory of a T -homomorphism needs to be formalized

for T in order to reason about T -homomorphisms.

However, instead of repeatedly defining homomorphisms for every single theory,

we desire to define an algebraic construction that can automatically derive the no-

tion of a homomorphism based on the structure of the theory. The construction is

developed once and for all and can be used to obtain the notion of a homomorphism

from an arbitrary theory. This is possible because there is a generic definition of

homomorphims.

5.2 Generic Definition of Homomorphism

Even though textbook presentations of homomorphisms vary depending on the con-

crete structures involved, we can have a generic definition of homomorphisms between

two 1-sorted algebraic structures having the same signature as follows:

Definition 5.2.1 Let M and N be two 1-sorted algebraic structures having the

same signature S. Let M and N be their carrier sets, respectively. h : M → N is a

mapping (function) from the carrier set of M to the carrier set of N . Furthermore,

the following conditions are satisfied;

• For each n-ary function µ (n ≥ 0) in S, h(µM(x1, . . . , xn)) = µN (h(x1), . . . , h(xn))

for all x1, . . . , xn ∈M .

Then h is called a homomorphism between M and N .

The following gives the definitions of the special cases of a homomorphisms

Definition 5.2.2 A surjective homomorphism is called an epimorphism.

Definition 5.2.3 An injective homomorphism is an monomorphism.

Definition 5.2.4 A bijective homomorphism is called an isomorphism.



5. Generation of Theories of Homomorphisms 45

Example 5.2.5 Let (M, ∗, e, inv) and (M ′, ∗′, e′, inv′) be two group structures. Let

h : M →M ′ be a mapping between M and M ′ satisfying the following conditions:

• h(x ∗ y) = h(x) ∗′ h(y) for all x, y in M .

• h(inv(x)) = inv′(h(x)) for all x in M .

• h(e) = e′.

�

We can extend the definitions of a homomorphism and its variant to multi-sorted

algebraic structures having the same signature as follows:

Definition 5.2.6 Let M and N be two n-sorted algebraic structures having the

same signature S (n ≥ 1). Let C1, . . . , Cn−1,M and C1, . . . , Cn−1, N be their carrier

sets, respectively. That means, M and N have the same carrier sets C1, . . . , Cn−1

but may differ in one carrier set. h : M → N is a function between M and N such

that:

• For each m-ary function µ : (S1, . . . , Sm)→M (m ≥ 1) in S whose return type

is M , Si ∈ {C1, . . . , Cn−1,M}, h(µM(x1, . . . , xm)) = µN (h1(x1), . . . , hn(xm)))

for all x1 ∈ S1, . . . , xm ∈ Sm. Here, if Si = M then hi = h, otherwise if Si 6= M ,

hi = id (id is the identity function).

• For each constant c in S, h(cM) = cN .

For example, in the following we define the notion of a homomorphism between

two vector spaces. A vector space is a 2-sorted algebraic structure that contains both

fields and vectors.

Since the definition of a vector space is based on the definition of a field, we first

review the definition of a field:

Definition 5.2.7 A field is a mathematical structure F = (F,+, ∗, 0, 1) such that:

• 0 6= 1.

• (F,+, 0) is a commutative group.

• (F − {0}, ∗, 1) is a commutative group.



46 5. Generation of Theories of Homomorphisms

• a ∗ (b+ c) = a ∗ b+ a ∗ c for all a, b, c in F .

The following is the definition of a vector space:

Definition 5.2.8 A vector space is a mathematical structure V = (V,+, ∗, 0) over a

field F such that:

• ∗ : (F, V )→ V .

• (V,+, 0) is a commutative group.

• a ∗ (v + w) = a ∗ v + a ∗ w for all a in F and v, w in V .

• (a+ b) ∗ v = a ∗ v + b ∗ v for all a, b in F and v in V .

• a ∗ (b ∗ v) = (a ∗ b) ∗ v.

Example 5.2.9 Let U = (VU ,+U , ∗U , 0U) andW = (VW ,+W , ∗W , 0W ) be two vector

spaces over the same field K. Let h : VU → VW such that:

• h(x+U y) = h(x) +W h(y) for all x, y in VU .

• h(a ∗U x) = a ∗W h(x) for all a in F and x in VU .

• h(0U) = 0W .

Then h is a homomorphism between U and W . �

It is noteworthy that in textbooks, a homomorphism between two vector spaces

over the same field is usually called a linear map. Furthermore, textbook presentations

of linear map usually only mention the former two axioms. The last axiom is usually

omitted since it can be proved from the former two axioms.

Nonetheless, the definition of a homomorphism of vector spaces derived from the

generic definition is equivalent to textbook definitions.

5.3 Constructing a Homomorphism via TypeFrom

The first construction for generating the notion of a homomorphism relies on the

reification of a theory as a dependent record type via TypeFrom (Chapter 4).

First, we consider 1-sorted theories since this is the simplest case. Given a 1-sorted

theory T , using TypeFrom we can reify T as a type which allows us to declare T



5. Generation of Theories of Homomorphisms 47

elements of that type. The notion of a T -homomorphism can be derived by declaring

(1) two elements A,B of TypeFrom(T), (2) a function h between the carrier sets of

A and B and (3) axioms specifying that h preserve the functions and constants in T

(as given in Definition 5.2.6).

Example 5.3.1 Suppose we would like to derive the theory of a group homomor-

phism from the following theory of Group:

Group := Theory {
G : type ;

∗ : ( G,G ) −> G ;

e : G ;

i n v : G −> G ;

axiom a s s o c i a t i v i t y ∗ : a s s o c i a t i v e ( ( ∗ ) ) ;

axiom i d e n t i t y e : i d e n t i t y ( (∗ ) , e ) ;

axiom i n v e r s e i n v : i n v e r s e ( (∗ ) , i n v , e ) ;

}

The theory of a group homomorphism can be obtained by declaring (1) two group

elements A and B of TypeFrom(Group), (2) a function h : A.G→ B.G between two

carrier sets of A and B and (3) axioms specifying that h preserves the functions and

constants ∗, inv, e of Group. Concretely, the theory of GroupHomomorphism, derived

from Group, may look as follows:

GroupHomomorphism := Theory {
type GroupType = TypeFrom( SemiGroup ) ;

A, B : GroupType ;

h : A . G −> B . G

axiom : f o r a l l x , y : A . G . f ( x A.∗ y ) = f ( x ) B.∗ f ( y ) ;

axiom : f o r a l l x : A . G . f (A . i n v ( x ) ) = B . i n v ( f ( x ) ) ;

axiom : h (A . e ) = B . e ;

}

�

The theory of a group epimorphism and theory of a group monomorphism are

theory extensions (see Chapter 2) of GroupHomomorphism by adding the surjectivity

and injectivity axiom, respectively:



48 5. Generation of Theories of Homomorphisms

GroupEpimorphism := GroupHomomorphism extended by {
axiom : s u r j e c t i v e ( h ) ;

}
GroupMonomorphism := GroupHomomorphism extended by {
axiom : i n j e c t i v e ( h ) ;

}

Finally, the theory of a group isomorphism is the theory combination (see Chapter

2) of GroupEpimorphism and GroupMonomorphism over GroupHomomorphism:

GroupIsomorphism :=

combine GroupEpimorph ism, GroupMonomorphism

over GroupHomomorphism

Deriving the theory of a homomorphism from a multi-sorted theory is more com-

plicated since it is not obvious on which carrier sets the mapping should be defined.

One solution is that we restrict ourselves to defining the notion of a homomorphism

for only one particular carrier set while the remaining carrier sets are fixed using

Definition 5.2.6.

Example 5.3.2 We would like to derive the theory of a vector space homomorphism

from the following 2-sorted theory of VectorSpace. Furthermore, the homomorphism

shall be defined for the vector domain V.

F i e l d := Theory {
Concepts

F : type ;

+ : ( F,F ) −> F ;

∗ : ( F,F ) −> F ;

− : F −> F ;

/ : F −> F ;

0 , 1 : F ;

Axioms

axiom : 0 \= 1 ;

axiom a s s o c i a t i v i t y + : a s s o c i a t i v e (+);

axiom i d e n t i t y + : l e f t I d e n t i t y ((+) , 0)

and r i g h t I d e n t i t y ((+) , 0 ) ;



5. Generation of Theories of Homomorphisms 49

axiom i n v e r s e − : i n v e r s e ((+) , (−) , 0 ) ;

axiom c o m m u t a t i v i t y + : commutat ive (+);

axiom a s s o c i a t i v i t y ∗ : a s s o c i a t i v e ( ∗ ) ;

axiom i d e n t i t y 1 : l e f t I d e n t i t y ( (∗ ) , 1 )

and r i g h t I d e n t i t y ( (∗ ) , 1 ) ;

axiom i n v e r s e / : f o r a l l x : F . ( x \= 0)

imp l ies ( x ∗ (/ x ) = 1 ) ;

axiom c o m m u t a t i v i t y ∗ : commutat ive ( ∗ ) ;

axiom d i s t r i b u t i v i t y ∗ o v e r + : d i s t r i b u t i v e ( (∗ ) , ( + ) ) ;

}

Ve ctor Spa ce := F i e l d extended by {
V : type ;

+V : ( V, V) −> V ;

∗V : ( F , V) −> V ;

0V : V ;

−V : V −> V ;

axiom a s s o c i a t i v i t y + :

f o r a l l u , v , w : V . u +V ( v +V w) = ( u +V v ) +V w ;

axiom c o m m u t a t i v i t y +V :

f o r a l l v , w : V . v +V w = w +V v ;

axiom i d e n t i t y 0V :

f o r a l l v : V . v +V 0V = 0v +V v = v ;

axiom i n v e r s e :

f o r a l l v : v +V (−v) = 0V ;

axiom d i s t r i b u t i v i t y 1 :

f o r a l l a : F .

f o r a l l v , w : V . a ∗V ( v +V w) = a ∗V v +V a ∗V w ;

axiom d i s t r i b u t i v i t y 2 :

f o r a l l a , b : F . f o r a l l v : V .

( a+V b )∗V v = a∗V v +V b∗V v ;

axiom c o m p a t i b i l i t y :

f o r a l l a , b : F . f o r a l l v : V . a∗V ( b∗V v ) = ( a∗V b )∗V v ;



50 5. Generation of Theories of Homomorphisms

axiom i d e n t i t y 1V :

f o r a l l v : V . 1∗V v = v ;

}

The theory of a vector space homomorphism can be obtained by declaring (1) two

vector space elements of TypeFrom(VectorSpace), (2) a function h : A.V → B.V and

(3) axioms specifying that the field in A is identical to the field domain in B, i.e.

A.F = B.F and that f preserves the functions whose return type is V and constants

of type V . Concretely, the theory of VectorSpaceHomomorphism, generated from

VectorSpace, may look as follows:

VectorSpaceHomomorphism := Theory {
type VectorSpaceType = TypeFrom( Vec torS pac e ) ;

A, B : VectorSpaceType ;

h : A . V −> B . V ;

axiom : A . F = B . F ;

axiom : f o r a l l x , y : A . V . h ( x A.+ y ) = h ( x ) B.+ h ( y ) ;

axiom : f o r a l l a : A . F . x : A . V . h ( a A.∗ x ) = a B.∗ h ( x ) ;

axiom : f o r a l l x : A . V . h (A .− x ) = B .− h ( x ) ;

axiom : f (A . 0V ) = B . 0V ;

}

�

Based on the two examples above, the construction can be generalized to generate

the theory of T -homomorphism from an arbitrary n-sorted theory (n ≥ 1) with n

carrier sets {C1, . . . , Cn−1, V }. Assume that the homomorphism shall be defined for

the carrier set V of T , the algorithm for generating THomomorphism is as follows:

(1) Initially, THomomorphism is an empty theory.

(2) Add a type declaration type TType = TypeFrom(T) to THomomorphism.

(3) Add two elements A,B of type TType, i.e. A, B : TType.

(4) Add a mapping h : A.V → B.V to THomomorphism.

(5) For each carrier set Ci, add an axiom specifying that A.Ci is identical to B.Ci,

that is A.Ci = B.Ci.



5. Generation of Theories of Homomorphisms 51

(6) For each m-ary function (or constant when n = 0) f : S1, . . . , Sm → V

(m ≥ 0, Si ∈ {C1, . . . , Cn−1, V }) in the signature whose return type is V ,

add an axiom specifying that h preserves f , i.e. ∀x1 : A . S1, . . . , xm :

A.Sm.h(A.f(x1, . . . , xm)) = B.f(h(x1), . . . , h(xm)).

(7) The resulting THomomorphism is the theory of T -homomorphism of T .

Furthermore, a T -epimorphism (-monomorphism and -isomorphism) can be ob-

tained from THomomorphism as below:

TEpimorphism := GroupHomomorphism extended by {
axiom : s u r j e c t i v e ( h ) ;

}
GroupMonomorphism := GroupHomomorphism extended by {
axiom : i n j e c t i v e ( h ) ;

}
GroupIsomorphism :=

combine GroupEpimorph ism, GroupMonomorphism

over GroupHomomorphism

5.4 Constructing a Homomorphism via Pushout

The other construction for generating the notion of a homomorphism is to calculate

the pushout of theory morphisms (Chapter 2).

Again, for the sake of simplicity, we first consider 1-sorted theories. Given a 1-

sorted theory T , we would like to construct the theory of a T -homomorphism from

it.

The key idea is that from T a new theory called DoubleT is generated that contains

two copies of T (both concepts and axioms) in it. The homomorphism is defined as

a function from the carrier set of the first T copy to the carrier set of the second T

copy along with the structure-preserving axioms.

Example 5.4.1 We would like to derive the theory of a group homomorphism from

Group. The theory of a group homomorphism can be generated from Group in two

steps:



52 5. Generation of Theories of Homomorphisms

Empty Group

Group DoubleGroup

GroupHomomorphism

Φ

Φ

Φ23

Φ13Φ3

extended

Figure 5.1: Constructing a Group Homomorphism via Pushout

(1) Construct the theory combination DoubleGroup of Group with itself by calculat-

ing the pushout of two theory morphisms (Empty, Group, Φ) with itself where Φ

is an empty injection. Assume that (G1, ∗1, inv1, e1) and (G2, ∗2, inv2, e2) are

the first and second copies of group’s concepts in DoubleGroup.

(2) Extend DoubleGroup to THomomorphism by adding (1) a function h : G1 → G2

and (2) axioms specifying that h preserve ∗, inv, e in Group.

This is graphically depicted in Figure 5.1.

GroupHomomorphism may look as follows:

GroupHomomorphism := Theory {
G1 : type ;

G2 : type ;

∗1 : ( G1, G1) −> G1 ;

∗2 : ( G2, G2) −> G2 ;

e1 : G1 ;

e2 : G2 ;

i n v 1 : G1 −> G1 ;

i n v 2 : G2 −> G2 ;

axiom a s s o c i a t i v i t y ∗1 : a s s o c i a t i v e ( ( ∗ 1 ) ) ;

axiom a s s o c i a t i v i t y ∗2 : a s s o c i a t i v e ( ( ∗ 2 ) ) ;

axiom i d e n t i t y e 1 : i d e n t i t y ( (∗1 ) , e1 ) ;



5. Generation of Theories of Homomorphisms 53

axiom i d e n t i t y e 2 : i d e n t i t y ( (∗2 ) , e2 ) ;

axiom i n v e r s e i n v 1 : i n v e r s e ( (∗1 ) , i n v 1 , e1 ) ;

axiom i n v e r s e i n v 2 : i n v e r s e ( (∗2 ) , i n v 2 , e2 ) ;

h : G1 −> G2 ;

axiom : f o r a l l x , y : G1 . h ( x ∗1 y ) = h ( x ) ∗2 h ( y ) ;

axiom : f o r a l l x : G1 . h ( i n v 1 ( x ) ) = i n v 2 ( h ( x ) ) ;

axiom : h ( e1 ) = e2 ;

�

Before constructing the theory of a group epimorphism, a group monomorphism

and a group isomorphism, we define two theory morphisms (MultiCarrierWithFunc,

GroupHomomorphism, Φ1) and (MultiCarrierWithFunc, MultiCarrierWithSurjectiveFunc ,

Φ2) where MultiCarrier , MultiCarrierWithFunc and MultiCarrierWithSurjectiveFunc are

theories of two carrier sets, two carrier sets with a function between them and two

carrier sets with a surjective function between them, respectively:

M u l t i C a r r i e r := Theory {
G1, G2 : type ;

}
M u l t i C a r r i e r W i t h F u n c := M u l t i C a r r i e r extended by {

h : G1 −> G2 ;

}
M u l t i C a r r i e r W i t h S u r j e c t i v e F u n c := M u l t i C a r r i e r W i t h F u n c

extended by {
axiom : s u r j e c t i v e ( h ) ;

}

The theory of group epimorphism can be obtained by calculating the pushout of the

two theory morphisms mentioned above as graphically depicted in Figure 5.2.

Similarly, the theory of a group monomorphism can be obtained by

calculating the pushout of two theory morphisms (MultiCarrierWithFunc,

GroupHomomorphism, Φ1) and (MultiCarrierWithFunc, MultiCarrierWithInjectFunc ,

Φ2) where MultiCarrierInjectiveFunc is the theory of two carrier sets with an injective

function between them:

M u l t i C a r r i e r W i t h I n j e c t i v e F u n c := M u l t i C a r r i e r W i t h F u n c



54 5. Generation of Theories of Homomorphisms

MultiCarrierWithFunc GroupHomomorphism

MultiCarrierWithSurjectiveFunc GroupEpimorphism

Φ1

Φ2

Φ23

Φ13Φ3

Figure 5.2: Constructing a Group Epimorphism via Pushout

MultiCarrierWithFunc GroupHomomorphism

MultiCarrierWithInjectiveFunc GroupMonomorphism

Φ1

Φ2

Φ23

Φ13Φ3

Figure 5.3: Constructing a Group Monomorphism via Pushout

extended by {
axiom : i n j e c t i v e ( h ) ;

}

In expanded form, it is:

M u l t i C a r r i e r W i t h I n j e c t i v e F u n c := Theory {
G1, G2 : type ;

h : G1 −> G2 ;

axiom : i n j e c t i v e ( h ) ;

}

Finally, the theory of a group isomorphism can be obtained by calculating the

pushout of (GroupHomomorphism, GroupEpimorphism, Φ1) and (GroupHomomorphism,

GroupMonomorphism, Φ2) where Φ1 and Φ2 are identity injections (Figure 5.4).

Deriving the theory of a homomorphism from a multi-sorted theory is more com-

plicated but can be done. The key idea is that the notion of a homomorphism is

defined for only one carrier set while the remaining carrier sets are fixed. The fixed

carrier sets along with their axioms have one copy in the generated theory of homo-



5. Generation of Theories of Homomorphisms 55

GroupHomomorphism GroupMonomorphism

GroupEpimorphism GroupIsomorphism

Φ1

Φ2

Φ23

Φ13Φ3

Figure 5.4: Constructing a Group Isomorphism via Pushout

morphism. On the other hand, carrier set, for which the homomorphism is defined,

its operations and and its axioms have two copies so that we can define the homo-

morphism mapping between them.

Example 5.4.2 The theory of a vector space homomorphism can be derived from

VectorSpace in two steps:

(1) Construct the theory combination DoubleVectorSpace of VectorSpace with itself

by calculating the pushout of the theory morphisms (Field , VectorSpace, Φ)

with itself where Φ is an identity injection and Field the theory of a field given

previously. Assume that (V,+, ∗, 0, 1) and (V ′,+′, ∗′, 0′, 1′) are the first and

second copies of vector space’s concepts in DoubleVectorSpace.

(2) Extend DoubleVectorSpace to VectorSpaceHomomorphism by adding (1) a func-

tion h : V → V ′ and (2) axioms specifying that h preserve the vector operations

whose return type is V and constants of type V

This is graphically depicted in Figure 5.5.

The theory of homomorphism of vector spaces may look as below in MSL:

VectorSpaceHomomorphism := Theory {
Concepts

F : type ;

+ : ( F,F ) −> F ;

∗ : ( F,F ) −> F ;

− : F −> F ;

/ : F −> F ;

0 , 1 : F ;



56 5. Generation of Theories of Homomorphisms

Field VectorSpace

VectorSpace DoubleVectorSpace

VectorSpaceHomomorphism

Φ1

Φ2

Φ23

Φ13Φ3

extended

Figure 5.5: Constructing a VectorSpace Homomorphism via Pushout

Facts

axiom : 0 \= 1 ;

axiom a s s o c i a t i v i t y + : a s s o c i a t i v e (+);

axiom i d e n t i t y + : l e f t I d e n t i t y ((+) , 0)

and r i g h t I d e n t i t y ((+) , 0 ) ;

axiom i n v e r s e − : i n v e r s e ((+) , (−) , 0 ) ;

axiom c o m m u t a t i v i t y + : commutat ive (+);

axiom a s s o c i a t i v i t y ∗ : a s s o c i a t i v e ( ∗ ) ;

axiom i d e n t i t y 1 : l e f t I d e n t i t y ( (∗ ) , 1 )

and r i g h t I d e n t i t y ( (∗ ) , 1 ) ;

axiom i n v e r s e / : f o r a l l x : F . ( x \= 0)

imp l ies ( x ∗ (/ x ) = 1 ) ;

axiom c o m m u t a t i v i t y ∗ : commutat ive ( ∗ ) ;

axiom d i s t r i b u t i v i t y ∗ o v e r + : d i s t r i b u t i v e ( (∗ ) , ( + ) ) ;

V : type ;

+V : ( V, V) −> V ;

∗V : ( F , V) −> V ;

0V : V ;

−V : V −> V ;



5. Generation of Theories of Homomorphisms 57

V ’ : type ;

+V ′ : ( V, V) −> V ;

∗V ′ : ( F , V) −> V ;

0V ′ : V ;

−V ′ : V −> V ;

axiom a s s o c i a t i v i t y +V :

f o r a l l x , y , z : V . x +V ( y +V z ) = ( x +V y ) +V z ;

axiom a s s o c i a t i v i t y +V ′ :

f o r a l l x , y , z : V . x +V ′ ( y +V ′ z ) = ( x +V ′ y ) +V ′ z ;

axiom c o m m u t a t i v i t y +V :

f o r a l l x , y : V . x +V y = y +V x ;

axiom c o m m u t a t i v i t y +V ′ :

f o r a l l x , y : V . x +V ′ y = y +V ′ x ;

axiom i d e n t i t y 0V :

f o r a l l x : V . x +V 0V = 0V +V x = x ;

axiom i d e n t i t y 0V ′ :

f o r a l l x : V . x +V ′ 0V ′ = 0V ′ +V ′ x = x ;

axiom i n v e r s e −V :

f o r a l l x : V . x +V (−V x ) = 0V ;

axiom i n v e r s e −V ′ :

f o r a l l x : V ’ . x +V ′ (−V ′ x ) = 0V ′ ;

axiom d i s t r i b u t i v i t y 1 : f o r a l l a : F .

f o r a l l x , y : V . a ∗V ( x +V y ) = a ∗V x +V a ∗V y ;

axiom d i s t r i b u t i v i t y 1 ’ : f o r a l l a : F .

f o r a l l x , y : V . a ∗V ′ ( x +V ′ y ) = a ∗V ′ x +V ′ a ∗V ′ y ;

axiom d i s t r i b u t i v i t y 2 :

f o r a l l a , b : F . f o r a l l x : V .

( a +V b )∗V x = a∗V x +V b∗V x ;

axiom d i s t r i b u t i v i t y 2 ’ :

f o r a l l a , b : F .

f o r a l l x : V ’ . ( a +V ′ b ) ∗V ′ x = a ∗V ′ x +V ′ b ∗V ′ x ;

axiom c o m p a t i b i l i t y : f o r a l l a , b : F .

f o r a l l x : V . a ∗V ( b ∗V x ) = ( a ∗V b ) ∗V x ;



58 5. Generation of Theories of Homomorphisms

axiom c o m p a t i b i l i t y ’ : f o r a l l a , b : F .

f o r a l l x : V ’ . a ∗V ′ ( b ∗V ′ x ) = ( a ∗V ′ b ) ∗V ′ x ;

h : V −> V ’ ;

axiom : f o r a l l x , y : V . h ( x +V y ) = h ( x ) +V ′ h ( y ) ;

axiom : f o r a l l a : F . f o r a l l x : V . h ( a∗V x ) = a∗V ;h ( x ) ;

axiom : f o r a l l x : V . h (−V x ) = −V ′ h ( x ) ;

axiom : h ( 0 ) = 0 ’ ;

}

�

Similar to the group construction, the theory of a VectorSpaceEpimorphism

and VectorSpaceMonomorphism can be obtained by calculating the pushout

of the morphisms, (MultiCarrierWithFunc, VectorSpaceHomomorphism,

Φ1) with (MultiCarrierWithFunc, MultiCarrierWithSurjectiveFunc ) and

(MultiCarrierWithFunc, VectorSpaceHomomorphism, Φ1) with (MultiCarrierWithFunc,

MultiCarrierWithInjectiveFunc ), respectively.

Finally, the theory of a vector space isomorphism can be obtained by calculat-

ing the pushout of (VectorSpaceHomomorphism, VectorSpaceEpimorphism, Φ1) with

(VectorSpaceHomomorphism, VectorSpaceMonomorphism, Φ2).

The construction can be generalized to generate the theory of a T -homomorphism

(epimorphism, monomorphism and isomorphism) from an arbitrary n-sorted theory

T (n ≥ 1). Let {C1, . . . , Cn−1,M} be T ’s carrier sets. Moreover, the homomorphism

shall be defined for M . The construction algorithm is the following:

(1) Construct the theory combination DoubleT of T with itself over the theory

FixedTheory by calculating the pushout of two theory morphisms (FixedTheory,

T, Φ1) and (FixedTheory, T, Φ2) where Φ1 and Φ2 are theory injections.

(2) Extend DoubleT to THomomorphism with (1) a function h : M → M ′ and (2)

axioms specifying that h preserve the operations whose return type is M .

This is graphically depicted in Figure 5.6. Here, FixedTheory contains the part that

is fixed. If T is a 1-sorted theory (as in the example of group), FixedTheory is the

empty theory. Otherwise, if T is multi-sorted theory (at least 2-sorted), FixedTheory

contains the carrier sets, their operations and the specifying axioms that are common



5. Generation of Theories of Homomorphisms 59

FixedTheory T

T DoubleT

THomomorphism

Φ1

Φ2

Φ23

Φ13Φ3

extended

Figure 5.6: Constructing a T-Homomorphism via Pushout

MultiCarrierWithFunc THomomorphism

MultiCarrierWithSurjectiveFunc TEpimorphism

Φ1

Φ2

Φ23

Φ13Φ3

Figure 5.7: Constructing a T-Epimorphism via Pushout

part of the two theories between which the homomorphism is being defined. As seen

previously, in the example of the vector space, FixedTheory is the theory of Field .

The theory of T -epimorphism can be obtained from THomomorphism by

calculating the pushout of (MultiCarrierWithFunc, THomomorphism, Φ1) and

(MultiCarrierWithFunc, MultiCarrierWithSurjectiveFunc , Φ2) as graphically illustrated

in Figure 5.7.

Similarly, the theory of T-monomorphism can be obtained by calculating the

pushout of two theory morphisms (MultiCarrierWithFunc, THomomorphism, Φ1) and

(MultiCarrierWithFunc, MultiCarrierWithInjectFunc , Φ2). Figure 5.8 graphically shows

this.

Finally, the theory of isomorphism of T can be obtained by calculating the pushout

of (THomomorphism, TEpimorphism, Φ1) and (TMonomorphism, TIsomorphism, Φ2).



60 5. Generation of Theories of Homomorphisms

MultiCarrierWithFunc THomomorphism

MultiCarrierWithInjectiveFunc TMonomorphism

Φ1

Φ2

Φ23

Φ13Φ3

Figure 5.8: Constructing a T-Monomorphism via Pushout

THomomorphism Monomorphism of T

TIsomorphism Isomorphism of T

Φ1

Φ2

Φ23

Φ13Φ3

Figure 5.9: Constructing a T-Isomorphism via Pushout

5.5 Comparison of the Two Constructions

Both constructions discussed previously generate the theory of a T -homomorphism

( as well as epimorphisms, monomorphisms and isomorphisms) from an arbitrary

n-sorted theory. At first glance, the construction using TypeFrom produces more

compact theories than the construction using pushout. Nevertheless, this is because

most of the complexity is handled by TypeFrom which, when expanded, is a depen-

dent record containing all the concepts and proof objects of the input theory.

The downside of the construction using pushout is that the generated theory could

be enormous since there are two copies of the part for which the homomorphism is

defined. However, the advantage is that if the theory morphisms are fully supported

the calculation of the theory morphism (FixedTheory, T , Φ) with itself produces not

only the theory DoubleT but other theory morphisms as well. These can be stored in

the system and reused in other contexts.



CHAPTER 6

GENERATION OF THEORIES OF

SUBSTRUCTURES AND SUBMODELS

Similar to homomorphism, substructure and submodel are also important concepts

in abstract algebra and model theory. In an algebraic setting, it is often the case that

attention is paid to a particularly interesting subset of elements of a carrier set in

a certain structure. Moreover, things become more interesting and straighforward if

the functions of the structure also work on the subset.

The purpose of this chapter is to discuss the algebraic constructions that have been

developed for generating the theory of a substructure and the theory of a submodel

from an existing theory. Similar to generating a homomorphism (see Chapter 5), two

constructions, one using TypeFrom and one using pushout, can be used to generate

the notions of a substructure and a submodel.

6.1 Motivation for the Generation of a Substruc-

ture and a Submodel

Similar to the motivation for generating a homomorphism, instead of manually defin-

ing the notion of a sub-T -structure and of a sub-T -model for a theory T , we desire to

automatically derive it instead. Since our aim is a method for an automatic deriva-

tion, we are interested in the generic definition of substructures and submodels.

61



62 6. Generation of Theories of Substructures and Submodels

6.2 Generic Definition of a Substructure and a Sub-

model

The following gives the definition for the notion of a substructure in terms of two

1-sorted algebraic structures:

Definition 6.2.1 LetM andN be two 1-sorted algebraic structures having the same

signature. Furthermore, let M and N be their carrier sets, respectively. M is said to

be a substructure of N , if

• M is nonempty and M is a subset of N .

• For every n-ary function f in the signature (n ≥ 1), fM = fN | Mn. That is,

fM is the restriction of fN on M .

Or equivalently:

Definition 6.2.2 LetM andN be two 1-sorted algebraic structures having the same

signature. Furthermore, let M and N be their carrier sets, respectively. M is said to

be a substructure of N , if

• M is a subset of N .

• For every n-ary function (or constant when n = 0) f in the signature (n ≥ 0),

fM = fN |Mn. That is, fM is the restriction of fN on M .

Based on that, the following is the definition of a submodel:

Definition 6.2.3 Let T be a 1-sorted theory capturing one or a collection of algebraic

structures. M andN are two 1-sorted algebraic structures having the same signature.

M is said to be a submodel of N , if

• M is a substructure of N .

• M and N are both models of T .

Example 6.2.4 Let T be the theory of a group (its definition in MSL is given in

Section 5.3 in Chapter 5). Let N = (N,+N , 0N) and Z = (Z,+Z , 0Z) be a structure of

natural numbers and a structure of integers, respectively. Clearly, N is a substructure

of Z because:



6. Generation of Theories of Substructures and Submodels 63

• N is nonempty and N ⊆ Z.

• +N = +Z | N .

However, N does not form a submodel of Z because, unlike Z, N is not a group. �

We extend the definitions of substructures and submodels above to multi-sorted

algebraic structures. In this case, the notion of a substructure is defined for a partic-

ular carrier set while the remaining carrier sets are fixed. That means, the remaining

carrier sets of the two structures are identical.

Definition 6.2.5 Let M and N be two n-sorted algebraic structures having the

same signature (n ≥ 1). Let C1, . . . , Cn−1,M and C1, . . . , Cn−1, N be their carrier

sets, respectively. Moreover, the following conditions are satisfied:

• M ⊆ N .

• For each m-ary function (or constant when n = 0) f : (S1, . . . , Sm)→M in the

signature whose return type is M where m ≥ 1 and Si ∈ {C1, . . . , Cn−1,M},
fM = fN | Mm for all x1 ∈ S1, . . . , xm ∈ Sm. In other words, ∀x1 ∈
S1, . . . , xm ∈ Sm . fM(x1, . . . , xm) = fN (x1, . . . , xm).

Then M is a substructure of N .

Based on that, the following is the definition of a submodel:

Definition 6.2.6 Let T be an n-sorted theory. M and N are two n-sorted algebraic

structures having the same signature. Let C1, . . . , Cn−1,M and C1, . . . , Cn−1, N be

their carrier sets, respectively. M is said to be a submodel of N , if

• M is a substructure of N .

• M and M are both models of T .

Example 6.2.7 Let W = (VW ,+W , ∗W , 0W ) be a vector space over field K (the

definition of a vector space is given in Chapter 5). Let U = (VU ,+U , ∗U , 0U) be

a structure of the same signature of W over the same field K. Furthermore, the

following conditions are satisfied:

• VU is nonempty and VU ⊆ VW .

• +U = +W | V 2
U .



64 6. Generation of Theories of Substructures and Submodels

• ∗U = ∗W | V 2
U .

Then U is a substructure of W . If U is also a vector space itself, U is a submodel of

W . �

It is worth mentioning that textbooks normally define only the notion of a submodel

of a vector space and refer to it as a vector subspace or linear subspace. Moreover, its

definition is different than the definition based on the generic definition given here.

A textbook’s definition would say that U is a vector subspace of W if W is a

vector space itself or, equivalently, if the following conditions are satisfied:

• 0U ∈ VW .

• ∀a, b : K . ∀x, y : VW . a ∗ u+ b ∗ v ∈ VW .

• ∀a : K . ∀x : VW . a ∗ x ∈ VW .

Nevertheless, our definition for vector subspace derived from the generic definition

of submodels is equivalent to these textbook’s definitions.

6.3 Constructing a Theory of a Substructure and

a Submodel via TypeFrom

Similar to generating a homomorphism (see Chapter 5), the first construction for

generating the notion of a substructure relies on the reification of types as dependent

record types, via TypeFrom, as introduced in Chapter 4.

First, we consider 1-sorted theories since this is the simplest case. Given a 1-sorted

theory T , using TypeFrom T can be reified as a type which allows for declaring a T

element of that type. Based on the structure of T , the notion of a sub-T -structure

can be derived by declaring a new carrier set and axioms specifying that (1) the new

carrier set is a nonempty subset of the carrier set of T and (2) the functions of T are

closed on this new carrier set.

Having the notion of a sub-T -structure, the notion of a sub-T -model can be ob-

tained by extending it with an axiom specifying that the substructure is a model of

T .



6. Generation of Theories of Substructures and Submodels 65

Example 6.3.1 We would like to derive the theory of a group substructure (sub-

group) from the theory of a Group.

The theory of a group substructure can be obtained by declaring a group element

A being an element of TypeFrom(Group), a new carrier set V and axioms specifying

that (1) V is a subset of the carrier set of A, (2) the group’s operations are closed on

V and (3) the group’s constant is in V . Concretely, the theory of GroupSubstructure,

generated from Group, may look as follows:

G r o u p S u b s t r u c t u r e := Theory {
type GroupType = TypeFrom( Group ) ;

A : GroupType ;

V : type ;

axiom : V <: A . U ;

axiom : defined− in (A . e , V ) ;

axiom : f o r a l l x , y : V . defined− in ( x A.∗ y , V ) ;

axiom : f o r a l l x : V . defined− in (A . i n v ( x ) , V ) ;

}

Here, we use TypeFrom to construct the type of groups so that we can declare a group

element A : GroupType. The axioms specify that the new type V is a nonempty subset

of the carrier of A, e is in A and the functions in A are closed on V .

The notion of a group submodel can be obtained from GroupSubstructure by adding

an axiom saying that V along with the group operations and constant in A form a

group:

GroupSubmodel := G r o u p S u b s t r u c t u r e extended by {
axiom : ex i s t s p 1 , p 2 , p3 : P r o o f .

{G = V,

∗ = A.∗ ,

e = A . e ,

i n v = A . i n v ,

a s s o c i a t i v i t y ∗ = p 1 ,

i d e n t i t y e = p 2 ,

i n v e r s e i n v = p3} in GroupType ;

}

Here, the axiom specifies that the record consisting of the new carrier set V and group

operations and constant of A is an element of TypeFrom(Group) or, equivalently, form



66 6. Generation of Theories of Substructures and Submodels

a group. �

Unfortunately, there is problem here. Since, it is a well-known fact that any group

substructure is also a group submodel, the last axiom in GroupSubmodel turns out to

be redundant. This shows one of the weaknesses of the approach.

Deriving the theory of a substructure and the theory of a submodel from a multi-

sorted theory is more complicated since it is not obvious on which carrier sets the

notion of substructures and submodels should be defined. One solution is that we

restrict ourselves to defining the notion of a substructure and submodel for only one

particular carrier set while the remaining carrier sets are fixed using Definition 6.4

and Definition 6.4.

The key idea is that in this scenario, the notion of a substructure is defined for

only one particular carrier set while the remaining carrier sets are fixed.

Example 6.3.2 We would like to derive the theory of a vector space substructure

from the 2-sorted theory of VectorSpace as introduced in Chapter 5. Furthermore,

the substructure shall be defined for the vector domain V.

The generation works almost the same as with the group discussed previously. The

theory of a vector space substructure can be obtained by declaring a vector space A

of TypeFrom(VectorSpace), a new carrier set W and axioms specifying that (1) W

is a nonempty subset of the vector domain V of A and (2) the vector functions of A

are closed on W . Concretely, the theory of VectorspaceSubstructure, generated from

VectorSpace, may look as follows:

V e c t o r S p a c e S u b s t r u c t u r e := Theory {
type VectorSpaceType = TypeFrom( Vec torS pac e ) ;

A : VectorSpaceType ;

W : type ;

axiom : (W <: A . V ) ;

axiom : defined− in (A. 0 , W) ;

axiom : f o r a l l x , y : W . defined− in ( x A.+ y , W) ;

axiom : f o r a l l a : A . F , x : W . defined− in ( a A.∗ x , W) ;

axiom : f o r a l l x : W . defined− in (A .− x , W) ;

}

In VectorspaceSubstructure, the most interesting part is the axiom specifying that A.∗
is closed W:



6. Generation of Theories of Substructures and Submodels 67

axiom : f o r a l l a : A . F , x : W . defined− in ( a A.∗ x , W) ;

Recall that in the original theory VectorSpace, ∗ has following declaration:

∗ : ( F , V) −> V ;

which is defined on two carrier sets F and V. Since the substructure is being defined

for the vector domain V and the field domain is fixed, the scalar a is quantified over

A.F.

Similar to the group example above, the notion of a vector space submodel can be

obtained from VectorSpaceSubstructure by adding an axiom saying that V together

with the vector’s operations and constants in A form a vector space:

VectorSpaceSubmodel := V e c t o r S p a c e S u b s t r u c t u r e extended by {
axiom : ex i s t s p 1 , p 2 , p 3 , p 4 , p 5 , p 6 , p 7 , p8 : P r o o f .

{V = W,

+ = A.+ ,

∗ = A.∗ ,

0 = A. 0 ,

a s s o c i a t i v i t y + = p 1 ,

c o m m u t a t i v i t y + = p 2 ,

i d e n t i t y 0 = p3 ,

i n v e r s e = p 4 ,

d i s t r i b u t i v i t y 1 = p 5 ,

d i s t r i b u t i v i t y 2 = p 6 ,

c o m p a t i b i l i t y = p 7 ,

i d e n t i t y 1 = p8 } in VectorSpaceType ;

}

�

Based on the two examples above, the construction can be generalized to generate

the theory of a sub-T -structure TSubStructure from any input n-sorted theory T

(n ≥ 1). Assume that the substructure shall be defined over the carrier set V of T ,

the algorithm for generating TSubstructure is as follows:

(1) Initially, TSubstructure is an empty theory.

(2) Add a type declaration type TType = TypeFrom(T) to TSubstructure.



68 6. Generation of Theories of Substructures and Submodels

(3) Add a type declaration W : type to TSubstructure.

(4) Add the axiom specifying that V is not empty and V is a subset of A.V, i.e.

(W <: A.V).

(5) For each n-ary function (or constant when n = 0) f : (C1, . . . , Cn)→ V (n ≥ 0)

of T whose return type is V , generate an axiom specifying that A.f is closed

on W , i.e. ∀x1 : S1, . . . , xn : Sn.defined-in(f(x1, . . . , xn),W ) where Si = W if

Ci = V and Si = A.Ci otherwise.

The theory of sub-T -model TSubmodel can be obtained by adding to TSubstructure

an axiom: ∃p1, . . . , pn : Proof . {V = W, f1 = A.f1, . . . , fm = A.fm, ax1 = p1 . . . , axn =

pn} in TypeFrom(T) where fi are functions or constants in T and axi are the names

of the axioms in T .

6.4 Constructing a Theory of a Substructure Via

Pushout

Also similar to generating a homomorphism in Chapter 5, the second construction

for generating the notion of a substructure is via generating the pushout of theory

morphisms (as discussed in Chapter 2).

Again, we first discuss the generation method for 1-sorted theories since this is the

simplest scenario. Given a 1-sorted theory T , we would like to generate the theory of

a sub-T -structure from it.

The key idea is that we define a new theory called DoubleT that contains two

copies of the concepts of T and one copy of the axioms of T in it. This can be

done by calculating the pushout of two theory morphisms (Empty, T,Φ) and (Empty,

TSignature, Φ) where TSignature contains only the concepts of T , that is T without

its axioms.

Then we extend DoubleT to TSubstructure by adding axioms specifying that (1) the

first carrier set of the first copy of T is a nonempty subset of the second carrier set

of the second copy of T and (2) the functions of the first copy of T are restrictions of

the corresponding functions of the second copy of T to the first carrier set of T .

Example 6.4.1 We would like to derive the theory of a group substructure from the

theory of a Group. The theory of a group substructure can be generated from Group

in two steps:



6. Generation of Theories of Substructures and Submodels 69

(1) Construct the theory combination DoubleGroup by calculating the pushout of

two theory morphisms (Empty, GroupSignature, Φ1) and (Empty, Group, Φ2)

where Φ1 and Φ2 are empty injections and GroupSignature is Group without its

axioms as shown below. This is graphically depicted in Figure 6.1. DoubleGroup

contains two copies of Group’s concepts and one copy of Group’s axioms. Assume

that (G1, ∗1, inv1, e1) and (G2, ∗2, inv2, e2) are the first and second copies of

group’s concepts in DoubleGroup.

(2) Extend DoubleGroup to GroupSubstructure by adding axioms specifying that

(1) G1 is a subset of G2 and the functions ∗1, inv1 of the first group copy are

restrictions of the functions ∗1, inv2 of the second group copy, respectively.

The following is GroupSignature:

G r o u p S i g n a t u r e := Theory {
G : type ;

∗ : ( G,G ) −> G ;

e : G ;

i n v : G −> G ;

}

The theory of a group substructure may look as below:

G r o u p S u b s t r u c t u r e := Theory {
G1 : type ;

G2 : type ;

∗1 : ( G1, G1) −> G1 ;

∗2 : ( G2, G2) −> G2 ;

e1 : G1 ;

e2 : G2 ;

i n v 1 : G1 −> G1 ;

i n v 2 : G2 −> G2 ;

axiom : a s s o c i a t i v i t y ∗2 : a s s o c i a t i v e ( ( ∗ 2 ) ) ;

axiom : i d e n t i t y e 2 : i d e n t i t y ( (∗2 ) , e2 ) ;

axiom : i n v e r s e i n v 2 : i n v e r s e ( (∗2 ) , i n v 2 , e2 ) ;

axiom : (G1 <: G2 ) ;



70 6. Generation of Theories of Substructures and Submodels

Empty GroupSignature

Group DoubleGroup

GroupSubstructure

Φ1

Φ2

Φ23

Φ13Φ3

extended

Figure 6.1: Constructing a Group Substructure via Pushout

axiom : e1 = e2 ;

axiom : f o r a l l x , y : G1 . x ∗1 y = x ∗2 y ;

axiom : f o r a l l x : G1 . i n v 1 ( x ) = i n v 2 ( x ) ;

Notice that GroupSubstructure contains only the concepts but not the axioms of the

first copy of Group.

The theory of a group submodel can be obtained from GroupSubstructure by adding

an axiom specifying that the first copy of Group’s concepts forms a group:

GroupSubmodel := G r o u p S u b s t r u c t u r e extended by {
axiom : ex i s t s p 1 , p 2 , p3 : P r o o f .

{G = G1,

∗ = ∗1 ,

e = e 1 ,

i n v = i n v 1 ,

a s s o c i a t i v i t y ∗ = p 1 ,

i d e n t i t y e = p 2 ,

i n v e r s e i n v = p3} in GroupType ;

}

�

Similar to the first construction using TypeFrom, deriving the theory of a sub-

structure from a multi-sorted theory is more complicated but can also be done using



6. Generation of Theories of Substructures and Submodels 71

Definition and Definition . The key idea is that the notion of a substructure is defined

for only one carrier set while the remaining carrier sets are fixed. The fixed carrier

sets along with their axioms have one copy in the generated theory of substructure.

On the other hand, the carrier set, for which the substructure is defined, and its

functions have two copies. Moreover, there is one copy of the axioms defining the

carrier set. This way, it is possible to define the substructure relationship.

Example 6.4.2 We would like to generate the theory of vector space substructure

from the theory of the 2-sorted theory of a VectorSpace. Furthermore, the substructure

shall be defined for the vector domain V.

Similar to the theory of group, the construction of the theory of a vector space

substructure can be done in two steps:

(1) Construct the theory combination DoubleVectorSpace by calculating the pushout

of the two theory morphisms (Field , VectorSpaceSignature, Φ1)) with (Field ,

VectorSpace, Φ1)) where Φ1 and Φ2 are identity injections and VectorSpaceSignature

is VectorSpace without its vector axioms. Assume that (V,+, ∗, 0, 1,−) and

(V ′,+′, ∗′, 0′, 1′,−′) are the first and second copies of vector space’s concepts in

DoubleVectorSpace.

(2) Extend DoubleVectorSpace to VectorSpaceSubstructure by adding axioms speci-

fying that (1) V is a nonempty subset of V ′ and (2) the functions of the first

vector space copy +, ∗,− are restrictions of the functions of the second vector

space copy +′, ∗′,−′, respectively.

This is graphically depicted in Figure 6.2.

VectorSpaceSubstructure may look as below:

V e c t o r S p a c e S u b s t r u c t u r e := Theory {

F : type ;

+ : ( F,F ) −> F ;

∗ : ( F,F ) −> F ;

− : F −> F ;

/ : F −> F ;

0 , 1 : F ;

axiom a s s o c i a t i v i t y + : a s s o c i a t i v e (+);



72 6. Generation of Theories of Substructures and Submodels

Field VectorSpaceSignature

VectorSpace DoubleVectorSpace

VectorSpaceSubstructure

Φ1

Φ2

Φ23

Φ13Φ3

extended

Figure 6.2: Constructing a Vector Space Substructure via Pushout

axiom i d e n t i t y + : l e f t I d e n t i t y ((+) , 0)

and r i g h t I d e n t i t y ((+) , 0 ) ;

axiom i n v e r s e − : i n v e r s e ((+) , (−) , 0 ) ;

axiom c o m m u t a t i v i t y + : commutat ive (+);

axiom a s s o c i a t i v i t y ∗ : a s s o c i a t i v e ( ∗ ) ;

axiom i d e n t i t y 1 : l e f t I d e n t i t y ( (∗ ) , 1 )

and r i g h t I d e n t i t y ( (∗ ) , 1 ) ;

axiom i n v e r s e / : i n v e r s e ( (∗ ) , ( / ) , 1 ) ;

axiom c o m m u t a t i v i t y ∗ : commutat ive ( ∗ ) ;

axiom d i s t r i b u t i v i t y ∗ o v e r + : d i s t r i b u t i v e ( (∗ ) , ( + ) ) ;

V : type ;

+V : ( V, V) −> V ;

∗V : ( F , V) −> V ;

0V : V ;

−V : V −> V ;

V ’ : type ;

+V ′ : ( V, V) −> V ;

∗V ′ : ( F , V) −> V ;

0V ′ : V ;



6. Generation of Theories of Substructures and Submodels 73

−V ′ : V −> V ;

axiom a s s o c i a t i v i t y +V ′ :

f o r a l l x , y , z : V .

x +V ′ ( y +V ′ z ) = ( x +V ′ y ) +V ′ z ;

axiom c o m m u t a t i v i t y +V ′ :

f o r a l l x , y : V . x +V ′ y = y +V ′ x ;

axiom i d e n t i t y 0V ′ :

f o r a l l x : V . x +V ′ 0V ′ = 0V ′ +V ′ x = x ;

axiom i n v e r s e −V ′ :

f o r a l l x : V ’ . x +V ′ (−V ′ x ) = 0V ′ ;

axiom d i s t r i b u t i v i t y 1 : f o r a l l a : F .

f o r a l l x , y : V .

a ∗V ′ ( x +V ′ y ) = a ∗V ′ x +V ′ a ∗V ′ y ;

axiom d i s t r i b u t i v i t y 2 :

f o r a l l a , b : F .

f o r a l l x : V . ( a +V ′ b )∗V ′ x = a∗V ′ x +V ′ b∗V ′ x ;

axiom c o m p a t i b i l i t y : f o r a l l a , b : F .

f o r a l l x : V . a ∗V ′ ( b ∗V ′ x ) = ( a ∗V ′ b ) ∗V ′ x ;

axiom : (V <: V ’ ) ;

axiom : 0 = 0 ’ ;

axiom : f o r a l l x , y : V . x +V y = x +V ′ y ;

axiom : f o r a l l a : F . f o r a l l x : V . a ∗V x = a ∗V ′ x ;

axiom : f o r a l l x : V . −V x = −V ′ x ;

}

�

Based on the two examples above, we can generalize the construction to gener-

ate the theory of sub-T -structure from any input n-sorted theory T (n ≥ 1). Let

C1, . . . , Cn−1,M be its carrier sets. Assume that the substructure shall be defined for

M . The algorithm for generating the theory of sub-T -structure is as follows:

(1) Construct the theory combination DoubleT by calculating the pushout of the

two theory morphisms (F, TSignature, Φ1)) with (F, T, Φ1)) (Figure 6.3). Here,

Φ1 and Φ2 are identity injections and F contains all the carrier sets C1, . . . , Cn−1,



74 6. Generation of Theories of Substructures and Submodels

F TSignature

T DoubleT

SubT

Φ1

Φ2

Φ23

Φ13
Φ3

extended

Figure 6.3: Constructing a Sub-T -Structure via Pushout

their operations and defining axioms. Additionally, TSignature is T without its

axioms. Assume that M1 and M2 are the first and second copies of M in

DoubleT.

(2) Extend DoubleT to TSubstructure by adding axioms specifying that (1) M1 is

a nonempty subset of M2, (2) the functions of the first T copy are restrictions

of the functions of the second T copy, respectively and (3) the constants of the

first T copy are equal to the constants of the second T copy.

(3) The resulting TSubstructure is the theory of sub-T -structure of T .

Moreover, the theory of a T -submodel can be obtained by extending TSubstructure

with an axiom specifying that there exists proof objects showing that TSubstructure

is a model of T , i.e. an element of TypeFrom(T).

6.5 Comparison of the Two Constructions

The comparison is essentially the same as with constructions of homomorphisms

(Section 5.5 of Chapter 5).

Both constructions discussed previously generate the theory of sub-T -structure

from an arbitrary n-sorted theory. At first glance, the approach using TypeFrom (Sec-

tion 6.3) produces more compact theories than the approach using pushout (Section



6. Generation of Theories of Substructures and Submodels 75

6.4). Nevertheless, this is because most of the complexity is handled by TypeFrom

which, when expanded, is a dependent record containing all the concepts and proof

objects of the input theory.

The downside of the construction using pushout is that the generated theory

could be enormous since there are two copies of the part for which the substructure is

defined. However, the advantage is that if the theory morphisms are fully supported

the calculation of the theory morphism (F, T,Φ) with itself produce not only the

theory DoubleT but also theory morphisms Φ13, Φ23 and Φ3 which can be stored and

reused in other contexts.



CHAPTER 7

THEORY SYNTAX REPRESENTATION

AND OTHER SYNTACTIC

MACHINERY

As we have discussed previously, the notion of a biform theory is used to merge

axiomatic and algorithmic theories. The facts of a biform theory may specify trans-

formers that are functions manipulating the syntax of expressions. As a result, as

opposed to axiomatic theories, reasoning in a biform theory also embodies reason-

ing about syntactic expressions. Reasoning about syntax requires that the syntactic

machinery must be available.

The purpose of this chapter is to introduce several algebraic constructions we have

developed to generate syntactic machinery from existing theories. In particular, we

introduce a construction for reifying the term algebra of a theory as an inductive data

type. We also discuss other potentially useful syntactic functions such as the length

function of syntactic expressions.

The starting point of the work presented in this chapter is Dr. O’Connor’s idea of

automatically deriving a term algebra from the structure of a 1-sorted theory. The

idea has been implemented in the current MathScheme implementation.

76



7. Theory Syntax Representation and Other Syntactic Machinery 77

7.1 Motivation

When defining a biform theory, we usually start with the axiomatic part because the

axiomatic part captures the essence of the mathematical concept we are trying to

formalize. Then, we may want to reason about the syntax within the theory and thus

define the syntactic machinery for it. Lots of syntactic machinery turns out to be

automatically generable from the axiomatic part.

To illustrate this, let us take a look at an example inspired by the example of

the theory of Bit initially introduced by Dr. Carette. Suppose we are defining the

theory of booleans. First, we define an inductive data type B with two elements true

and false . Then we define boolean functions such as conjunction, disjunction and

negation etc. :

Bool := Theory {
Induct ive B

| t r u e : B

| f a l s e : B

;

and : ( B, B) −> B ;

or : ( B, B) −> B ;

not : B −> B ;

. . .

}

Here we do not list the defining axioms for and, or and not etc. since they are not

relevant to our discussion.

The theory Bool above is purely axiomatic because it does not contain any trans-

formers. Now, we could add transformers that manipulate the syntax of boolean

expressions. Examples of syntactic boolean expressions are |ˆ true ˆ|, |ˆ false ˆ|,
|ˆnot(and( true,false )))ˆ| etc. ( |ˆˆ| is an MSL’s ASCII notation for quotation).

In particular, we could add a transformer called simplify that simplifies boolean

expressions while preserving their semantics:

Bool := Theory {
. . .

s i m p l i f y : Boo lExpr −> BoolExpr ;

}



78 7. Theory Syntax Representation and Other Syntactic Machinery

Associated with simplify is a program that implements the simplification algo-

rithm. For instance, simplify reduces not(and( true,false )))) to true.

Here, BoolExpr is the type of all syntactic boolean expressions that can be con-

structed. That means, |ˆ true ˆ|, |ˆ false ˆ|, |ˆnot(and( true,false )))ˆ| etc. are ele-

ments of BoolExpr.

So we need BoolExpr, the type of syntactic boolean expressions, in order to be

able to declare the simplify function. We would like to generate BoolExpr based on

the definition of Bool.

Furthermore, within the theory, we may also want to define statements about

simplify and reason about it. In particular, we want to express that simplify preserves

the semantics of input argument and the simplified expression is shorter than the input

expression.

This could be illustrated by the following extended version of Bool:

Bool := Theory {
Induct ive B

| t r u e : B

| f a l s e : B

;

and : ( B, B) −> B ;

or : ( B, B) −> B ;

not : B −> B ;

s i m p l i f y : Boo lExpr −> BoolExpr ;

l e n g t h : Boo lExpr −> Nat ;

axiom : f o r a l l e : Boo lExpr .

[ | e | ] B = [ | s i m p l i f y ( e ) | ] B ;

theorem : f o r a l l e : Boo lExpr .

l e n g t h ( s i m p l i f y ( e ) ) <= l e n g t h ( e ) ;

}

Here, we assume that there is a theory of naturals Nat with a total order ≤ defined

on it.

The specification of simplify requires the existence of a length function that cal-

culates the length of a given syntactic expression. Ideally, the user does not have

to define length but it is already predefined. length is another example of a useful



7. Theory Syntax Representation and Other Syntactic Machinery 79

syntactic function that can be potentially predefined as well as generated.

In short, for specifying and reasoning about transformers, we have to manually

define the type of syntactic expressions and other syntactic machinery. We aim to

reduce this burden by predefining and generating as much syntactic machinery as we

can from the information extracted from a theory.

7.2 Definition of the Term Algebra of a Theory

In the later sections, we will use the concept of the term algebra of a theory and

therefore define it in this section. First, we review the well-known notion of the term

algebra of a language. Then, we define the notion of the term algebra of a theory

from it.

Definition 7.2.1 (Term Algebra of a Language) Given a language L with a set

of constants and function symbols and a set of variables V , the term algebra (also

called Herbrand universe) of L over V is the set Term of all terms that can be con-

structed from L. Term can be defined by inductive definition as below:

(1) For each constant symbol c ∈ L, c ∈ Term.

(2) For each function symbol f ∈ L of arity n, f(t1, . . . , tn) ∈ Term where ti are

terms.

(3) Term contains only elements defined in (1) and (2).

Based on that, the following is the definition of the term algebra of a theory:

Definition 7.2.2 (Term Algebra of a Theory) Given a theory T = (L,Γ) in

which L contains only constant symbols and function symbols, the term algebra of T

is the term algebra of L.

Example 7.2.3 Suppose we have a theory T whose languages consist of a constant

symbol c and function symbol f :

T := Theory {
U : type ;

c : U ;

f : U −> U ;

}



80 7. Theory Syntax Representation and Other Syntactic Machinery

The term algebra of T consists of c, f(c), f(f(c)), f(f(f(c))), etc. �

We notice that the term algebra of a theory only depends on its language but not

on its axioms.

7.3 Syntax Framework

Discussing a system that directly supports syntactic reasoning tends to be very con-

fusing. The reason is that it is often very hard to recognize what belongs to semantics

and syntax. This motivated Dr. Farmer and Pouya Larjani to formulate the idea of

a syntax framework [12]. In this framework, semantic and syntactic constituents are

clearly distinguished. The goal of the framework is to provide a formal setting to

discuss systems with syntax reasoning support. In this section, we give a brief expla-

nation of the notion of a syntax framework. Then, we show how Chiron and MSL

can be regarded as a syntax framework. All formal definitions are taken directly from

[12].

7.3.1 Definition of a Syntax Framework

Let a formal language be a set of expressions each having a unique mathematically

precise syntactic structure.

Definition 7.3.1 (Interpreted Language) An interpreted language is a triple I =

(L,Dsem, Vsem) where:

• L is a formal language.

• Dsem is a nonempty domain (set) of semantic values.

• Vsem : L → Dsem is a total function, called a semantic valuation function, that

assigns each expression e ∈ L a semantic value Vsem(e) ∈ Dsem.

Intuitively, an interpreted language is a formal language with a function that maps

each expression to a semantic value.

Example 7.3.2 Let us consider the example of propositional logic. The triple (Prop,B, V )

is an interpreted language where:



7. Theory Syntax Representation and Other Syntactic Machinery 81

L Dsem

Vsem

Figure 7.1: An Interpreted Language

• Prop is the set of all propositions,

• B is the set of truth values, B = {T,F},

• V assigns each proposition a truth value defined by inductive definition on the

structure of Prop at a given assignment σ of propositional variables to truth

values,

Figure 7.1 graphically depicts an interpreted language. �

Definition 7.3.3 (Syntax Representation) Let L be a formal language. A syntax

representation of L is a pair R = (Dsyn, Vsyn) where:

• Dsyn is a nonempty domain (set) of syntactic values. Each member of Dsyn

represents a syntactic structure.

• Vsyn : L → Dsyn is an injective total function, called a syntactic valuation

function, that assigns each expression e ∈ L a syntactic value Vsyn(e) ∈ Dsyn

such that Vsyn(e) represents the syntactic structure of e.

Figure 7.2 graphically depicts a syntax representation.

Intuitively, a syntax representation of a formal language assigns to each expression

of the language a syntactic meaning. Unlike the semantic meaning of an expression



82 7. Theory Syntax Representation and Other Syntactic Machinery

L

Dsyn

Vsyn

Figure 7.2: A Syntax Representation

which represents the value the expression denotes, the syntactic meaning of an ex-

pression represents the structure of the expression.

Hence, an expression may have two meanings:

• The semantic meaning which is the value the expression denotes.

• The syntactic meaning which is the structure of the expression.

In the example of propositional logic, the most straightforward way to represent

the syntactic structure of propositions is to use strings. In particular, the pair R =

(String, toString) is a syntax representation of Prop where:

• String is the set of all strings.

• toString : Prop→ String maps a proposition to the string representing it, e.g. it

maps the proposition T ∧ T to “T ∧ T”.

We can also have other syntax representions for Prop. A more structured way

is to represent the structure of propositions is to use parse trees. The pair R =

(PropParseTree, parse) is also a syntax representation of Prop where:

• PropParseTree is the set of parse trees that can be constructed from the grammar

of propositions.

• parse : Prop→ PropParseTree maps a proposition to the parse tree representing

its structure.



7. Theory Syntax Representation and Other Syntactic Machinery 83

L

Lobj

Lsyn

Dsem

Dsyn

Vsem

Vsyn

V ′sem

Figure 7.3: A Syntax Language

It is worth mentioning that as opposed to the semantic function Vsem defined in

interpreted language, the syntactic valuation function Vsyn needs to be injective. The

reason is that two syntactically different expressions may denote the same semantic

value but have different syntactic values. For instance, both propositions T ∨ F and

F ∨ T denote T , i.e. have the same semantic value Vsem(T ∨ F ) = Vsem(F ∨ T ) = T .

However, syntactically, they are not the same, i.e. they have different syntactic values.

If we were using strings to denote syntactic values of propositions, then Vsem(T ∨F ) =

“T ∨ F” 6= Vsem(F ∨ T ) = “F ∨ T”. Similarly, if we were using parse trees, then the

parse tree of T ∨ F is different from the parse tree of F ∨ T .

Definition 7.3.4 (Syntax Language) Let R = (Dsyn,Vsyn) be a syntax representa-

tion of a formal language Lobj. A syntax language for R is a pair (Lsyn, I) where:

• I = (L,Dsem, Vsem) is an interpreted language.

• Lobj ⊆ L,Lsyn ⊆ L and Dsyn ⊆ Dsem.

• Vsem restricted to Lsyn is a total function V ′sem : Lsyn → Dsyn.

Figure 7.3 graphically depicts a syntax language.

Finally, the following is the definition of a syntax framework:

Definition 7.3.5 (Syntax Framework) Let I = (L,Dsem, Vsem) be an interpreted

language and Lobj be a sublanguage of L. A syntax framework for (Lobj, I) is a tuple

F = (Dsyn, Vsyn, Lsyn, Q,E) where:



84 7. Theory Syntax Representation and Other Syntactic Machinery

L

Lobj

Lsyn

Dsem

Dsyn

Vsem

Vsyn

V ′sem

Q

E

Figure 7.4: A Syntax Framework

(1) R = (Dsyn, Vsyn) is a syntax representation of Lobj.

(2) (Lsyn, I) is syntax language for R.

(3) Q : Lobj → Lsyn is an injective, total function, called a quotation function, such

that:

Quotation Axiom. For all e ∈ Lobj,

Vsem(Q(e)) = Vsyn(e).

(4) E : Lsyn → Lobj is a (possibly partial) function, called an evaluation function,

such that:

Evaluation Axiom. For all e ∈ Lsyn,

Vsem(E(e)) = Vsem(V −1
syn (Vsem(e)))

whenever E(e) is defined. �

In Figure 7.3, Lsyn is the language representing the syntactic structure of the

expressions in Lobj. The quotation function Q maps an expression in Lobj to its

syntactic structure in Lsyn. Conversely, the evaluation function E maps a syntactic

structure in Lsyn to an expression in Lobj representing the value that the structure

denotes.



7. Theory Syntax Representation and Other Syntactic Machinery 85

7.3.2 Chiron as a Syntax Framework

The paper [12] shows how Chiron can be regarded as a syntax framework as follows:

Let L be a language of Chiron, EL be the set of expressions in L, M be a standard

model for L, DM be the set of values in M , V be the valuation function in M , and ϕ

be an assignment into M . Then I = (EL, DM , Vϕ) is an interpreted language.

DM includes certain sets called constructions that are isomorphic to the syntactic

structures of the expressions in EL. H is a function in M that maps each expression

in EL to a construction representing it. Let Dsyn be the range of H and T syn be the

set of terms a such that Vϕ(a) ∈ Dsyn. For e ∈ EL, define Q(e) = (quote, e). For

a ∈ T syn, define E(a) as follows:

(1) If Vϕ(a) is a construction that represents a type and H−1(Vϕ(a)) is eval-free,

then E(a) = (eval, a, type).

(2) If Vϕ(a) is a construction that represents a term, H−1(Vϕ(a)) is eval-free, and

Vϕ(H−1(Vϕ(a))) 6= ⊥, then E(a) = (eval, a,C).

(3) If Vϕ(a) is a construction that represents a formula and H−1(Vϕ(a)) is eval-free,

then E(a) = (eval, a, formula).

(4) Otherwise, E(a) is undefined.

Then F = (Dsyn, H, T syn, Q,E) is a syntax framework for (EL, I). This is graphi-

cally depicted in Figure 7.5.

As depicted in Figure 7.5, in Chiron, the object language Lobj is identified with

the language L.

7.3.3 The MathScheme Language as a Syntax Framework

Let LMSL be the set of expressions of MSL. Furthermore, let T : LMSL → εL be the

translation function that translates each MSL expression into a Chiron expression.

This is graphically shown in Figure 7.6. If we translate all MSL expressions into

Chiron, working in MSL is the same as working in Chiron.



86 7. Theory Syntax Representation and Other Syntactic Machinery

εL

τsyn

DM

Dsyn

Vϕ

H

H ′

Q
E

Figure 7.5: Chiron As A Syntax Framework

LMSL εL

τsyn
DM

Dsyn

T Vϕ
H

H ′

Q
E

Figure 7.6: MathScheme Language As A Syntax Framework



7. Theory Syntax Representation and Other Syntactic Machinery 87

LMSL

LT

LQ

Dsem

Dsyn

Vsem

Vsyn

V ′sem

Figure 7.7: Theories in the MathScheme Language

7.4 Reification of the Term Algebra of a Theory

as an Inductive Data Type

Let T be a theory formalized in MSL. The concepts of T induce a set of expressions

LT that can be constructed from them which is precisely the term algebra of T .

We call the set of all quotations of expressions in LT LQ, the quotations set of T .

Furthermore, the set Dsyn contains all constructions representing expressions of the

term algebra LT . Figure 7.7 graphically illustrates this.

For example, if T is the theory of Bool above, then:

• The term algebra LT contains true, false , and( true,false ),

and(not(true),or( false,true )) etc.

• The quotations set LQ contains |ˆ true ˆ|, |ˆ false ˆ|, |ˆand( true,false )ˆ| ,
|ˆand(not(true),or( false,true ))ˆ| etc.

It is obvious that if a new theory T ′ is defined as a theory extension of T by adding

more concepts, then LT and LQ are subsets of L′T and L′Q, respectively where L′T and

L′Q are the term algebra and the quotations set of T ′.

Both the term algebra LT and the quotations set LQ are expressed in the meta-

language of MSL. Moreover, they are isomorphic. Technically, we can reason about

the syntactic expressions of T using the quotations in LQ. However, both LT and



88 7. Theory Syntax Representation and Other Syntactic Machinery

LQ themselves are concepts of the meta-language and cannot be used while reasoning

inside MSL.

We can obtain the type of expressions of T by reifying its term algebra LT . The

Reification of LT is identical to representing Dsyn on the syntactic level. Dr. O’Connor

initially introduced the idea of reifying the term algebra of a 1-sorted theory as an

inductive data type. Using the analysis illustrated in Figure 7.7, his idea corresponds

to reifying LT as an inductive data type.

The biggest advantage of reifying LT as an inductive data type is that an inductive

data type is well-structured, as opposed to (say) strings.

The reification algorithm for a 1-sorted theory is simple and can be described as

follows:

• Each constant c of the theory becomes an 0-ary data constructor of the inductive

data type.

• Each function of arity n (n > 0) becomes an n-ary data constructor of the

inductive data type.

Example 7.4.1 The term algebra of Bool above, when reified, becomes the following

inductive data type:

BoolTerm = data X .

| t r u e : X

| f a l s e : X

| and : ( X,X ) −> X

| or : ( X,X ) −> X

| not : X −> X

�

7.4.1 Linking the Reified Term Algebra with the

Quotations Set

We see that the term algebra LT and the quotations set LQ of a theory are isomorphic

but separate sets. Even though the reified inductive data type of the term algebra

does capture the term algebra of the theory, it does not represent the quotation

sets. Reasoning about the elements of the reified term algebra is not reasoning about



7. Theory Syntax Representation and Other Syntactic Machinery 89

quotations. Consequently, we need to connect the elements of the inductive data type

representing the term algebra LT and the elements of the quotations set LQ.

One pragmatic way of doing this is to have a transformer that converts an element

of the reified inductive data type into the corresponding quotation. The implemen-

tation of this transformer is straightforward because we only need to traverse the

structure of an input element of the inductive data type and recursively convert it

into a quotation. In the example of Bool, the transformer would return |ˆ true ˆ| for

true of BoolTerm and |ˆand( true,false )ˆ| for and( true,false ) of BoolTerm.

7.4.2 The Term Algebra of a Multi-sorted Theory

The construction for reifying the term algebra of a theory as an inductive data type

discussed previously only works for 1-sorted theories. However, the construction can

be easily extended to multi-sorted theories.

Before introducing the reification algorithm, we take a look at the example of how

we can reify the term algebras of the two-sorted theory of a vector space (see Chapter

5 for the definition of a vector space in MSL). The term algebra for the field part can

be reified as the following inductive data type:

type Fie ldTerm =

data X . | + : ( X, X) −> X

| ∗ : ( X,X ) −> X

| − : X −> X

| / : X −> X

| 0 : X

| 1 : X

However, besides the field, syntactic expressions of the vector space can be built up

from vectors as well. Moreover, vectors can built up not only from other vectors but

also from field and vector elements as witnessed by ∗V . Here, ∗V takes a field element

and a vector element and returns a vector element. That means, the inductive data

type of the term algebra of vectors depends on the definition of the term algebra of

fields.

We can reify the term algebra of vectors as the following inductive data type:

type VectorTerm =

data Y . | +V : ( Y, Y) −> Y



90 7. Theory Syntax Representation and Other Syntactic Machinery

| ∗V : ( F i e l d T e r m , Y) −> Y

| 0V : Y

| −V : Y −> Y

Here, the definition of VectorTerm depends on the definition of FieldTerm.

In general, suppose we want to generate the term algebras from an n-sorted theory

T with n ≥ 1 carrier sets C1, . . . , Cn. The algorithm for reifiying the term algebras

of T is the following:

• For each carrier set Ci, create an inductive data type CiTerm with bound

variable Xi.

• For each constant of type Ci of T , add a 0-ary to CiTerm.

• For each n-ary function of T whose return type is Ci, add an n-ary data con-

structor to CiTerm. Moreover, for each parameter of the function, if its type is

Cj, the corresponding parameter type of the data constructor is Xj. Otherwise

if it is Ck where k 6= j, the parameter type is CkTerm.

Occasionally, it may happen that we are only interested in term algebras of a

certain subset of carrier sets, especially when the theory has a lot of carrier sets. We

modify the algorithm above so that it is possible to specify the carrier sets for which

the term algebras should be reified.

Suppose we want to generate the term algebras from an n-sorted theory T with

n ≥ 1 carrier sets C = C1, . . . , Cn. The algorithm for reifiying the term algebras of T

for the carrier sets S = {S1, . . . , Sl} ⊆ C is the following:

• For each carrier set Ci in S , create an inductive data type CiTerm with bound

variable Xi.

• For each constant of type Ci of T , add an 0-ary to CiTerm.

• For each n-ary function of T whose return type is Ci and whose the types of all

parameters are in S, add an n-ary data constructor to CiTerm. Moreover, for

each parameter of the function, if its type is Cj, the corresponding parameter

type of the data constructor is Xj. Otherwise if it is Ck where k 6= j, the

parameter type is CkTerm.

Example 7.4.2 Suppose we reify the term algebra of VectorSpace for only the carrier

set V , the inductive data type is as follows:



7. Theory Syntax Representation and Other Syntactic Machinery 91

type VectorTerm =

data Y . | +V : ( Y, Y) −> Y

| 0V : Y

| −V : Y −> Y

Here, the data constructor ∗V : (FieldTerm, Y) −> Y is not included because the

signature of the original function ∗V : (F, V) −> V contains F which is not in the

set of carrier sets we are interested in. �

7.4.3 Implementation

In Dr. O’Connor’s implementation, a term algebra builder called & takes a 1-sorted

theory as input and returns an inductive data type representing the term algebra of

the theory.

For instance, Bool is expanded to:

type BoolTerm = data X .

| t r u e : X

| f a l s e : X

| and : ( X,X ) −> X

| or : ( X,X ) −> X

| not : X −> X

Due to time limit, the reification algorithm for multi-sorted theories has not been

implemented. The following gives several suggestion for future implementation:

• The term algebra builder & should be changed to TermAlgebraFrom to be more

suggestive. TermAlgebraFrom should take as input a theory T as well as the

carrier sets of T whose term algebras we would like to reify.

• The result of TermAlgebraFrom is a set of inductive data types, each of which

represents the term algebra of the theory over each input carrier set specified

as parameter of TermAlgebraFrom.

7.5 Useful Syntactic Functions

As we said before, the good thing about capturing the term algebra in an inductive

data type is that an inductive data type is very well-structured. That allows us to

easily define functions that are useful for reasoning about the syntax of expressions.



92 7. Theory Syntax Representation and Other Syntactic Machinery

Length of syntactic expressions is a representative example of a useful tool for

reasoning about syntax. We would like to have a length function that takes any

term algebra in the form of an inductive data type and returns a natural number

representing length of the input.

We know that it is possible to define the length function on any inductive data type

recursively based on the data constructors. Concretely, the length function defined

on an inductive data type can be systematically defined by pattern matching on each

data constructor of the inductive data type:

• length of a constant is 1.

• length of an n-ary data constructor f(e1, . . . , en) = 1 + length(e1) + . . . +

length(en).

It is interesting to remark that in the world of functional programming, length is

a catamorphism [21] for the inductive data type.

Example 7.5.1 The length function for BoolTerm can be defined as below:

BoolExt := Bool extended by {
type BoolTerm = TermAlgebraFrom ( Bool ) ;

s i m p l i f y : BoolTerm −> BoolTerm ;

l e n g t h : BoolTerm −> Nat ;

l e n g t h x = case x of {
| t r u e −> 1

| f a l s e −> 1

| and ( y z ) −> 1 + l e n g t h y + l e n g t h z

| or ( y z ) −> 1 + l e n g t h y + l e n g t h z

| not y −> 1 + l e n g t h y

}
axiom : f o r a l l e : BoolTerm .

[ | e | ] B = [ | s i m p l i f y ( e ) | ] B ;

theorem : f o r a l l e : BoolTerm .

l e n g t h ( s i m p l i f y ( e ) ) <= l e n g t h ( e ) ;

}

�

In the future, other useful syntactic functions should be identified and generated.

The example of length may serve as guidance for this purpose.



7. Theory Syntax Representation and Other Syntactic Machinery 93

7.6 Theory of Syntax

We have seen so far that, lots of useful syntactic machinery can be generated which

significantly reduces the burden on the user. That would be very nice if we could

define all this machinery in a global theory of syntax. This way, whenever we want to

reason about syntax, we simply use this theory of syntax. Since term algebra is reified

as inductive data type, it would be reasonable to define a theory of an inductive data

type that contains knowledge and reasoning about inductive data types. These can

be reused within the context of the theory of syntax. However, this is outside of the

scope of this thesis.



CHAPTER 8

CONCLUSION AND FUTURE WORK

The thesis explains the major techniques for constructing the MathScheme Library.

Moreover, the thesis discusses several algebraic constructions we have developed for

leveraging the information from existing theories to generate new useful machinery.

In particular, we have shown how to reify a theory as a dependent record type and

a theory interpretation as a dependent record. We have also explained a method for

generating a theory of a homomorphism (as well as epimorphism, monomorphism,

isomorphism) and a theory of a substructure from an input theory. Finally, we have

shown the technique for reifying the term algebra of a theory as an inductive data type

as well as other useful syntactic machinery such as the length function of expressions.

Defining algebraic constructions that can automatically generate new information

for the library of formalized mathematics from existing theories is a very powerful

idea. That way, we can maximally reuse information to alleviate the burden on the

user of having to manually defining various machinery. The developed constructions

described in this thesis show the feasibility of the idea and and are ready to be

implemented in the MathScheme Library.

Based on the work of this thesis, the following work could be done in the future:

• Since the MathScheme Project shifted from a focus in theories to a focus in

theory morphisms, the current MathScheme implementation needs to be over-

hauled to support theory morphisms. Especially, the MathScheme implementa-

tion should support the theory morphism’s operations introduced in Chapter 2.

94



8. Conclusion and Future Work 95

• With the exception of reification of theories as dependent record types, other

generation methods described in this thesis have not been implemented yet.

They need to be implemented as soon as the MathScheme implementation fully

supports theory morphisms.

• We should figure out more useful machinery that can potentially be automati-

cally generated and develop techniques for generating it. The methods described

here could serve as model for that purpose.



ACKNOWLEDGMENTS

It is an honor for me to express my gratitude to the people who have directly or

indirectly helped and supported me through my research as well as made my time

being a graduate student one of the best experiences of my life.

First and foremost, I owe my deepest gratitude to my supervisor, Dr. William M.

Farmer, for guiding me through my research and academic life with great competency

and patience. I could not wish for a better or friendlier supervisor. Thanks a lot for

everything, Bill!

I have been greatly aided by Dr. Jacques Carette and post-doctoral researcher

Dr. Russell O’Connor, team members of the MathScheme Project, while working on

my research topic. Without Dr. Carette and Dr. O’Connor’s explanations of the

MathScheme Library and MathScheme implementation as well as lots of creative

ideas in many MathScheme meetings and email exchanges, this thesis would not have

been completed. Thus, I would like to offer my sincerest thank for their support.

I am deeply grateful to Dr. William M. Farmer, Dr. Wolfram Kahl, Dr. Ridha

Khedri and Dr. Jeffery Zucker for their superb graduate courses that helped me im-

prove my understanding of computer science and complete this thesis. My supervisor’s

CAS760 course on “Logics for Practical Use” provided the background knowledge for

understanding various applications of formal logics and the MathScheme project. In

particular, Chapter 2 would have not been completed without the knowledge from

the course. Dr. Kahl’s CAS743 course on “Functional Programming” and CAS706

“Programming Languages” were particularly helpful for me to understand functional

programming and the semantics of programming languages. Dr. Khedri’s CAS707

96



8. Conclusion and Future Work 97

course had a part about model theory whose knowledge was helpful for me to com-

plete Chapter 5 and Chapter 6. Dr. Zucker’s CAS701 course on “Logic and Discrete

Mathematics in Software Engineering” and reading course on the “Theory of Com-

putability’ provided me with the background to understand more advanced topics’.

Many friends have made my graduate life an unforgettable experience. Notably,

friends from The Philosophy of Computer Science study group: Gordon J.Uszkay,

Marc Bender, Pouya Larjani and Valentin Cassano. Our formal discussions on com-

puter science in the meetings and informal discussions in the Phoenix afterward have

always been a lot of fun. Marc has really inspired me with his passion for computer

science. Thanks to Gordon for sharing his experience of computer science, life and

Canadian culture. He has been a very inspirational person. I also greatly enjoyed

going to the gym with Akbar Abdiraxmanov, Husam Ibrahim, and Pouya Larjani.

I would like to show my gratitude to Dr. Peter Fleischer, Dr. Bernhard Hollun-

der, Dr. Friedbert Kaspar, Dr. Berthold Laschinger, Mrs. Brigitte Minderlein from

Furtwangen University in Germany for kindly recommending me to the McMaster

graduate school.

My final thanks goes to my loving family including my parents and sister back in

Vietnam. Thanks to my sister for being such a great sister. Thanks to mom for her

love and for teaching me how important education is. Thanks to dad for inspiring me

to study abroad and teaching me “a+b=b+a” while I was still in kindergarten. Now,

I could express your teaching in a slightly more formal way: “+ is commutative”.



APPENDIX : MATHSCHEME

LANGUAGE

MathScheme Language (MSL) is an exceedingly rich high-level specification language

built on top of Chiron for specifying and relating biform theories. As the time of this

writing, MSL is continuously being extended, modified and improved. Nevertheless,

its core features are pretty stable. This appendix explains the language features of

MSL.

H.1 Conventions

In explaining MSL, the following conventions will be used:

H.1.1 Terminals

Terminals are enclosed in quotation mark, e.g. ”0”, ”A”.

H.1.2 Nonterminals

A nonterminal is written in lower case, e.g. <expr>.

H.1.3 Options

An option is represented through square brackets, e.g. [ ].

98



H. Appendix : MathScheme Language 99

H.1.4 Alternatives

Alternatives are expressed by a vertical |, e.g. (< letter> | <digit>).

H.1.5 Repetitions

There are two kinds of repetitions. A repetition that must occur at least once is

represented by ∗, e.g. <digit>∗. A repetition that may not occur is represented by

+, e.g. <digit>+.

H.1.6 Comments

Comments are put between (@∗ This is a comment ∗@)

H.1.7 Identifiers and Operators

Identifiers are used to name various kinds of concepts in MSL such as theory names,

variable names etc. Operators are usual mathematical operators such as +,− etc.

<oper> : := <symbol>+{<d i g i t >}
< i d e n t> : := (< l e t t e r > | <d i g i t > | #)

(< l e t t e r > | <d i g i t > | <symbol>)∗
< l e t t e r > : := a . . z | A . . Z

<d i g i t > : := 0 . . 9

<symbol> : := + | ∗ | < | > | ˆ | / | \ | # |
| @ | − | ˜ | \ | =

H.2 Expression

<expr> : := <expr> and <expr>

| <expr> or <expr>

| <expr> imp l ies <expr>

| not <expr>

| < r e l a t i o n e x p r >

| <expr> in < f u l l t y p e >

| <q u a n t i f i e r >



100 H. Appendix : MathScheme Language

| <atom>

| <a p p l i c a t i o n e x p r >

| <o p e r e x p r>

| <expr> . < i d e n t>

| lambda <v a r s p e c> . <expr>

| case <expr> of <c a s e s>

| i f ( <expr> , <expr> , <expr> )

< r e l a t i o n e x p r > : := <expr> = <expr>

<a p p l i c a t i o n e x p r > : := atom atom

| a p p l i c a t i o n e x p r atom

<v a r s p e c> : := < i d e n t l i s t > : < f u l l t y p e >

Expressions are either terms or formulas. However, MSL’s grammar does not

differentiate between them. In particular, an expression is one of the following con-

structs:

• A conjunction of two formulas.

• A disjunction of two formulas.

• A negation of a formula.

• An equality of two expressions.

• A membership relationship of an expression in a type.

• A quantifier.

• An atom.

• A function application.

• An operator expression.

• A lambda abstraction.

• A case expression.

• An if-conditional expression.



H. Appendix : MathScheme Language 101

A formula can be formed using the usual logical operators: conjunction ∧, dis-

junction ∨, negation ¬. Equality checking of two expressions, e.g. e1 = e2, and the

membership checking, e.g. 0 in nat, are also formulas.

Moreover, MSL provides support for universal quantifier ∀ and existential quan-

tifier ∃. The production rule for quantifiers is as below:

<q u a n t i f i e r > : := < f o r a l l e x p r >

| <e x i s t s e x p r >

< f o r a l l e x p r > : := f o r a l l <v a r s p e c> . <expr>

<e x i s t s e x p r ) : := ex i s t s <v a r s p e c> . <expr>

| ex i s t s ! <v a r s p e c> . <expr>

Beside the standard existential quantifier, there is also a unique existential quan-

tifier exists !. This can be used to write such statements as “there exists a unique x

such that...”.

H.2.1 Term

With the exception of atoms that can be either formulas or terms, function appli-

cations, operator expressions, constructor selectors, lambda abstraction, case expres-

sions and if-conditional expressions are terms.

The following sections describe them.

H.2.2 Atom

<atom> : := < i d e n t>

| ( <oper> )

| <p s t r i c t e x p r l i s t >

| b r e c o r d l i s t

| [# < f u l l t y p e > #] . < i d e n t>

| ( <expr> )

| | <expr> |
| |ˆ <expr> ˆ |
| [ [ <expr> ] ] < f u l l t y p e >

An atom is a formula or a term. It can be either one of the following constructs:

• An identifier.



102 H. Appendix : MathScheme Language

• An operator.

• A tuple.

• A record.

• A constructor selector of an inductive data type.

• A bracketed expression.

• A marked expression.

• Quotation.

• Term evaluation (to a certain type).

H.2.3 Identifier

An atom can be denoted by an identifier.

H.2.4 Operator

A bracketed operator name is an atom. For instance, (>).

H.2.5 Tuple

<atom> : :=

| . . .

| <p s t r i c t e x p r l i s t >

| . . .

<p s t r i c t e x p r l i s t > : := ( <expr> , <e x p r l i s t > )

<e x p r l i s t > : := <expr>

| <expr> , <e x p r l i s t >

A tuple is an itom. It has two or more expressions. For instance, (e1, e2, e3) is a

3-tuple.

H.2.6 Record



H. Appendix : MathScheme Language 103

<atom> : :=

| . . .

| <b r e c o r d l i s t >

| . . .

<b r e c o r d l i s t > : := { [ r e c o r d l i s t ] }
< r e c o r d l i s t > : := < i d e n t> = <expr>

| <oper> = <expr>

| < i d e n t> = <expr> , < r e c o r d l i s t >

| <oper> = <expr> , < r e c o r d l i s t >

A record is an atom. Each record is an instance of the record type and denoted by

a (possibily empty) list of labeled expressions. For instance, {r = 5.0,imag = 2.0}.

H.2.7 Constructor Selector

A constructor selector is an atom. It selects one of the data constructors defined in an

inductive data type. For instance, Suppose we have an inductive data type of Peano

Arithmetic

data X . | z e r o : X | suc : X −> X

Then

[ data X . | z e r o : X | suc : X −> X ] . suc

will return the suc data constructor.

H.2.8 Bracketed Expression

An expression enclosed by brackets is an atom. For instance, ( e ).

H.2.9 Marked Expression

A marked expression an atom. It is used in conjunction with quasiquotation to

represent an expression within a quotation that should be evaluated. For instance,

df (b2 + 3c)e evaluates to df 5e.

H.2.10 Quotation

A quotation is an atom. For instance, given 0 : nat, |ˆ 0 ˆ| denotes the syntactic

expression that, when evaluated, denotes the natural number 0.



104 H. Appendix : MathScheme Language

H.2.11 Term evaluation

A term evaluation is an atom. Term evaluation evaluates a syntactic expression to

a term of a certain type. For instance, [[ |ˆ 0 ˆ| ]] nat evaluates to the natural

number 0.

H.2.12 Function Application

<expr> : :=

| . . .

| <a p p l i c a t i o n e x p r >

| . . .

<a p p l i c a t i o n e x p r > : := atom atom

| a p p l i c a t i o n e x p r atom

A function application is a term. It is the application of a function to some arguments.

For instance, f x, f (x − y) z are function applications.

H.2.13 Operator Expressions

<expr> : :=

| . . .

| <o p e r e x p r>

| . . .

<o p e r e x p r> : := <expr> i n l i n e o p e r <atom>

< i n l i n e o p e r > : := <oper>

| < i o p e r>

< i o p e r> : := ‘ ( symbol | g o o d c h a r s )+

An operator expression is a term and is defined by the production rule oper expr. It

represents an expression constructed by applying operators written in infix format.

For instance, e ∗ x is an operator expression.

H.2.14 Function Abstraction

<expr> : :=

| . . .

| lambda <v a r s p e c> . <expr>



H. Appendix : MathScheme Language 105

| . . .

A function abstraction is a term. It is defined using lambda abstraction as usual in

lambda calculus. For instance, lambda x : Nat. 2∗x.

H.2.15 Case Expression

<expr> : :=

| . . .

| case <expr> of <c a s e s>

| . . .

<c a s e s> : := { [ c a s e l i s t ] }
<c a s e l i s t > : := <case>

| case <c a s e l i s t >

<case> : := \ | <p a t t e r n> −> <expr>

<p a t t e r n> : := <b a s e p a t>

| ( <p a t t e r n> )

| <p a t t e r n> <p a t t e r n>

| ( <p a t t e r n> , <p a t t e r n l i s t > )

| {}
| { <p a t r e c o r d l i s t > }

<b a s e p a t> : := < i d e n t>

| <oper>

|
<p a t r e c o r d l i s t > : := < i d e n t> = <p a t t e r n>

| <oper> = <p a t t e r n>

| < i d e n t> = p a t t e r n , <p a t r e c o r d l i s t >

| <oper> = p a t t e r n , <p a t r e c o r d l i s t >

A case expression is a term. Case expressions in MSL are syntactically and seman-

tically almost identical to those in OCaml. A case expression matches an expression

with a list of cases.

Each case is of the form pattern −> expression. If the pattern is matched, the

result of the entire case expression is the expression following the arrow.

A pattern can be:

• A base pattern that is either an identifier or an operator name.

• A bracketed pattern.



106 H. Appendix : MathScheme Language

• A function application pattern, e.g. suc 0.

• A tuple pattern, e.g. (e1, e2).

• An empty record pattern {}.

• A non-empty record pattern. For instance, {r = r1, img = r2}.

H.2.16 Definite And Indefinite Description

<atom> : :=

| . . .

| <q u a n t i f i e r >

| . . .

<q u a n t i f i e r > : :=

| . . .

| < i o t a e x p r >

| <e p s i l o n e x p r >

< i o t a e x p r > : := i o t a < i d e n t> : < f u l l t y p e > . <expr>

<e p s i l o n e x p r > : := e p s i l o n < i d e n t> : < f u l l t y p e > . <expr>

A definite description is a term and is defined by the production rule iota expr . It

denotes the unique element that satisfies a condition. For instance, iota x : R . x3 =

−27 denotes the unique real number x such that x3 = −27 which is −3.

An indefinite description is a term and is defined by the production rule epsilon .

It denotes some element that satisfies a condition. For instance, iotax : R . x2 = 4

denotes some real number x such that x2 = 4 which can be either 2 or −2.

H.3 Type Expression

< f u l l t y p e > : := type

| < f u l l t y p e > −> < f u l l t y p e >

| ( < i d e n t> : < f u l l t y p e > )

| <typeapp>

| type plus ( <t p l u s> )

| { < r e c o r d f i e l d l i s t > }
| ( < f u l l t y p e > )

| ( <t y p e s e q 1> )



H. Appendix : MathScheme Language 107

| ( data < i d e n t> . <t y p e s p e c> )

| power < i d e n t>

| power ( < f u l l t y p e > )

| & < i d e n t>

Currently, a type expression is one of the following constructs:

• The word type.

• A function type.

• A dependent function type.

• A type application.

• A sum type.

• A record type.

• A tuple type.

• An inductive data type.

• A power type.

• A type of term algebra of a theory.

It is worth noting that if we want to introduce a new type expression construct,

such as TypeFrom (Chapter 4), it will be first introduced here.

H.3.1 Function Type

< f u l l t y p e > : := . . .

| < f u l l t y p e > −> < f u l l t y p e >

| . . .

A function type is a type expression and is denoted by the arrow→ as usual. For

instance, nat −> nat is a function type from naturals to naturals.

H.3.2 Dependent Function Type



108 H. Appendix : MathScheme Language

< f u l l t y p e > : := . . .

| ( < i d e n t> : < f u l l t y p e > )

| . . .

A dependent function type
∧
x : α.β is a type expression. It is a generalization of

function types described above. In the normal function type α→ β, β is independent

of α. On the other hand, in a dependent function type
∧
x : α.β, β may depend on

x, i.e x may occur freely in β.

For instance, in the the following code, (n : Array (n)) is a dependent functon

type. It takes a natural number n and returns the type of arrays of length n.

Nat : type ;

A r r a y : Nat −> type ;

a1 : ( n : A r r a y ( n ) ) ;

H.3.3 Type Applications

< f u l l t y p e > : := . . .

| <typeapp>

| . . .

<typeapp> : := < i d e n t>

| <oper>

| l i f t <atom>

| < i d e n t> < f u l l t y p e >

A type application is a type expression. lift <atom>+ lift what the parser oth-

erwise considers to be an expression to instead be interpreted as a type, e.g. operator

names. Moreover, complete expressions can be entered as types as well.

H.3.4 Sum Type

< f u l l t y p e > : := . . .

| type plus ( <t p l u s> )

| . . .

<t p l u s> : := < f u l l t y p e >

| < f u l l t y p e > , <t p l u s>

A sum type is a type expression. type plus takes one or more types and creates a

sum type from them. It corresponds to disjoint unions in mathematics and the | in



H. Appendix : MathScheme Language 109

OCaml. For instance, in the example below, type plus ( Nat, Real ) is a sum type

of Nat and Real.

n : type plus ( Nat , R e a l )

H.3.5 Record Type

< f u l l t y p e > : := . . .

| { < r e c o r d f i e l d l i s t > }
| . . .

< r e c o r d f i e l d l i s t > : := < f i e l d s i g >

| < f i e l d s i g > , < r e c o r d f i e l d l i s t >

< f i e l d s i g > : := < i d e n t> : < f u l l t y p e >

A record type is a type expression and is defined by a list of record fields enclosed

in curly brackets. For instance, {r : R, img : R} is a record type.

H.3.6 Tuple Type

< f u l l t y p e > : : | . . .

| ( <t y p e s e q 1> )

| . . .

<t y p e s e q 1> : := < f u l l t y p e > , <t y p e s e q 0>

<t y p e s e q 0> : := < f u l l t y p e >

| < f u l l t y p e > , <t y p e s e q 0>

A tuple type is a type expression and defined by a list of types enclosed in brackets.

There are at least two types in that list. For instance, (nat, nat, nat) is a 3-tuple of

naturals.

H.3.7 Inductive Data Type

< f u l l t y p e > : := | . . .

| ( data < i d e n t> . <t y p e s p e c> )

| . . .

<t y p e s p e c> : := | < f i e l d s i g >

| < f i e l d s i g > \ | <t y p e s p e c>

< f i e l d s i g > : := < i d e n t> : < f u l l t y p e >



110 H. Appendix : MathScheme Language

An inductive data type is a type expression. It consists of a bound variable and a

list of data constructors. For instance, data X . 0 : X | suc : X −> X is an inductive

data type of Peano Arithmetic. in detail.

H.3.8 Power Type

< f u l l t y p e > : : | . . .

| power < i d e n t>

| power ( < f u l l t y p e > )

| . . .

A power type is a type expression. A power type of a type t is the type whose elements

are subtypes of t. For instance, power R is the power type of R whose elements are

subtypes of R.

H.3.9 Type of Term Algebras of a Theory

< f u l l t y p e > : : | . . .

| & < i d e n t>

| . . .

A type of term algebra of a biform theory is a type expression. In the current

implementation, & is a term algebra builder. It takes a biform theory as input

and creates an inductive data type containing all syntactic expressions that can be

constructed using the constants and functions from the input biform theory. For

instance, &Nat.

H.4 Concepts

<c o n c e p t d e c l a r a t i o n > : :=

(Concept | concept | Concepts | concepts ) < t i d e n t l i s t >;

< t i d e n t l i s t > : := t i d e n t

| t i d e n t < t i d e n t l i s t >

<t i d e n t> : := < i d e n t l i s t > : f u l l t y p e

| ( < i d e n t> ) : f u l l t y p e

< i d e n t l i s t > : := < i d e n t>

| < i d e n t> < i d e n t l i s t >

Concepts are used to represent mathematical concepts in a biform theory. A

concept can be a list of types, functions of declared types or constants of declared



H. Appendix : MathScheme Language 111

types etc. For instance, in the theory of a group, the carrier set G, the binary operator

∗, the neutral element e and the inverse function inv should be defined as concepts:

Group := Theory {
Concepts

G : type ;

∗ : ( G, G) −> G ;

e : G ;

i n v : G −> G ;

. . .

}

H.5 Facts

< s i n g l e f a c t l i s t > : := < s i n g l e f a c t > ;

| < s i n g l e f a c t > ; < s i n g l e f a c t l i s t >

< s i n g l e f a c t > : := axiom < i d e n t> := <expr>

| axiom <expr>

| axiom : <expr>

| axiom < i d e n t> : <expr>

| theorem < i d e n t> := <expr>

| theorem <expr>

| theorem : <expr>

| theorem < i d e n t> : <expr>

A fact is either an axiom or a theorem being a logical statement over the concepts

declared within the same biform theory. For instance, the three group axioms: ∗ is

associative, e is the neutral element and inv is the inverse can be defined as facts of

Group as follows:

Group := Theory {
Concepts

G : type ;

∗ : ( G, G) −> G ;

e : G ;

i n v : G −> G ;

Facts



112 H. Appendix : MathScheme Language

axiom : f o r a l l x , y , z : G . ( x ∗ y ) ∗ z = x ∗ ( y ∗ z ) ;

axiom : f o r a l l x : G . ( x ∗ e = x ) and ( e ∗ x = x ) ;

axiom : f o r a l l x : G . x ∗ ( i n v ( x ) ) = e ; }

H.6 Declaration

<d e c l a r a t i o n > : := < s i n g l e d e c l a r a t i o n > ; <d e c l a r a t i o n >

| < s i n g l e d e c l a r a t i o n > ;

| < s i n g l e d e c l a r a t i o n >

< s i n g l e d e c l a r a t i o n > : := <t y p d e c l a r a t i o n >

| <t y p e d e f n>

| < f u n c d e f n d e c l a r a t i o n >

| <a x i o m d e c l a r a t i o n>

| < i n d u c t d e c l a r a t i o n >

| <c o n c e p t d e c l a r a t i o n >

| <v a r d e c l a r a t i o n >

| < f a c t d e c l a r a t i o n >

| <d e f n b l o c k d e c l a r a t i o n >

A declaration is one of the following constructs:

• A type declaration.

• A type definition.

• A function definition declaration.

• An axiom declaration.

• An inductive data type declaration.

• A concept declaration.

• A variable declaration.

• A fact declaration.

• A definition block declaration.



H. Appendix : MathScheme Language 113

H.6.1 Type Declaration

< s i n g l e d e c l a r a t i o n > : :=

| <t y p d e c l a r a t i o n >

| . . .

<t y p d e c l a r a t i o n > : := <t i d e n t>

A type declaration assigns to a list of identifiers a type. According to the produc-

tion rule, a type declaration ( typ declaration ) is a type identifier ( tident ) which is

an entry in a concept as described in section H.4. This means, we can declare types

within or outside of a concept. In the later case, type declaration is parsed to the

TypeDecl data constructor using the typ declaration rule.

For instance, in Group above, we can move the declarations of G and ∗ out of

Concepts:

Group := Theory {
Concepts

e : G ;

i n v : G −> G ;

;

G : type ;

∗ : ( G, G) −> G ;

Facts

axiom : f o r a l l x , y , z : G . ( x ∗ y ) ∗ z = x ∗ ( y ∗ z ) ;

axiom : f o r a l l x : G . ( x ∗ e = x ) and ( e ∗ x = x ) ;

axiom : f o r a l l x : G . x ∗ ( i n v ( x ) ) = e ;

}

Then G and ∗ are parsed to TypeDecl internal representations.

H.6.2 Type Definition

< s i n g l e d e c l a r a t i o n > : :=

| <t y p e d e f n>

| . . .

<t y p e d e f n> : := type < i d e n t> = < t o p f u l l t y p e >

| < i d e n t> : < f u l l t y p e >

< t o p f u l l t y p e > : := < f u l l t y p e >



114 H. Appendix : MathScheme Language

| data < i d e n t> . <t y p e s p e c>

A top level type ( top full type ) is either a full type or an inline inductive data

type. A type definition is either a type synonym,

i.e. type <ident> = <top full type>, or a declaration that an identifier is of a certain

type, i.e. data <ident> . <typespec>

For instance,

type Nat = data X . z e r o : X | suc : X −> X ;

Here, Nat is a type synonym for an inline inductive data type containing two data

constructor zero and suc.

H.6.3 Function Definition Declaration

< f u n c d e f n d e c l a r a t i o n > : := <f u n c d e f n>

<f u n c d e f n> : := <param dec l> = <expr>

<param dec l> : := < i d e n t>

| < i d e n t> <p i d e n t l i s t >

| < i d e n t> < i n l i n e o p e r > < i d e n t>

<p i d e n t l i s t > : := ( < i d e n t l i s t > )

A function definition declaration is a function definition. The defined function

may have no argument e.g. f or a list of arguments e.g. add m n written in prefix. It

may also be defined as an infix operator e.g. +m n.

For instance, in the following PeanoArithmetic theory, add is defined as a binary

function in prefix notation.

P e a n o A r i t h m e t i c := Theory {
Induct ive Nat

| z e r o : Nat

| suc : Nat −> Nat

;

add : ( Nat , Nat ) −> Nat ;

add ( m, n ) = case n of {
| z e r o −> m

| suc p −> suc ( add ( m, p ) )

} ;

}



H. Appendix : MathScheme Language 115

We can also use the infix notation of addition + instead:

P e a n o A r i t h m e t i c := Theory {
Induct ive Nat

| z e r o : Nat

| suc : Nat −> Nat

;

+ : ( Nat , Nat ) −> Nat ;

m + n = case n of {
| z e r o −> m

| suc p −> suc ( add ( m, p ) )

} ;

}

H.6.4 Axiom Declaration

<a x i o m d e c l a r a t i o n> : := < s i n g l e f a c t >

An axiom declaration is simply a single fact as described in section H.5.

H.6.5 Inductive Data Type Declaration

< i n d u c t d e c l a r a t i o n > : := Induct ive < i d e n t> <t y p e s p e c>

| Induct ive < i d e n t> \ | <t y p e s p e c>

An inductive data type declaration Inductive is a shorthand for declaring an

inductive data type.

For instance, in the PeanoArithmetic theory above, Inductive Nat is used as a

shorthand to define an inductive data type plus the declarations of the functions

corresponding to the data constructors.

For instance, the definition

Induct ive Nat

| z e r o : Nat

| suc : Nat −> Nat

is a shorthand for the following definition in expanded form:

type Nat = data X . z e r o : X | suc : X −> X ;

z e r o : Nat ;

z e r o = [# Nat #]. z e r o ;



116 H. Appendix : MathScheme Language

suc : Nat −> Nat ;

suc = [# Nat #]. suc ;

H.6.6 Concept Declaration

A concept declaration is a concept as described in section H.4.

H.6.7 Variable Declaration

<v a r d e c l a r a t i o n > : := ( v a r i a b l e | v a r i a b l e s ) < t i d e n t l i s t 2 >

< t i d e n t l i s t 2 > : := <t i d e n t>

| <t i d e n t> , < t i d e n t l i s t 2 >

<t i d e n t> : := < i d e n t l i s t > : < f u l l t y p e >

| <p i d e n t> : < f u l l t y p e >

<p i d e n t> : := ( < i d e n t> )

A variable declaration declares a list of variables to be of a certain type.

For instance, we can declare three variables one, two, three of type Nat as below:

P e a n o A r i t h m e t i c := Theory {
Induct ive Nat

| z e r o : Nat

| suc : Nat −> Nat

;

. . .

v a r i a b l e s o n e , two, t h r e e : Nat ;

H.6.8 Fact Declaration

< f a c t d e c l a r a t i o n > : := Fact < s i n g l e f a c t l i s t >

A fact declaration is a list of facts which is described in section H.5.

H.6.9 Definition Block Declaration

<d e f n b l o c k d e c l a r a t i o n > : := d e f i n i t i o n < f u n c d e f n l i s t >

< f u n c d e f n l i s t > : := <f u n c d e f n> ;

| <f u n c d e f n> ; < f u n c d e f n l i s t >

A definition block declaration is a list of function definitions described above.



H. Appendix : MathScheme Language 117

H.7 Theory Expression

<t h y e x p r> : := < i d e n t>

| Theory {}
| Theory { d e c l a r a t i o n }
| ( <t h y e x p r> )

| <t h y e x t e n s i o n>

| Theory ( <t o p t y p e> ) { <d e c l a r a t i o n > }
| < i d e n t> ( < i d e n t> )

| <t h y e x p r> [ < i d e q l i s t > ]

| (combine | combines ) < t h y e x p r l i s t > a l o n g <t h y e x p r>

A theory expression is one of the following constructs:

• An identifier referring to a theory name.

• An empty theory.

• A basic theory containing declarations in it.

• A bracketed theory expression.

• A biform extension.

• A parameterized theory.

• A theory application.

• A theory renaming.

• A theory combination.

H.7.1 Theory Name

A theory name is a theory expression. It shall refer to an already declared theory.

H.7.2 Empty Theory

An empty theory is a theory expression. It contains no declarations in it.

For instance, the Empty theory is defined as below

Empty := Theory {}



118 H. Appendix : MathScheme Language

H.7.3 Theory Extension

<t h y e x p r> : :=

| . . .

| <t h y e x t e n s i o n>

| . . .

<t h y e x t e n s i o n> : := <t h y e x p r> extended { <d e c l a r a t i o n > }
| <t h y e x p r> extended by { <d e c l a r a t i o n > }
| <t h y e x p r> extended c o n s e r v a t i v e l y by

{ <d e c l a r a t i o n > }

A theory extension is a theory expression. It is the theory resulting from enhancing

a theory with further declarations. Declarations are explained in section H.6.

For instance, the following Carrier theory is a theory extension of the Empty theory

mentioned previoulsy by adding a type declaration U:

C a r r i e r := Empty extended by

{
U : type

}

H.7.4 Parameterized Theory

<t h y e x p r> : :=

| . . .

| Theory ( <t o p t y p e> ) { <d e c l a r a t i o n > }
| . . .

<t o p t y p e> : := <t h y i d e n t>

| <t h y i d e n t> , <t o p t y p e>

<t h y e x p r> extended { <d e c l a r a t i o n > }

A parameterized theory (also called functor) is a theory expression. However, it

is currently not implemented yet.

H.7.5 Theory Application

<t h y e x p r> : :=

| . . .

| < i d e n t> ( < i d e n t> )



H. Appendix : MathScheme Language 119

| . . .

A theory application is a theory expression. It is of the form Theory(NamedArrow)

H.7.6 Theory Renaming

<t h y e x p r> : :=

| . . .

| <t h y e x p r> [ < i d e q l i s t > ]

| . . .

< i d e q l i s t > : := < i d e q>

| < i d e q> , < i d e q l i s t >

< i d e q> : := <i o> = <i o>

| <i o> |−> <i o>

<i o> : := < i d e n t>

| <oper>

A theory renaming is a theory expression. It is the theory resulting from renaming

identifiers and operators in the source theory.

For instance, let BinaryRelation be the theory of binary relation:

B i n a r y R e l a t i o n := C a r r i e r extended by

{
R : ( U, U)?

}

R : (U, U)? is a a just short form for R : (U, U) −> Bool.

Then, an OrderRelation is a binary relation where the more specialized symbol

<= is used instead of R. In other words, OrderRelation is the theory resulting from

renaming R to <= in BinaryRelation as follows:

O r d e r R e l a t i o n := B i n a r y R e l a t i o n [ R |−> <= ]

H.7.7 Theory Combination

<t h y e x p r> : :=

| . . .

| (combine | combines ) < t h y e x p r l i s t >

( a l o n g | over ) <t h y e x p r>

| . . .



120 H. Appendix : MathScheme Language

< t h y e x p r l i s t > : := t h y e x p r

| t h y e x p r , < t h y e x p r l i s t >

A theory combination is a theory expression. It is the theory resulting from

combining a list of theories, represented by thy expr list , over a theory, represented

by thy expr .

For instance, let ReflexiveOrderRelation be the theory of order relation being re-

flexive:

R e f l e x i v e O r d e r R e l a t i o n := O r d e r R e l a t i o n extended by

{
axiom f o r a l l x : U . x <= x

}

and ReflexiveOrderRelation be the theory of order relation being transitive:

T r a n s i t i v e O r d e r R e l a t i o n := O r d e r R e l a t i o n extended by

{
axiom f o r a l l x , y , z : U . ( x <= y and y <= z imp l ies x <= z )

}

The theory of Preorder can be defined by combining ReflexiveOrderRelation and

TransitiveOrderRelation over OrderRelation as below:

P r e o r d e r := combine R e f l e x i v e O r d e r R e l a t i o n , T r a n s i t i v e O r d e r R e l a t i o n

over O r d e r R e l a t i o n

In the expanded form, Preorder would look as follows:

P r e o r d e r := Theory

{
U : type ;

<= : ( U, U ) ? ;

axiom f o r a l l x : U . x <= x ;

axiom f o r a l l x , y , z : U . ( x <= y and y <= z imp l ies x <= z ) ;

}

H.8 Theory Declaration

A theory declaration is one of the following constructs:

• A declaration of a theory identifier.



H. Appendix : MathScheme Language 121

• A property declaration.

• An injection.

• A theory instance of a parameterized theory.

<t h e o r y d e c l a r a t i o n > : := < i d e n t> := <t h y e x p r>

| p r o p e r t y <param dec l> := e x p r ;

| < i d e n t> := < i n j e c t >

| < i d e n t> := instance < i d e n t> of < i d e n t>

v ia [< i d e q l i s t >]

H.8.1 Declaration of Theory Identifier

An identifier can be declared to refer to a theory expression.

For instance, in the example of Group biform theory above:

Group := Theory {
. . .

}

Group is an identifier that refers to the theory declared via the keyword Theory.

H.8.2 Property

Properties are similar to macros in programming languages. They provide us with a

convenient construct to write down such properties as associativity and communitivity

while defining biform theories.

For instance,

p r o p e r t y l e f t A c t i o n (∗∗ , ++) :=

f o r a l l x : l e f t D o m a i n ( ( ∗ ∗ ) ) . f o r a l l y : r ig htD oma in ( (∗∗ ) ) .

f o r a l l z : r igh tDo mai n ((++)).

( x ∗∗ y ) ++ z = x ++ ( y ++ z ) ;

p r o p e r t y a s s o c i a t i v e (∗∗ ) := l e f t A c t i o n ( (∗∗ ) , ( ∗ ∗ ) ) ;

Here, leftAction and associative are properties. Whenever we want to say that

a certain binary operator ∗ is associative, we can use associative (∗) instead of the

more verbose form forall x, y, z ... The expander will expand properties to their

verbose form.



122 H. Appendix : MathScheme Language

H.8.3 Injection

An injection is a special kind theory morphisms (Chapter 2). We can name injections

since they are useful for creating instances. MSL support for theory injections will

be extended in the future.

H.8.4 Theory Instance of Parameterized Theory

Parameterized theory is currently not supported yet.



BIBLIOGRAPHY

[1] O. Caml. Home page at http://caml.inria.fr/.

[2] J. Carette and W. M. Farmer, “High-level theories,” in Intelligent Computer

Mathematics (A. Autexier and et al., eds.), vol. 5144 of Lecture Notes in Com-

puter Science, pp. 232–245, Springer-Verlag, 2008.

[3] J. Carette, W. M. Farmer, F. Jeremic, V. Maccio, R. O’Connor, and Q. M.

Tran, “The mathscheme library: Some preliminary experiments,” the 2011 con-

ference on intelligent computer mathematics, University of Bologna, Italy, 2011.

Forthcoming.

[4] J. Carette, W. M. Farmer, and R. O’Connor, “Mathscheme: Project descrip-

tion,” in Lecture Notes in Computer Science (J. H. Davenport, W. M. Farmer,

F. Rabe, and J. Urban, eds.), vol. 6824, (Bertinoro, Italy), pp. 287–288, Springer-

Verlag, July 2011.

[5] N. G. de Bruijn, “A survey of the project AUTOMATH,” in To H. B. Curry:

Essays on Combinatory Logic, Lambda Calculus and Formalism (J. P. Seldin and

J. R. Hindley, eds.), pp. 579–606, Academic Press, 1980.

[6] W. M. Farmer, “Theory interpretation in simple type theory,” in Higher-Order

Algebra, Logic, and Term Rewriting (J. H. et al., ed.), vol. 816 of Lecture Notes

in Computer Science, pp. 96–123, Springer-Verlag, 1994.

123



124 BIBLIOGRAPHY

[7] W. M. Farmer, “A proposal for the development of an interactive mathematics

laboratory for mathematics education,” in CADE-17 Workshop on Deduction

Systems for Mathematics Education (E. Melis, ed.), pp. 20–25, 2000.

[8] W. M. Farmer, “Biform theories in Chiron,” in Towards Mechanized Mathemat-

ical Assistants (M. Kauers, M. Kerber, R. R. Miner, and W. Windsteiger, eds.),

vol. 4573 of Lecture Notes in Computer Science, pp. 66–79, Springer-Verlag, 2007.

[9] W. M. Farmer, “Chiron: A set theory with types, undefinedness, quotation, and

evaluation,” SQRL Report No. 38, McMaster University, 2007. Revised 2011.

[10] W. M. Farmer, “Modules for a large library of formalized mathematics,” in AMS

Special Session on Formal Mathematics for Mathematicians: Developing Large

Repositories of Advanced Mathematics, 2011.

[11] W. M. Farmer, J. D. Guttman, and F. J. Thayer, “IMPS: An Interactive Math-

ematical Proof System,” Journal of Automated Reasoning, vol. 11, pp. 213–248,

1993.

[12] W. M. Farmer and P. Larjani, “Frameworks for reasoning about syntax that uti-

lize quotation and evaluation,” tech. rep., McMaster University, 2011. preprint,

33 pp.

[13] W. M. Farmer and M. von Mohrenschildt, “An overview of a Formal Framework

for Managing Mathematics,” Annals of Mathematics and Artificial Intelligence,

vol. 38, pp. 165–191, 2003.

[14] W. M. Farmer, J. D. Guttman, and F. J. Thayer, “Little theories,” in Auto-

mated Deduction | CADE-11, volume 607 of Lecture Notes in Computer Science,

pp. 567–581, Springer-Verlag, 1992.

[15] C. L. for Practical Use. http://hygelac.cas.mcmaster.ca/courses/CAS-760-

10/slides/01-review-logic.pdf.

[16] A. Heck, Introduction to Maple. New York, NY, USA: Springer-Verlag, 1995.

[17] R. D. Jenks and R. S. Sutor, Axiom : The Scientific Computation System.

Springer-Verlag, 1992.

[18] MathScheme. Home page at http://www.cas.mcmaster.ca/research/mathscheme/.



BIBLIOGRAPHY 125

[19] MathSchemeRepository. Formalizations of Abstract Algebra at

/trunk/doc/biform-theories/Algebra.

[20] MathSchemeRepository. Formalizations of Concrete Theories at

/trunk/doc/biform-theories/machine.

[21] E. Meijer, M. Fokkinga, and R. Paterson, “Functional programming with ba-

nanas, lenses, envelopes and barbed wire,” pp. 124–144, Springer-Verlag, 1991.

[22] L. C. Paulson, Isabelle: A Generic Theorem Prover. Springer, 1994.

[23] P. Rudnicki, “An overview of the MIZAR project,” tech. rep., Department of

Computing Science, University of Alberta, 1992.

[24] M. H. B. Srensen and P. Urzyczyn, “Lectures on the curry-howard isomorphism,”

July 2006.

[25] A. N. Whitehead and B. Russell, Principia Mathematica. Cambridge University

Press, 1910–13. Paperback version to section *56 published in 1964.

[26] J. Xu, Mei A Module System for Mechanized Mathematics Systems. PhD thesis,

McMaster University, 2008.


	McMaster University
	DigitalCommons@McMaster
	10-1-2011

	Algebraic Constructions Applied to Theories
	Quang Minh Tran
	Recommended Citation



