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Abstract

The 2-D INADEQUATE experiment is a useful experiment for determining
carbon structures of organic molecules known for having low signal-to-noise
ratios. A non-linear optimization method for solving low-signal spectra result-
ing from this experiment is introduced to compensate. The method relies on
the peak locations defined by the INADEQUATE experiment to create boxes
around these areas and measure the signal in each. By measuring pairs of these
boxes and applying penalty functions that represent a priori information, we
are able to quickly and reliably solve spectra with an acquisition time under
a quarter of that required by traditional methods. Examples are shown using
the spectrum of sucrose. The concept of a non-uniform Fourier transform and
its potential advantages are introduced. The possible application of this type
of transform to the INADEQUATE experiment and the previously explained
optimization program is detailed.
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Chapter 1

Introduction

1.1 Document Structure

We begin with an introduction to the study of Nuclear Magnetic Resonance
by giving a basic summary of its effects, governing equations and some of
its most common uses. We then introduce the INADEQUATE experiment,
which is the focus of this thesis in order to describe the use of the experiment
and give a basic idea of what can be done to improve its results. The func-
tions used in the optimization, including the penalties and constraints, are
described and an example of this method is given. The idea of non-uniform
k-space sampling is introduced along with the non-uniform Fourier transform
and proof-of-concept plots are given. Conclusions are then drawn and required
future work is discussed.

1
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Chapter 2

Background

2.1 Principles of NMR

Nuclear Magnetic Resonance (NMR) is a technique used to measure the aggre-
gate magnetic field generated by the spins of one or more nuclei in a sample.
This static magnetic field generates magnetization in the sample and aligns
the nuclear spins in the direction of this magnetic field. This magnetization
is then perturbed by a radio frequency (RF) pulse with a certain intensity
and duration (pulse width). The pulse width and intensity of the pulse are
calculated in order to perturb the spins by a specific angle as required for the
current experiment. The recovery of the spins from this perturbation is what
generates the signal measured by the spectrometer.

2.1.1 Bloch Equations

The most basic model of the spin dynamics encountered is that the moment,
M , precesses in the magnetic field, B, according to

dM

dt
= γM ×B (2.1)

where γ is the gyromagnetic ratio and is a physical constant. It can be noted
that this same equation governs the motion of a gyroscope, giving an idea
of the type of motion being modelled. This can model the dynamics of a
single spin for very short time frames (a few microseconds), but in any longer
time frames quantum interactions cause the net magnetization to return to
thermodynamic equilibrium, M0 = (0, 0, δ)T where δ is the proton density. As
a result we need to add a relaxation term to Eq. (2.1), by which we arrive at

3
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the Bloch equation:

dM

dt
= γM ×B −R(M −M0) (2.2)

Where R is the relaxation matrix. R can be further broken down into two
relaxation rates, 1

T2
for relaxation in the xy plane and 1

T1
for relaxation on

the z-axis. 1
T1

and 1
T2

, also known as spin-lattice relaxation and spin-spin
relaxation, respectively, vary based on the nucleus. This equation is typically
split into the x, y and z components as follows:

d

dt

 Mx

My

Mz

 = γ

 0 B0 0
−B0 0 0

0 0 0

 Mx

My

Mz

−
 1

T2
0 0

0 1
T2

0

0 0 1
T1

 Mx

My

Mz −M0

 ,
(2.3)

where B0 is the static field along the z-axis. This equation is simplified by
transformation to a rotating frame of reference such that the xy plane rotates
around the z-axis at the Larmor frequency, ω0 = γB0. This equation then
becomes:

d

dt

 Mx

My

Mz

 =

 0 ω0 0
−ω0 0 0
0 0 0

 Mx

My

Mz

−
 1

T2
0 0

0 1
T2

0

0 0 1
T1

 Mx

My

Mz −M0


(2.4)

These equations are often re-written so that there is a single entry for the
xy-plane, Mxy = Mx + iMy for simplicity:

d

dt

[
Mxy

Mz

]
=

[
iω0 0
0 0

] [
Mxy

Mz

]
−
[ 1

T2
0

0 1
T1

] [
Mxy

Mz −M0

]
(2.5)

The solution of this differential equation models the appearance of the time
domain output from any NMR experiments. This time domain data is made
up of two exponentially decaying sine waves representing Mx and My as well as
an exponential curve tending to the value of M0 representing Mz as in Fig. 2.1,
showing simulated data. The data in Fig. 2.1 only represents the signal from
a single nucleus, but the data for molecules is not much more complex and is
simply the sum of many of these single nucleus signals; an example is shown in
Fig. 2.2. We notice that there is no line for the Mz component in the second
example. This is because it gives us fairly little information compared to the

4
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Figure 2.1: Sample simulated time domain data for a single nucleus.
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Figure 2.2: Time domain data after a single pulse, using a sample of sucrose.

Mx and My components as well as being more difficult to detect, meaning that
in practice it is typically excluded.

The frequency domain representation of this data is where most of
the data is recovered from NMR experiments. An example of this is shown in
Fig. 2.3 and is the elementwise magnitude of the Fourier Transform of the Mxy

data shown in Fig. 2.2. From this data we can extract the different chemical
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Figure 2.3: An NMR spectrum showing the twelve carbon peaks of sucrose
from which we determine their chemical shifts in Hz.

shifts of every nucleus in the sample molecule.

2.1.2 Single-Dimensional Pulse Experiments

The simplest single-dimensional NMR spectrum, and the one we concern our-
selves with in this thesis, displays a series of peaks representing the chemical
shifts of the nuclei in the sample in Hertz. The nucleus appearing in the spec-
trum is specifically chosen for an experiment. Any nucleus with non-zero spin
can be chosen, but most commonly either 1H or 13C are used [SH87a].

The experiment used to show the chemical shifts in a molecule is a
single-pulse experiment, meaning we only use one pulse of RF energy be-
fore we collect the signal [SH87b]. More complex experiments are generated
with multiple pulses, generally made up of a series of 90◦ and 180◦ pulses
spaced apart with specific delay times. A one-dimensional experiment will have
one variable delay, while multi-dimensional experiments have several. Two of
the most common one-dimensional experiments are the inversion-recovery and
spin-echo experiments for finding spin-lattice and spin-spin relaxation times,
respectively [SH87c]. Important to note is that the experiments given so far
only identify or determine information for a single type of nucleus. The in-
teractions between nuclei require more information than can be provided with
these experiments and so an extra dimension is added [ABE76, BF81]. There
are many types of two-dimensional experiments, and the methods of each ex-

6
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Figure 2.4: The structure of sucrose, showing the six-membered glucose
ring(G) and five-membered fructose ring(F) with numbered carbons.

periment may differ, though the purpose is fairly similar: to determine the
structure of a molecule. These experiments include correlation spectroscopy
(COSY), nuclear Overhauser effect spectroscopy (NOESY) and the incredi-
ble natural abundance double quantum transfer experiment (INADEQUATE)
which is the experiment we concern ourselves with in this thesis and describe
in detail in the following section.

2.2 INADEQUATE Experiment

INADEQUATE [BF80, BFK80a, BFK80b, BFFL81, BM83] is a specific two-
dimensional experiment for finding the complete carbon skeleton of an organic
molecule [BFF81, FFR82, NL82, LKB89, ZSK+09]. This is done by finding
all the bonded pairs of carbon atoms and tracing out this set of pairs. The
reason this experiment was chosen for our optimization is because these pairs
can be found and traced using very little information. We demonstrate this
using the example of sucrose (the structure of which is shown in Fig. 2.4).

Fig. 2.5 shows the same one-dimensional experiment as Fig. 2.3, with
labels to identify the twelve carbon atoms of sucrose by their chemical shifts.
We note that this experiment is relatively quick and low-noise and that it
results from tests to calibrate the spectrometer pulse width before carrying
out more complex experiments. The chemical shifts shown in this spectrum
are used to identify the atoms later in the two-dimensional INADEQUATE

7
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Figure 2.5: The numbering of the sucrose peaks with the structural numbering
on the top and the numbering by chemical shift as used in our method on the
bottom.

spectrum.

An example of the INADEQUATE spectrum of sucrose is shown in
Fig. 2.6. What’s important to notice in this spectrum is the way the various
peak pairs line up vertically or horizontally. The locations at which these peaks
can appear along the F2(horizontal) and F1(vertical) axes are predicted by the
chemical shifts found in the one-dimensional experiment shown by Fig. 2.3.
Along the F2 axis, the peak pairs can only appear centred at locations that line
up with one of the chemical shifts of a carbon; in the example of sucrose, there
are exactly 12 possible locations on F2 where we can see these peaks centred.
The frequencies on this axis are referred to as the single-quantum frequencies,
as they refer to the signal generated from each single carbon nucleus. Along F1

the peaks represent the links between these carbons and occur at the sum of
chemical shifts. These frequencies are known as double-quantum frequencies
and are signals generated from bonded pairs. In general, the single-quantum
signal will dwarf the double-quantum signal, however INADEQUATE uses a
pulse program designed specifically to eliminate the single-quantum signals and

8
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Figure 2.6: An INADEQUATE spectrum showing the carbon bonds of sucrose
and how we trace them. The red lines indicate bonds between different nuclei
while the green lines connect multiple peaks referring to the same nucleus.

enhance the double-quantum [BF80]. In this example we have a bond between
a carbon with a chemical shift of ω1 = −2800Hz and one with a chemical shift
of ω2 = 630Hz which is represented by two peaks at (−2800,−2170) and
(630,−2170).

We can see this being applied in Fig. 2.6, where the bonds are traced.
Bonds are shown connecting, with red lines, from left to right and top to
bottom: F2 with F1; F2 with F3; G1 with G2; F5 with F6; F5 with F4; F3
with F4; G3 with G4; G3 with G2; G5 with G4 and G5 with G6. While the
green lines indicate that the two peaks shown correspond to the same carbon,
and so there are multiple bonds to that nucleus. This gives the two carbon
rings as shown in Fig. 2.4, which gives the basic molecular structure of the of
the sample. Due to the fairly low resolution of the spectrum shown here, it is

9
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difficult to see some of the lines drawn in the upper right
The issue with this experiment is that it is inherently insensitive, re-

quiring either extremely long acquisition times, or very high concentrations of
sample [BB87, OWDM88, BLLO99, SFF+82, KV86, Pod90]. The spectrum
given in Fig. 2.6 is unusually clear and represents over six days of acquisition
time. Usable, but less clear, spectra for a fairly simple molecule such as this
one can take around two days of acquisition time. Even worse, these times
are taking into account the ease of obtaining sucrose and the ease of creat-
ing concentrated solutions for testing. Most molecules of interest will be at
extremely low concentrations, meaning that an extremely lengthy acquisition
time is required to compensate for the lack of signal. This insensitivity is
caused by the reliance of the experiment on 13C, which accounts for ∼ 1.1% of
carbon molecules at natural abundance. This figure is then made even worse
by the fact that the experiment looks for bonded pairs of 13C, which occur
at a rate of ∼ 1 in 10000 pairs which is why the times given for collecting
these spectra are so high. As a result, there is a lot of work that has gone
into computer-assisted methods of reading these spectra in which less data
is required than for a human operator to trace the bonds by eye. Many of
the existing techniques developed for INADEQUATE spectra rely on complex
line-shape fitting and large numbers of assumptions on the form of the experi-
mental results [SE85, KULB92, LB93, DMC+90, DMPG92, RAW81, FMD+92,
ODH+95]. Our technique is based on the magnitude of the signal, making this
technique insensitive to phase errors in the experiments and uses comparably
few assumptions about the form of the experiment in order to simplify our
model.

The following assumptions that we are able to make are strong, and
based on the well-defined nature of the experiment’s resulting spectra. Before
the beginning of an INADEQUATE experiment, we know the single quantum
frequencies (hence, all possible double-quantum frequencies); it is their assign-
ment that is unclear. The correlations that we see in the INADEQUATE plots
all appear as simple two-spin AB correlation spectra. Since both parts of a
correlation come from the same double-quantum coherence, the two parts of
the correlation should be mirror images [NSF96], although pathological offset
effects [BHA+10] may slightly distort the symmetry. These key facts allow us
to build penalty functions to guide the optimization toward the global mini-
mum. The process makes use of image regularization techniques to smooth the
lineshapes as the optimization progresses. The combination of these allows us
to find a complete set of carbon bonds from an INADEQUATE spectrum too
noisy for traditional methods to be applied, significantly reducing the required
experiment time. While the examples shown in this thesis use unprocessed

10
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data, meaning the Fourier transforms are run on raw data in MATLAB, this
method will work equally well with pre-processed data as the processing will
not change any of the assumptions made.

2.3 Process Goal

It has been shown in Fig. 2.6 how an ideal spectrum may look and how this
can be traced out by hand. However, as stated in Section 2.2 this spectrum
takes approximately 6 days to acquire. A spectrum acquired in slightly over 48
hours is shown in Fig. 2.7 and while it is possible for chemists to visually trace
the bonds in this spectrum, the difference in quality between these examples
is vast. We intend to introduce a method where not only will the carbon
bonds be traced by computer, but there will be a modified spectrum produced
with clarity on the order of that in Fig. 2.6 using a quarter of the information
present in Fig. 2.7.

11
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Figure 2.7: An INADEQUATE spectrum obtained over a 48 hour period, note
the difficulty of choosing valid peaks when compared to Fig. 2.6.
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Chapter 3

Optimization Model

Our approach is based, primarily, on the signal intensity present in a set of
pre-defined locations based on the 13C chemical shifts. In the INADEQUATE
experiment, these locations are well-defined by the 1-D carbon spectrum. With
a list of chemical shifts for all the carbons in the molecule we are testing, we
are able to locate all possible peak locations and know which locations of
peaks could indicate what bond. We draw boxes around all of these locations,
large enough to contain the full peak and account for small shifts of location
caused by the coupling constants and isotope effects (testing shows 32 points
along the F2 axis to be sufficient for an experiment using 4k points). In order
to provide more intelligent estimates to compensate for high noise levels, we
provide several penalties based on a priori knowledge of the experiment and
basic chemistry. We penalize large differences between signal level in paired
boxes as the INADEQUATE experiment will typically have equal signal in
each of the two correlated boxes, and we force the number of bonds to any
single carbon to be between one and four.

The method presented allows and requires some user input. We require
an estimate of the level of connectivity in the molecule, as this controls the
number of bonds we reject or accept as the algorithm runs. We allow an
initial guess of the bonds that will be present. In small molecules this is not
required, but in large molecules any prior knowledge will greatly improve the
run-time of the method. The number of potential locations in a spectrum is
n(n − 1), where n is the number of carbons in the molecule as each carbon
could potentially be connected to any of the n− 1 others.

13
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3.1 Variables

We use two sets of variables that are intended to meet the goals of this opti-
mization:

p: to determine the bonds present in a molecule, given a 2-D INADEQUATE
spectrum; and

S: to create a cleaner image of the given spectrum, clearly showing the loca-
tions of the peaks and bonds as determined.

The column vector, p, contains one entry for each potential bond (a
total of n choose 2 entries, where n is the number of carbons present). Each
entry contains a value ranging from 0 to 1 that represents the probability of
its associated bond being present in the molecule. The entry of p relating
to a specific bond, between carbons i and j, is given by the notation pij.
This notation does not indicate the index of an entry, but rather indicates
the contents by noting the two carbons being referenced. We use this non-
standard convention in order to simplify the written problem. The entries in
this vector are ordered with respect to the bonds they represent. For each
carbon i, there is an ordered list of bonds from i ↔ i + 1 to i ↔ n (where
↔ means “bonded to”) where i ranges between 1 and n − 1. The carbons
themselves are numbered by their chemical shifts in increasing order, and an
example of this is shown by Fig. 2.5.

The second set of variables, S, is a sparse array with dimensions equal
to those of the provided spectrum. S has the important structure of being
zero-valued outside of the pre-determined boxes that may contain peaks (de-
termined by the chemical shifts of the potentially bonded carbons), meaning
that we eliminate noise from all regions that we know cannot contain a cor-
relation. Each of these boxes is made up of a series of entries, referred to
as sk. This structure minimizes the number of variables we need to solve in
order to create a new image of the spectrum without a loss of data. A small
scale example of the structure as described is shown in Eq. (3.1). In order to
simplify several later equations, we use the notation Sij to refer to a sub-array
of S corresponding to a box centred at the location (ωi, ωi + ωj), where we
could see one of the peaks indicating a bond of i to j. We show all the data
for a potential bond between i and j with the two boxes Sij and Sji.

0 s1 s2 s3 0 0 0 s4 s5 s6

0 0 0 0 0 0 0 0 0 0
s7 s8 s9 0 0 s10 s11 s12 0 0
0 0 0 0 0 0 0 0 0 0

 (3.1)

14
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In the example in Eq. (3.1), the variables s1, s2, s3 correspond to one box (if
this represents a bond between carbons 1 and 2 we refer to it by S12). In a
real spectrum we use wider boxes with many more variables per box.

3.2 Model

Our optimization problem minimizes the sum of the terms given in (3.2)-
(3.7) and is constrained by (3.8) and (3.9). The solution of this minimization
problem gives us both desired results: a low-noise image of the spectrum and
a list of carbon bonds present in the molecule.

min ‖m− S‖2 (3.2)

+ λ1||δxS||2 (3.3)

+ λ2

∑
ij

(1− pij)
2||Sij + Sji||2 (3.4)

+ λ3

∑
ij

(||Sij||2 − ||Sji||2)2 (3.5)

+ µ1

∑
i

(
2−

∑
j 6=i

pij

)4

(3.6)

+ µ2

∑
ij

pij (3.7)

s.t. pij ≥ 0 (3.8)

pij ≤ 1 (3.9)

Following is a quick summary of each term and an idea of its physical meaning:
Term (3.2) is a straightforward fit-to-data term attempting to minimize

the difference between the two-dimensional Fourier transform of the measured
spectrum (m) and the optimized image of the spectrum (S). This gives us a
final image whose peaks are located and shaped in the same way as those in the
original spectrum as their size changes. This term also tends to minimize the
difference in signal level between the two arrays, meaning that we redistribute
the signal of the spectrum more so than we reduce or increase it as we modify
the values in the boxes of S.

For term (3.3), we define

||δxS||2 =
∑

i
s.t. si and si+1 are horizontally

adjacent in the same box

(si − si+1)
2
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as a short form for the L2 difference norm in the x (F2) dimension of the
reconstructed spectrum, taking into account the sparsity of S. This will tend to
minimize the differences between adjacent points. Minimizing these differences
promotes smoothness of the lines in this direction without trying to fit the
peak to a particular line shape, which would require the incorporation of other
variables. The line-shapes should be smooth due to the definition of the NMR
peaks as given in Section 2.1.1. We do not regularize in the F1 dimension as
we do not generally expect smoothness in this direction.

Term (3.4) penalizes signals in the boxes of S if they are considered un-
likely to correspond to a bond and penalizes the values in p if they correspond
to low-signal areas of S. These values will be increased in the opposite sce-
nario. This promotes increasing signal in areas of likely peaks and a decrease of
signal in areas of unlikely peaks. In the end, signal will be completely removed
from locations we have decided will not contain peaks and will be concentrated
in the areas of high certainty peaks.

Term (3.5) penalizes the signals in two paired boxes of S if the two
boxes have a large difference in signal level. This means that a correlation will
become less likely if its two related areas have very different signal levels.

Term (3.6) is a quartic penalty function designed to keep the total
number of bonds for a single carbon between one and four, with two bonds
being the most likely. The term achieves this by taking each carbon i and
summing over the bond probability between i and every other carbon, j to get
the total value of the bonds to i. This sum is then subtracted from two to shift
the center of the quartic to +2 and the result of this is raised to the fourth
power to generate our function. This function was chosen because it remains
fairly flat in the centre and sharply rises afterward meaning that two bonds to
a carbon is not penalized at all, one or three bonds are lightly penalized and
outside that specified range, the penalty is strong.

Term (3.7) penalizes the sum of the probabilities in p, or the num-
ber of likely carbon bonds found. This function simply adds together all the
bond probability values and minimizes this value. This is necessary because
we do not have an a priori estimate for the peak heights, so we are only
penalizing peaks which we do not believe correspond to bonds and large dif-
ferences in paired peak heights. We would therefore expect a minimum in
the objective function when many bonds are predicted, even ones with very
low intensity peaks. This penalty prevents the optimizer from reaching such a
non-descriptive minimum. In practice, investigators will have a good estimate
of the total number of bonds in an unknown, or partially known, molecule and
this information would be incorporated into this penalty.
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3.3 Implementation

The problem is dominated by bi-quadratic terms; being quadratic in both S
and p separately. This fact suggests that the problem can be split into two
parts and solved using an alternating Gauss-Seidel approach to solve alterna-
tively for S and for p.

In the first, unconstrained, problem (3.10) we solve for S. The second
part, (3.11) is a constrained problem that estimates the likelihoods of all possi-
ble bonds, thereby solving for p. The result of this split was a large increase in
the speed of the solution. We implement this problem in a MATLAB program
using standard routines included in the Mathworks optimization toolbox. We
load the raw time series data into MATLAB using matNMR [vB07] and we
run a standard MATLAB Fourier transform before normalizing the spectrum
to make the largest value one in order to limit the size of the necessary con-
stants. In initial tests using the sucrose spectra at a size of 128 × 4096, the
solution using the single (combined) problem took between 10 and 12 hours,
while the split problem took between 2 and 10 minutes to reach comparable
solutions.

min
S
||m− S||2 + λ1||δxS||2 + λ2

∑
ij

(1− pij)
2||Sij + Sji||2

+ λ3

∑
ij

(||Sij||2 − ||Sji||2)2
(3.10)

The first (unconstrained) problem results in the redistribution of signal from
the original spectrum which causes an increase of peak area in the possible
bond locations and a decrease of peak area across the rest of the spectrum.
This means that we will achieve a clearer image of the spectrum.

min
pij

∑
ij

(1− pij)
2||Sij + Sji||2 + µ1

∑
i

(
2−

∑
j 6=i

pij

)4

+ µ2

∑
ij

pij

s.t. pij ≥ 0

pij ≤ 1

(3.11)

The second (constrained) problem estimates the bond probabilities.
This splitting is the most natural and it results in two subproblems

with desirable performance properties. The original problem is a large, non-
quadratic, constrained problem. When we split it into two however, the first
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subproblem is a large, but mostly quadratic problem and the second, while
non-quadratic and constrained, involves many fewer variables than the original
problem. This relationship is maintained for all sizes of molecules.

The penalty parameters λi and µi are scaling factors for each of the
terms we wish to minimize. Generally these constants do not need to be
modified from default values where we assign: λ1 = 10, λ2 = 15, λ3 = 1, µ1 = 4.
However, the experiment is rather sensitive to the value of µ2, which represents
the degree of connectivity, and this value must be changed according to the
amount of signal and the connectivity of a molecule.

3.4 Comparison to Existing Methods

We compare the method described above to the approach used by Dunkel et
al. in [DMC+90] and [DMPG92]. There are two major points of comparison,
firstly, our method examines only the magnitude of signal in specific locations,
rather than the full lineshape. Secondly, we use only two assumptions about
the form of the experiment: namely the number of bonds per carbon and that
two peak pairs corresponding to a bond should have equal energy. On the other
hard, the Dunkel method generates line shapes defined by the expectation
function (Equation [1] in [DMC+90]):

S(ν1, ν2) =
TDQ

2

1 +
[
2πTDQ

2 (ν1 − νDQ)
]2
 IAIA1T

SQ
2

1 +
[
2πT SQ

2 (ν2 − νA1)
]2−

IAIA2T
SQ
2

1 +
[
2πT SQ

2 (ν2 − νA2)
]2 +

IBIB2T
SQ
2

1 +
[
2πT SQ

2 (ν2 − νB2)
]2−

IBIB1T
SQ
2

1 +
[
2πT SQ

2 (ν2 − νB1)
]2


(3.12)

where ν1 and ν2 are positions on the F1 and F2 axes, respectively. The two
potentially bonded nuclei are referred to as A and B, with their chemical shifts
notated as νA and νB, the sum of these shifts is νDQ and refers to the position
of the peak doublets on the F1(vertical) axis. The doublets themselves are νAk

and νBk
where k is either 1 or 2, these are separated from the central shifts νA

and νB by an amount relating to what’s known as the coupling constant, J .
IAk

and IBk
are the relative intensities of the peak doublets while IA and IB

are scaling factors to convert the relative intensities to those observed. TDQ
2
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and T SQ
2 refer to the transverse relaxation times in the F1 and F2 directions,

respectively.
This formula is based on the generalization of the Bloch equation pre-

sented in Sec. 2.1.1 expanded to model the case of two bonded nuclei, resulting
in a 16 × 16 system, rather than a 3 × 3 system. The variable parameters in
Eq. (3.12) are νA, νB, J, IA, IB, T

SQ
2 , TDQ

2 and these parameters are solved for
for every potential bond. Meaning that, in the example of sucrose, Eq. (3.12)
will be solved 66 times in order to reach a solution. Moreover, while the
variables in our objective appear quadratically or to the fourth power (both
convex polynomial functions), the variables in the equivalent Dunkel objective
also appear in the denominator, resulting in difficult nonconvex subproblems,
which cannot be simplified by a Gauss-Seidel approach.

Anecdotally, we know that the Dunkel approach, while based on sound
theory, has not been adopted by experimentalists. We hypothesize that this is
in part because the numerical difficulties which would not trouble a numerical
analyst, but which would be outside the expertise of an experimentalist. In
contrast, our approach is based on convex quadratic and quartic subproblems
and can be expected to be numerically robust and easy to solve, which matches
our experience.
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Chapter 4

Experimental Results

The experiment we performed was with a concentrated sucrose (see Fig. 2.4
and Fig. 2.5) solution (approximately 80mg of sucrose in 0.5mL of water), run
on a Bruker AV 500MHz spectrometer equipped with a 5mm room-temperature
inverse-geometry probe. The pulse sequence we used was the standard INADE-
QUATE experiment including gradients to enhance pathway selection. Instead
of running a single experiment overnight, we run several smaller experiments
sequentially in order to help prevent any computer or spectrometer errors from
affecting the entire dataset. Each of these experiments result in what we term
a block; when averaged, these blocks give the results of the full experimental
time. We gathered a total of eight blocks of data, each measuring 512 points
in T1 by 4096 in T2 using 32 scans with a scan delay of one second and a 90◦

pulse with width 15µs taking slightly over six hours to run. The optimiza-
tion used the optimization toolbox of MATLAB 7.9.0 installed on a 2.6GHz
dual-core AMD Opteron processor. For small problems like this (under 20 or
so carbons), the MATLAB solver is sufficiently fast, however for much larger
problems as we expect to encounter, we will need to explore options for faster
solvers.

In Fig. 4.1, we see the Fourier transform of the averaged value of all
eight blocks. We can visually determine seven of the ten bonds reliably, but
we have two bonds where only one of the two peaks are visible and one where
neither is visible. In Fig. 4.2 we see the result of running our method on the
average of two blocks. We see that even with only a quarter of the data, the
final result of our method is much clearer than what can be seen in Fig. 4.1.
Using two of the eight blocks was the minimum we could reliably use, but there
existed a few combinations (all including one specific block) of two blocks that
we could not solve. The results for all other pairs of blocks look highly similar
to the results shown here.
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Figure 4.1: Averaged Fourier transform of all eight collected data sets. Here
we can see most of the structure, but several bonds remain difficult to detect,
most notably: F2 ↔ F1, F3 ↔ F4 and G5 ↔ G6. Red boxes indicate
locations at which we should see peaks related to these bonds, but cannot.
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(a) Unmodified FT of two averaged data sets
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(b) Results of running our method on (a)

Figure 4.2: We can see here that running our method on two averaged data
sets gives us better information than the average of all eight using traditional
methods, constituting a decrease in experiment time of a factor of more than
four.
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Chapter 5

Non-Uniform K-Space Data

A possible method for lowering acquisition times for the spectrometers is sim-
ply to acquire less data. While most traditional methods use Fast Fourier
Transforms to convert the time domain signal to the frequency domain, we
suggest using non-uniform sampling along the F1 axis so that less actual data
is acquired.

While using these methods represents much slower processing than the
traditional fast Fourier transform, we expect that the time saved in acquisition
will more than make up for the increase in processing time.

The traditional Fourier transform is well known and given by,

X(m) =
N−1∑
n=1

x(n)e
−2πi

N
nm (5.1)

and its inverse given by,

x(n) =
1

M

M−1∑
m=1

X(m)e
2πi
N

nm (5.2)

A non-uniform version of the frequency transform is given by,

ϕ(fm) =
N−1∑
n=1

x(tn)e−2πitnfm (5.3)

where x is some function in the time domain and ϕ is its non-uniform frequency
transform. The units of t are milliseconds and the units of f are kHz. The
time transform is given by,

ψ(tn) =
1

M

M−1∑
m=1

y(fm)e2πitnfm (5.4)
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where y is some function in the frequency domain and ψ is its non-uniform time
transform. It is important to note that these two functions are not inverses
of one another. In general, applying ϕ(ψ(x)) will not give us the original
signal again. In the same manner as the uniform Fourier transform, the non-
uniform version can be represented as a linear transform by multiplication
with a matrix W , such that ϕ = Wx with,

W =



ω(t1, f1) ω(t1, f2) ω(t1, f3) ω(t1, f4) . . . ω(t1, fM)
ω(t2, f1) ω(t2, f2) ω(t2, f3) ω(t2, f4) . . . ω(t2, fM)
ω(t3, f1) ω(t3, f2) ω(t3, f3) ω(t3, f4) . . . ω(t3, fM)
ω(t4, f1) ω(t4, f2) ω(t4, f3) ω(t4, f4) . . . ω(t4, fM)

...
...

...
...

...
ω(tN , f1) ω(tN , f2) ω(tN , f3) ω(tN , f4) . . . ω(tN , fM)


(5.5)

where ω(tn, fm) = e−2πitnfm . The non-uniform version of this matrix does not
have the exact same properties as the uniformly sampled version—notably
that, in general, W−1 6= W ∗ and W is not necessarily invertible. The two-
dimensional non-uniform transform can be defined as ϕ = W1xW

∗
2 where W1

is the column transform and W2 is the row transform.
The differences in notation from the standard discrete Fourier transform

are minor, we only note the dependence on the actual values of the time tk
and the frequency fn rather than their indices. This is because during the
transform, the points being constructed actually must be specified as we are
not constructing the entire series each time. This gives us the advantage of
being able to only construct the points we desire, and by concentrating the
signal in only these areas where we know it can occur, we eliminate the rest of
the signal to achieve better signal-to-noise ratios. As an example, in the one-
dimensional spectrum of sucrose as in Fig. 2.3, we see exactly twelve peaks.
This means that we can construct only twelve points from the spectrum, going
from a uniform spectrum of 4096 points to a non-uniform frequency spectrum
of twelve points.

5.1 Using the Non-Uniform Transform

We demonstrate the use of this method with a one-dimensional example. In
order to find this transform as accurately as possible, we introduce an opti-
mization function as follows,

minW ∗m−W ∗Wϕ (5.6)
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−π −e −1 0 1 e π
(peak) (null) (peak) (null) (peak) (null) (peak)

Table 5.1: The seven points used in our Fourier transforms, including 4 peaks
and 3 null points.

where m is the original signal in the time domain, ψ is the vector of indepen-
dent variables in the frequency domain and W is the matrix of non-uniform
Fourier transform coefficients. The solution ψ of this problem provides the
selected frequency points from the non-uniformly sampled time data given.

For this example we create a simple spectrum where peaks are placed
at ±π and ±1 using the function

f(x) = sin(2πx) + cos(2π2x) (5.7)

We used 256 evenly distributed time points between 0 and 25ms to be able to
create the fast Fourier transform of this function, shown in Fig. 5.1. 50 sets
of noise were generated by MATLAB with entries ranging between −1 and
1, representing approximately 50% of the maximum and minimum points of
the time-domain function f(x). Running MATLAB’s fast Fourier transform
function fft on each of these sets of data and selecting seven points as in
Tbl. 5.1, representing four peaks and three zero valued points, we created an
error plot shown in Fig. 5.2. The mean value of the standard deviations among
the 50 noisy sets over the seven selected points was 9.0462.

A comparison was then made between an fft and non-uniform Fourier
transform of a 128 point time series, with time values between 0 and 12.5ms,
of f as in Eq. (5.7). We see the fft solution in Fig. 5.3, which was done in
the same manner as the 256 point example above; 50 time series with added
noise were transformed and the seven points in the list shown by Tbl. 5.1 were
selected from the transform, and we show the resulting mean and standard
deviation for each point. We can see a problem that has occurred with this
approach, notably that the peaks at −1 and 1 are now much smaller than
in the above example as a result of having less data in the transform. The
frequencies at which these peaks appear do not exist in this 128 point spectrum,
as opposed to the original 256 point spectrum. We also show a non-uniform
transformation in Fig. 5.4 in which only the 7 points shown were constructed
from a time series of 128 random points from between 0 and 25ms. We see
that we have error bars of approximately the same width as in Fig. 5.3, but
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Figure 5.1: Full spectrum of the fast Fourier transform of function f .

the mean values of each of these points are much closer to those shown by
Fig. 5.2.

This example shows that by using this non-uniform transform, we are
able to gain flexibility in how we acquire data to process, both in the number of
points we acquire and the time spacing between them. With the standard fast
Fourier transform, we are unable to specify the frequency points we generate
and therefore are likely to miss exact points where peaks occur as demonstrated
in Fig. 5.3. This is related to the fact that we are tied to sampling times that
will give the required spectral width. The first problem is solved by the choice
of specific frequency points that we will solve through using the non-uniform
transform. The second is solved because the sampling times required are based
on the average distance between frequency points; with a standard fast Fourier
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Figure 5.2: Error bar plot showing the mean value and standard deviation
at each of seven selected points based on 50 different noisy functions after
applying MATLAB’s fft function. The mean value of each selected point
is shown by a circle while the bars at each point represent a single standard
deviation.

transform, the frequency steps are derived from the sampling times. Using a
non-uniform transform, however, selects only a few frequencies with much
larger average distances between them, making the required time sampling
significantly less strict for acquiring useful results. We see this in Fig. 5.4 as
the results are better than those in Fig. 5.3, but with sample times, on average,
twice as far apart.
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Figure 5.3: Error bar plot showing the mean value and standard deviation
at each of seven selected points based on 50 different noisy functions after
applying MATLAB’s fft function to a 128-point function. The mean value of
each selected point is shown by a circle while the bars at each point represent
a single standard deviation.

5.2 Application to INADEQUATE

We can use the above method in order to minimize the sampling required
for solving INADEQUATE spectra. This is accomplished by replacing the
objective of Eq. (3.2) by Eq. (5.6) and by using time domain data rather
than transformed data as our measurement. In the example of sucrose spectra
at a size of 512 × 4096, as with the examples given in Sec. 4. However, we
require only 24(corresponding to the double peaks at each of the 12 chemical
shifts of sucrose) of the original 4096 columns and, in each of these columns,
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Figure 5.4: Error bar plot showing the mean value and standard deviation
at each of seven selected points based on 50 different noisy functions after
applying our non-uniform Fourier transform function to a 128-point function.
The mean value of each selected point is shown by a circle while the bars at
each point represent a single standard deviation.

only 11(corresponding to each possible pairing for each of the 12 carbons)
of the original 512 rows. This means that by using the non-uniform Fourier
transform, we will significantly reduce the number of variables that are used
throughout the optimization process. In addition, we will reduce the amount
of data that needs to be collected in order to generate the desired frequency
points as was discussed previously in Sec. 5.1.

This means that by using this method we will be able to cut down on
the data collected in the t1 dimension, which adds much more to the length of
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the experiment than does extra data collected in the t2 dimension.
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Chapter 6

Conclusion and Future Work

In conclusion, we have demonstrated in this thesis a method of solving for
carbon bonds from INADEQUATE spectra by using image regularization and
optimization techniques. Despite the limited amount of testing so far, the
early results are promising. We have shown that we can reduce the experi-
ment time required to determine the carbon backbone of sucrose from over 48
hours using traditional methods to around 12 using our method. We plan to
expand our testing to a wide variety of molecules as soon as possible and we
expect similar speed-ups in all cases. We have also shown a reliable method
of finding a non-uniform Fourier transform of a single-dimensional NMR spec-
trum and communicated that using this method will allow greater flexibility
in the amount of data required for these spectra. This technique is extendable
to a two-dimensional spectrum by using two separate transforms, fast in the
directly-acquired dimension and non-uniform in the indirect dimension.

It would be desirable to eventually translate all of the extant MATLAB
code into C so that we will have more flexibility in the choice of solver and
faster performance. Currently the code is all in MATLAB form simply to
make use of the ease of obtaining data using the matNMR [vB07] tool, so a
translation of the code into C will require the development or discovery of a
tool that can import Bruker two-dimensional binary FID files into a C array
to use with our method.

It would also be desirable to develop a full integration between the two
currently separate parts presented in this thesis, namely the two-dimensional
non-uniform Fourier transform method and the INADEQUATE bond solver.
This will require extensive testing to ensure the non-uniform transform is pro-
gressing properly at each iteration of the full solver, and ensure that the re-
duction of points does not introduce new problems over the old method of
using a sparse matrix at full size as our intermediate variables. We do, how-
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ever, expect this integrated program to provide results with significantly better
signal-to-noise ratios than the example presented in Sec. 4.

After these additional tasks are completed we expect that this will be
an extremely versatile system for analysing INADEQUATE spectra.
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