
Reasoning about Definedness �

A Definedness Checking System

for An Implemented Logic

Reasoning about Definedness �

A Definedness Checking System

for An Implemented Logic

By

Qian Hu, B.Tech.

A Thesis
Submitted to the School of Graduate Studies

in partial ful�lment of the requirements for the degree of

Master of Science

Department of Computing and Software

McMaster University

c© Copyright by Qian Hu, October 25, 2011

ii

MASTER OF SCIENCE (2011) McMaster University
(Computer Science) Hamilton, Ontario

TITLE: Reasoning about De�nedness � A De�nedness Checking
System for an Implemented Logic

AUTHOR: Qian Hu, B.Tech. (University Of Mysore, India)

SUPERVISOR: Dr. William M. Farmer

NUMBER OF PAGES: ix, 102

ABSTRACT

E�ective de�nedness checking is crucial for an implementation of a logic with unde-

�nedness. The objective of the MathScheme project is to develop a new approach

to mechanized mathematics that seeks to combine the capabilities of computer alge-

bra systems and computer theorem proving systems. Chiron, the underlying logic of

MathScheme, is a logic with unde�nedness. Therefore, it is important to automate,

to the greatest extent possible, the process of checking the de�nedness of Chiron

expressions for the MathScheme project. This thesis provides an overview of infor-

mation useful for checking de�nedness of Chiron expressions and presents the design

and implementation of an AND/OR tree-based approach for automated de�nedness

checking based on ideas from arti�cial intelligence. The theorems for de�nedness

checking are outlined �rst, and then a three-valued AND/OR tree is presented, and

�nally, the algorithm for reducing Chiron de�nedness problems using AND/OR trees

is illustrated. An implementation of the de�nedness checking system is provided that

is based on the theorems and algorithm. The ultimate goal of this system is to pro-

vide a powerful mechanism to automatically reduce a de�nedness problem to simpler

de�nedness problems that can be easily, or perhaps automatically, checked.

iii

CONTENTS

Abstract iii

1 Introduction 1

1.1 Questions of De�nedness . 1

1.2 De�nedness Checking in MathScheme 2

1.3 Objectives of the Thesis . 3

1.4 Organization of the Thesis . 3

1.5 Fonts . 4

2 Background 6

2.1 MathScheme . 6

2.2 Chiron . 7

2.2.1 Values . 7

2.2.2 Expressions . 8

2.2.3 Additional Notation . 13

2.2.4 Implementation of Chiron Expressions 14

2.3 Simpli�cation and Contexts in MathScheme 16

2.4 De�nedness Checking in IMPS . 17

3 Problem and Objectives 19

3.1 De�nedness in Chiron . 19

3.2 De�nedness Checking of Chiron Expressions 20

iv

CONTENTS v

4 Theorems about De�nedness in Chiron 23

4.1 Overview . 23

4.2 De�nedness Theorems . 23

5 AND/OR Trees 31

5.1 Overview . 31

5.2 Formalization of AND/OR Trees for De�nedness Problems 32

5.3 Reducing De�nedness Problems in Chiron Using Starter Trees 35

5.3.1 General Cases . 36

5.3.2 Operator Application . 37

5.3.3 Constants . 39

5.3.4 Variables . 39

5.3.5 Type Application . 40

5.3.6 Dependent Function Types . 41

5.3.7 Function Application . 43

5.3.8 Function Abstraction . 44

5.3.9 Conditional Terms . 45

5.3.10 De�nite Description . 47

5.3.11 Inde�nite Description . 49

5.3.12 Quotation . 50

5.3.13 Evaluation . 51

6 De�nedness Checking Mechanism 54

6.1 Overview . 54

6.2 Classical AND/OR Tree Search Methods 55

6.2.1 De�nitions and Notation . 55

6.2.2 Breadth-First Search . 56

6.2.3 Depth-First Search . 57

6.2.4 Other Search Methods . 59

6.3 De�nedness Checking Algorithm . 59

6.3.1 Overview of De�nedness Checking Algorithm 60

6.3.2 Steps of De�nedness Checking Algorithm 61

7 Implementation 63

7.1 Overview . 63

7.2 Implementation . 64

vi CONTENTS

7.2.1 Building Starter Trees . 64

7.2.2 Leaf Checking Procedure . 65

7.2.3 Node Labeling Procedure . 67

7.3 Expanding Trees . 68

8 Conclusion 70

9 Future Work 72

Acknowledgements 74

APPENDIX � Source Code 75

A.1 Type De�nitions for AND/OR Trees 75

A.2 Implementing Categories of Starter Trees 76

A.2.1 General Cases . 76

A.2.2 Operator Application . 78

A.2.3 Type Application . 82

A.2.4 Dependent Function Types . 83

A.2.5 Function Application . 84

A.2.6 Function Abstraction . 86

A.2.7 Conditional Terms . 87

A.2.8 De�nite Description . 90

A.2.9 Inde�nite Description . 91

A.2.10 Quotation . 92

A.2.11 Evaluation . 93

A.3 Building Starter Trees . 95

A.4 Node Labeling Procedure . 97

A.5 Leaf Checking Procedure . 98

A.6 Function for De�nedness Checking 99

Bibliography 99

LIST OF FIGURES

5.1 AND/OR tree for D ∨ (B ∧ C). 33

5.2 Example of a solution graph of an AND/OR tree. 35

5.3 AND/OR tree for the general cases of being de�ned in a type. 36

5.4 AND/OR tree for general cases unde�ned in a type. 37

5.5 AND/OR tree for type operator applications equal to C. 38

5.6 AND/OR tree for unde�ned term operator application. 38

5.7 AND/OR tree for formula operator application false. 39

5.8 AND/OR tree for empty type applications. 40

5.9 AND/OR tree for type applications equal to C. 41

5.10 AND/OR tree for function is de�ned in a dependent function type. . 42

5.11 AND/OR tree for functions unde�ned in a dependent function type. . 42

5.12 AND/OR tree for function application is de�ned in a given type. . . . 43

5.13 AND/OR tree for function application is unde�ned in a given type. . 44

5.14 AND/OR tree for function abstraction is de�ned. 45

5.15 AND/OR tree for conditional term is de�ned in a given type. 46

5.16 AND/OR tree for conditional term is unde�ned in a given type. . . . 47

5.17 AND/OR tree for de�nite description is de�ned in a given type. . . . 48

5.18 AND/OR tree for de�nite description is unde�ned in a given type. . . 48

5.19 AND/OR tree for inde�nite description is de�ned in a given type. . . 49

5.20 AND/OR tree for inde�nite description is unde�ned in a given type. . 50

5.21 AND/OR tree for type quotation is de�ned in a given type. 51

5.22 AND/OR tree for term quotation is de�ned in a given type. 51

vii

viii LIST OF FIGURES

5.23 AND/OR tree for type evaluation is of C type. 52

5.24 AND/OR tree for term evaluation is unde�ned. 52

5.25 AND/OR tree for formula evaluation is false. 53

6.1 An AND/OR tree showing the order of node expansions in a breadth-

�rst search. 58

6.2 An AND/OR tree showing the order of node expansions in a depth-�rst

search (depth-bound = 2). 59

LIST OF TABLES

2.1 Chiron notation for proper expressions 12

2.2 Additional notations . 13

2.3 Implementation of Chiron expressions 15

2.4 Implementation of variable binders 16

5.1 AND node status truth table . 34

5.2 OR node status truth table . 34

ix

x LIST OF TABLES

CHAPTER 1

INTRODUCTION

1.1 Questions of De�nedness

In a standard logic all functions are total and all terms denote some value, so par-

tial functions must be represented by total functions and an unde�ned term must

be given a value. But in mathematics and computer science, unde�ned terms arise

naturally. In the following we will give an explanation of de�nedness, discuss sources

of de�nedness, and describe approaches to dealing with unde�nedness based on [6, 7].

A mathematical term is unde�ned if it has no prescribed meaning or if it denotes

a value that does not exist. There are three sources of unde�nedness:

(1) Improper function application.

(2) Improper de�nite description.

(3) Improper inde�nite description.

A function f has both a domain of de�nition Df consisting of the values at which

it is de�ned and a domain of application D∗f consisting of the values to which it may

be applied. A function f is total if Df = D∗f and strictly partial if Df ⊂ D∗f . A

function application f(a) is unde�ned if f is unde�ned, a is unde�ned, or a 6∈ Df . An

example of improper function application is
√
−4.

1

2 1. Introduction

A de�nite description is a term t of the form �the x such that A holds�. t is

unde�ned if there is no x such that A holds or there is more than one x such that A

holds. An inde�nite description is a term t of the form �some x such that A holds�.

t is unde�ned if there is no x such that A holds. De�nite and inde�nite descriptions

naturally lead to unde�ned terms in mathematics. For example, �the x ∈ R such that

x2 = 4� is a de�nite description which is unde�ned since two values (2 and −2) satisfy

the formula x2 = 4; �some x ∈ R such x2 = −4� is a unde�ned inde�nite description

since no such x satis�es x2 = −4.

There is a traditional approach to dealing with unde�nedness that is widely prac-

ticed in mathematics based on three principles:

• Atomic terms (i.e., variables and constants) are always de�ned.

• Compound terms may be unde�ned.

(1) An application of a function f(a) is unde�ned if f is unde�ned, a is unde-

�ned, or a 6∈ Df .

(2) A de�nite description is unde�ned if there is no x such that A holds or

there is more than one x such that A holds.

(3) An inde�nite description is unde�ned if there is no x such that A holds.

• Formulas are always true or false, and hence, are always de�ned. A predi-

cate application p(a) is false if p is unde�ned, a is unde�ned, or a 6∈ dom(p).

Predicates must be total.

There are three choices to formalize unde�nedness. The �rst is to formalize partial

functions and unde�ned terms in a standard logic. The second is to select or develop

a three-valued logic which admits both unde�ned terms and unde�ned formulas. And

the last is to select or develop a two-valued logic with unde�nedness.

1.2 De�nedness Checking in MathScheme

MathScheme [16], which is being developed at the McMaster University, is a project

to build a software system to help mathematics practitioners (engineers, scientists,

mathematicians, etc.) to do mathematics, especially to do rigorous mathematical

1. Introduction 3

reasoning. It is a new approach to mechanized mathematics, which seeks to combine

the capabilities of computer algebra systems such as Axiom [14], Maple [2], and

Mathematica [24] and computer theorem proving systems such as Coq [22], Isabelle

[20], and PVS [21]. The underlying logic of MathScheme, named Chiron [8, 9], is

a two-valued logic with unde�nedness. So as part of the MathScheme project, a

powerful system is needed that has an intelligent mechanism for checking de�nedness

in Chiron.

1.3 Objectives of the Thesis

The subject of this thesis is the design and code implementation of a de�nedness

checking system for the MathScheme project based on the logic Chiron. This the-

sis will introduce the concept of logics with unde�nedness and explore a de�nedness

checking system as a unit inside a mechanized mathematics system that can perform

the task of checking the de�nedness of terms. The goal is to develop a Chiron de-

�nedness checking system for the MathScheme project that automatically reduces a

de�nedness problem to simpler de�nedness problems that can be easily, or perhaps

automatically, checked.

1.4 Organization of the Thesis

This thesis illustrates how to build a Chiron de�nedness checking system for the Math-

Scheme project. It presents several theorems of de�nedness and starter AND/OR

trees for proper expressions of the Chiron logic. As such, the document is divided

into several major chapters, each of which deals with a di�erent solution piece of the

Chiron de�nedness checking system. It ends with an appendix of the source code,

which shows the details of the de�nedness checking system, and a bibliography. The

following is the outline of this thesis.

Chapter 2 (Background) presents the background concepts for our Chiron de-

�nedness checking system. It aims to give a brief overview of all the material needed

for understanding this thesis. A description of MathScheme, Chiron, simpli�cation,

and the de�nedness checking mechanism in IMPS are found in this chapter.

4 1. Introduction

Chapter 3 (Problem and Objectives) gives an overview of our research problem

and research objectives.

Chapter 4 (Theorems about De�nedness in Chiron) presents the theorems of

de�nedness for our work. These theorems are organized by the di�erent categories of

proper expressions in Chiron.

Chapter 5 (AND/OR Trees) discusses AND/OR trees. In this chapter, we in-

troduce the main idea of and AND/OR trees and present how AND/OR trees can

represent the di�erent categories of de�nedness problems in Chiron.

Chapter 6 (De�nedness Checking Mechanism) revisits classical search meth-

ods such as breadth-�rst and depth-�rst methods and establishes a novel de�nedness

checking algorithm that is used for implementing the functionalities of the de�nedness

checking system.

Chapter 7 (Implementation) provides a description of the implementation for our

de�nedness checking algorithm.

Chapter 8 (Conclusion) gives a brief summary of the thesis.

At the end, Chapter 9 (Future Work) proposes some improvements to our system

for future work.

Appendix (Source Code) contains the source code of the implementation of the

program.

1.5 Fonts

There are several fonts are used in this thesis for special purposes:

• Italics � for identifying a term that is being de�ned.

• Sans serif � for the names of Chiron symbols such as op-app.

1. Introduction 5

• Bold � for the OCaml types that represent sorts of Chiron expressions such

as sexpression.

• Typewriter � for OCaml code such as the function name node_rec.

CHAPTER 2

BACKGROUND

2.1 MathScheme

MathScheme is intended to be a new mechanized mathematics system for symbolic

computation and mathematical reasoning that is useful to a wide range of people.

It combines the strengths of symbolic algebra systems with those of formal deduc-

tion systems to yield a powerful and sound system. The mission of the MathScheme

project can be found at its homepage [16].

The short-term goals of the MathScheme project are:

(1) To develop a formal framework that integrates symbolic computation and formal

deduction.

(2) To design and implement an MMS based on the formal framework. It should

allow one to build formal languages, theories, computations, and mappings

between theories.

The long-range goal is to build an interactive mathematics laboratory that has the

capabilities of both computer algebra systems and computer theorem proving systems

and the means to formalize a wide range of mathematical knowledge. It is intended

to be a very e�ective tool for formalizing and reasoning about mathematics.

6

2. Background 7

2.2 Chiron

The logic Chiron, designed and developed by Dr. Farmer, is the logical basis for the

MathScheme mechanized mathematics system. The Chiron technique report [9] de-

�nes the values and expressions of Chiron and presents a formal de�nition of the

syntax and semantics of Chiron. This section aims to give a brief overview of Chiron

and to review the proper expressions of Chiron as well as how these expressions are

implemented.

Chiron is a derivative of von-Neumann-Bernays-Gödel set theory that is intended

to be a practical, general-purpose logic for mechanizing mathematics. It integrates

several reasoning paradigms, namely classical, permitted unde�nedness, set theory,

type theory and formalized syntax [8]. It has a type system with a universal type,

dependent types, dependent function types, subtypes, and possibly empty types.

Unlike traditional logics such as �rst-order logic and simple type theory, Chiron

has a special mechanism for handling unde�nedness. Ungrounded terms are treated

as being unde�ned, and ungrounded formulas are treated as being false. It also has

a facility for reasoning about the syntax of expressions that employs quotation and

evaluation. Chiron is well suited for MathScheme project because of its expressiveness

and strong support for dealing with unde�nedness and reasoning about syntax.

2.2.1 Values

A value is a set, class, superclass, truth value, unde�ned value, or operation. In Ch-

iron, the domain Dv of sets is a proper subdomain of the domain Dc of classes, and

Dc is a proper subdomain of the the domain Ds of superclasses. Dv is the universal

class (the class of all sets) and Dc is the universal superclass (the superclass of all

classes).

There are two truth values, t representing true and f representing false, where the

truth values are not members of Ds. There is also an unde�ned value ⊥ which serves

as the value of various sorts of unde�ned terms. ⊥ is not a member of Ds ∪ {t, f}.

8 2. Background

For n ≥ 0, an n-ary operation is a total mapping

σ : D1 × · · · ×Dn → Dn+1

where Di is Ds, Dc ∪ {⊥}, or {t, f} for all i with 1 ≤ i ≤ n+ 1. An operation is not

a member of Ds ∪ {t, f,⊥}.

2.2.2 Expressions

An expression of Chiron is inductively de�ned by the following two formation rules:

Expr-1 (Atomic expression)

s ∈ S ∪ O
exprL[s]

Expr-2 (Compound expression)

exprL[e1], . . . , exprL[en]

exprL[(e1, . . . , en)]

where n ≥ 0.

In these formation rules, O is a countable set of symbols called operator names,

S is a �xed countably in�nite set of Chiron symbols and expre[] asserts that e is an

expression of L. Hence, an expression is the same as an S-expression in Lisp.

There are four special sorts of expressions: operators, types, terms, and formulas.

A proper expression is one of these special sorts of expressions. Improper expressions

are expressions that are not proper expressions. Proper expressions denote classes,

super classes (i.e., a sets of classes), truth values, the unde�ned value and operations,

while improper expressions are nondenoting. In Chiron, operators denote operations;

types, which are used to restrict the values of operators and variables and to clas-

sify terms by their values, denote superclasses; terms denote classes or the unde�ned

value ⊥; formulas denote truth values. A term is de�ned if it denotes a class and is

unde�ned if it denotes ⊥.

The following formation rules is presented to de�ne the 25 proper expression

categories:

2. Background 9

P-Expr-1 (Operator)

o ∈ O,kindL[k1], . . . ,kindL[kn+1]

operatorL[(op, o, k1, . . . , kn+1)]

where n ≥ 0; θ(o) = s1, . . . , sn+1; and ki = si = type, typeL[ki] and si = term,

or ki = si = formula for all i with 1 ≤ i ≤ n+ 1.

P-Expr-2 (Operator application)

operatorL[(op, o, k1, . . . , kn+1)], exprL[e1], . . . , exprL[en]

p-exprL[(op-app, (op, o, k1, . . . , kn+1), e1, . . . , en) : kn+1]

where n ≥ 1 and (ki = type and typeL[ei]), (typeL[ki] and termL[ei]), or

(ki = formula and formulaL[ei]) for all i with 1 ≤ i ≤ n.

P-Expr-3 (Constant)

operatorL[(op, o, k)]

p-exprL[(con, o, k) : k]

P-Expr-4 (Variable)

x ∈ S, typeL[α]
termL[(var, x, α) : α]

P-Expr-5 (Type application)

typeL[α], termL[a]

typeL[(type-app, α, a)]

P-Expr-6 (Dependent function type)

termL[(var, x, α)], typeL[β]

typeL[(dep-fun-type, (var, x, α), β)]

P-Expr-7 (Function application)

termL[f : α], termL[a]

termL[(fun-app, f, a) : (type-app, α, a)]

P-Expr-8 (Function abstraction)

termL[(var, x, α)], termL[b : β]

termL[(fun-abs, (var, x, α), b) : (dep-fun-type, (var, x, α), β)]

10 2. Background

P-Expr-9 (Conditional term)

formulaL[A], termL[b : β], termL[c : γ]

termL[(if, A, b, c) : β ∪ γ]

P-Expr-10 (Existential quanti�cation)

termL[(var, x, α)], formulaL[B]

formulaL[(exists, (var, x, α), B)]

P-Expr-11 (Unique existential quanti�cation)

termL[(var, x, α)], formulaL[B]

formulaL[(uni-exists, (var, x, α), B)]

P-Expr-12 (Universal quanti�cation)

termL[(var, x, α)], formulaL[B]

formulaL[(forall, (var, x, α), B)]

P-Expr-13 (De�nite description)

termL[(var, x, α)], formulaL[B]

termL[(def-des, (var, x, α), B) : α]

P-Expr-14 (Inde�nite description)

termL[(var, x, α)], formulaL[B]

termL[(indef-des, (var, x, α), B) : α]

P-Expr-15 (Set construction)

termL[a1 : α1], . . . , termL[a1 : α1]

termL[(set-cons, a1, . . . , an) : β]

where n ≥ 0 and β =

{
C if n = 0

α1 ∪ · · · ∪ αn otherwise.

P-Expr-16 (List construction)

termL[a1 : α1], . . . , termL[a1 : α1]

termL[(list-cons, a1, . . . , an) : list-type(β)]

where n ≥ 0 and β =

{
C if n = 0

α1 ∪ · · · ∪ αn otherwise.

2. Background 11

P-Expr-17 (Class abstraction)

termL[(var, x, α)], formulaL[B]

termL[(class-abs, (var, x, α), B) : power-type(α)]

P-Expr-18 (Left type)

typeL[α]

typeL[(left-type, α)]

P-Expr-19 (Right type)

typeL[α], termL[a]

typeL[(right-type, α, a)]

P-Expr-20 (Dependent type product)

termL[(var, x, α)], typeL[β]

typeL[(dep-type-prod, (var, x, α), β)]

P-Expr-21 (Dependent ordered pair)

termL[a : α], termL[b : β]

termL[(dep-ord-pair, a, b) : (dep-type-prod, (var, x, α), β)]

P-Expr-22 (Dependent head)

termL[a : α]

termL[(dep-head, a) : (left-type, α)]

P-Expr-23 (Dependent tail)

termL[a : α]

termL[(dep-tail, a) : (right-type, α, (dep-head, a))]

P-Expr-24 (Quotation)

exprL[e]

termL[(quote, e) : α]

where α is:

(1) Esy if e ∈ S.

(2) Eon if e ∈ O.

(3) Eop if e is an operator.

12 2. Background

(4) Ety if e is a type.

(5) Epβq
te if e is a term of type β.

(6) Efo if e is a formula.

(7) E if none of the above.

P-Expr-25 (Evaluation)

termL[a],kindL[k]

p-exprL[(eval, a, k) : k]

The o�cial notation and compact notation for those proper expressions are given

in Table 2.1. The column "INCLUDED?" shows whether those proper expressions

can be checked by our de�nedness checking system.

Table 2.1: Chiron notation for proper expressions

OFFICIAL NOTATION COMPACT NOTATION INCLUDED?

(op, o, k1, . . . , kn+1) (o :: k1, . . . , kn+1) NO

(op-app, (op, o, k1, . . . , kn+1), e1, . . . , en) (o :: k1, . . . , kn+1)(e1, . . . , en) YES

(con, o, k) [o :: k] YES

(var, x, α) (x : α) YES

(type-app, α, a) α(a) YES

(dep-fun-type, (var, x, α), β) (Λx : α . β) YES

(fun-app, f, a) f(a) YES

(fun-abs, (var, x, α), b) (λx : α . b) YES

(if, A, b, c) if(A, b, c) YES

(exists, (var, x, α), B) (∃x : α . B) NO

(uni-exists, (var, x, α), B) (∃ !x : α . B) NO

(forall, (var, x, α), B) (∀x : α . B) NO

(def-des, (var, x, α), B) (ι x : α . B) YES

(indef-des, (var, x, α), B) (ε x : α . B) YES

(set-cons, a1, . . . , an) {a1, . . . , an} NO

(list-cons, a1, . . . , an) [a1, . . . , an] NO

(class-abs, (var, x, α), B) (Cx : α . B) NO

(left-type, α) left(α) NO

2. Background 13

(right-type, α, a) right(α, a) NO

(dep-type-prod, (var, x, α), β) (x : α . β) NO

(dep-ord-pair, a, b) 〈a, b〉 NO

(dep-head, a) hd(a, b) NO

(dep-tail, a) tl(a, b) NO

(quote, e) peq YES

(quasiquote, (fun-app, f, bac)) pf(bac)q NO

(eval, a, k) [[a]]k YES

Because the o�cial notation shows the exact structures of expressions, we use

it to give the de�nition of Chiron expressions in the rest of this thesis. When we

describe those expressions, such as in building starter trees, we mainly use the compact

notation instead of the o�cial notation for convenience.

2.2.3 Additional Notation

The notational de�nitions in Table 2.2 de�nes additional compact notation used in

this thesis. The �rst ten notations denote types; the row 11-14 denote equalities; the

row 15-20 denote logical operators; the row 21-25 denote de�nedness operators; the

row 26-31 denote relation of types; the rest of the table denote additional build-in

operators.

Table 2.2: Additional notations

COMPACT NOTATION OFFICIAL NOTATION

V (con, set, type)

C (con, class, type)

E (con, expr, type)

Esy (con, expr-sym, type)

Eon (con, expr-op-name, type)

Eop (con, expr-op, type)

Ety (con, expr-type, type)

Ete (con, expr-term, type)

14 2. Background

Eate (op-app, (op, expr-term-type,Ety, type), a)

Efo (con, expr-formula, type)

(α =ty β) (op-app, (op, type-equal, type, type, formula), α, β)

(a = b) (op-app, (op, term-equal,C,C, type, formula), a, b,C)

(a ' b) (op-app, (op, quasi-equal,C,C, formula), a, b)

(A ≡ B) (op-app, (op, formula-equal, formula, formula, formula), A,B)

T (con, true, formula)

F (con, false, formula)

(¬A) (op-app, (op, not, formula, formula), A)

(A ∨B) (op-app, (op, or, formula, formula, formula), A,B)

(A ∧B) (op-app, (op, and, formula, formula, formula), A,B)

(A ⊃ B) (op-app, (op, implies, formula, formula, formula), A,B)

(a ↓ α) (op-app, (op, de�ned-in,C, type, formula), a, α)

(a↓) (op-app, (op, de�ned-in,C, type, formula), a,C)

(a ↑ α) (op-app, (op, unde�ned-in,C, type, formula), a, α)

(a↑) (op-app, (op, unde�ned-in,C, type, formula), a,C)

⊥C (con, unde�ned,C)

∇ (con, empty-type, type)

(α� β) (op-app, (op, type-le, type, type, formula), α, β)

(α→ β) (op-app, (op, sim-fun-type, type, type, type), α, β)

(a ∈ b) (op-app, (op, in,V,C, formula), a, b)

(α ∩ β) (op-app, (op, type-intersection, type, type, type), α, β)

∅ (con, empty-set,V)

a ⊆ b (op-app, (op, subclass,C,C, formula), a, b)

term(α) (op-app, (op, type-to-term, type,C), α)

type(a) (op-app, (op, term-to-type,C, type), α)

total(f, term(α)) (op-app, (op, total,C,C, formula), f, x)

gea(pe1q, pe2q) (op-app, (op, gea,E,E, formula), pe1q, pe2q)

strict(o) (op-app, (op, is-strict-op-name,Eon, formula), o)

2.2.4 Implementation of Chiron Expressions

Ni Hong [18] used the type system of Objective Caml (OCaml) [1] to implement the

set of Chiron expressions. In the implementation, an expression type is de�ned as

2. Background 15

a subtype of another expression type. The Types and Keywords modules establish

the fundamental type system of Chiron and o�er tools for building Chiron expres-

sions. The Keywords module de�nes the key words of Chiron and the Types module

formalizes all Chiron expressions including proper expressions and improper expres-

sions as S-expressions by using polymorphic variant types. There are three variable

binder types, tbinder, fbinder, and binder. Proper expressions are organized into

four OCaml types operator, ctype, term, and formula. Table 2.3 shows the corre-

sponding expressions of four proper expression types. Table 2.4 shows the constructors

of three variable binders.

Table 2.3: Implementation of Chiron expressions

Data Type Constructor Description

operator Operator operator

ctype TConstant type constant

TOpApp type operator application

TTypeApp type application

TBinder type binder

TEval type evaluation

term `Constant term constant

`OpApp term operator application

`Var variable

`FunApp function application

`FunAbs function abstraction

`If conditional term

`Binder term binder

`Quote quotation

`Eval term evaluation

formula FConstant formula constant

FOpApp formula operator application

FBinder formula binder

FEval formula evaluation

16 2. Background

Table 2.4: Implementation of variable binders

Data Type Constructor Description

tbinder Dep_fun_type dependent function type

Dep_type_prod dependent type product

binder Def_des de�nite description

Indef_des inde�nite description

Class_abs Class abstraction

fbinder Exists existential quanti�cation

Uni_exists unique existential quanti�cation

Forall universal quanti�cation

2.3 Simpli�cation and Contexts in MathScheme

A simpli�er is an important part in many proof assistants. The simpli�er for Math-

Scheme is designed to be a tool that provide facilities to help the end users or other

processes of the system accomplish their proofs and computation tasks. As a com-

ponent of MathScheme project, Han Yin Zhang presented an implementation of a

framework for simplifying Chiron expressions as part of his master's research [25].

In the MathScheme framework, a simpli�er is a transformer which maps an input

expression to a simpler expression, where both expressions must denote the same

semantic value. The major routine of the simpli�cation is repeated application of

simpli�cation rules to a given expression. One kind of simpli�cation rule is a rewrite

rule which is represented by an equation such as x + x + x = 3 × x. By applying

this rule, we can simplify expression 2 + 2 + 2 to 3 × 2. The other kind of rules are

designed to deal with complex tasks which cannot be represented by equations. The

simpli�cation result also depends on the context, i.e., the background assumptions.

The de�nition of context and some context-based techniques for symbolic compu-

tation have been given in [12]. A context is de�ned as a set of formulas Γ = {1, . . . ,n }.
Those formulas ordinarily serve as background assumptions. A formula B is true in

the context if the members of the context logically imply B. A global context contains

2. Background 17

all the axioms and mathematical knowledge we know. Whereas a �context at a place

in a formula� is called a local context [17]. In rigorous mathematical reasoning, con-

texts are necessary to manage the assumptions that arise in the course of reasoning

and provide a mechanism for keeping track of what can be assumed at various places

in a formula.

In the implementation of the simpli�er for MathScheme project, when the simpli-

�er is given to a formula F , it �rst checks if this formula is in the context. If F is in

the context, simpli�er will immediately simplify F to T. If the negation of F is in the

context, simpli�er will simplify F to F. Otherwise, simpli�er will call our de�nedness

checking system to check the de�nedness of F .

2.4 De�nedness Checking in IMPS

IMPS, an Interactive Mathematical Proof System [3, 5, 11], is a mathematical proof

system developed in the early 1990s at the MITRE Corporation. The IMPS system

has proven to be a very e�ective and powerful proof system for formalizing and rea-

soning about traditional mathematics. A major part of the success of IMPS is due

to its ability to e�ectively deal with partial functions and unde�ned terms.

LUTINS [4, 5, 13], a version of simple type theory that admits partial functions,

unde�ned terms, and subtypes, is the logical basis of IMPS. Because LUTINS does

not assume that all functions are total and all expressions are de�ned, term simpli�-

cation in LUTINS must check the de�nedness of expressions in the course of proof.

The algorithm in IMPS for de�nedness checking is embedded in the IMPS simpli�er,

which separates the simplifying of de�nedness assertions into two levels (lower level

and upper level), according to whether recursive calls to the simpli�er are involved

[12, 10]. The two levels of the de�nedness checking algorithm are introduced in the

following paragraphs.

In the lower level of de�nedness checking, there are no recursive calls to the sim-

pli�er. There are two theorems used in the lower level:

• Totality :

∀x :1, . . . , xn : αn . f(x1, . . . , xn) ↓ α

18 2. Background

where i = 1, . . . , n

• Unconditional Sort coercions :

∀x : α . x ↓ β

The relation of sorts together with the totality theorems are used in IMPS to check

the de�nedness. The results of the lower level of de�nedness checking are passed to

the upper layer, which uses conditional information.

In the upper level, the simpli�er attempts to reduce the resulting assertions to

truth. There are two primary kinds of information about the domain and range of

functions, and the relations between sorts, in the theory of this level.

• De�nedness conditions of the form:

∀x1 : α1, . . . , xn : αn . ψ(x1, . . . , xn) ⊃ f(x1, . . . , xn) ↓ α

• Value information of the form:

∀x1 : α1, . . . , xn : αn . φ(x1, . . . , xn, g(x1, . . . , xn)) ↓ α

• Conditional sort coercions :

∀x : β . φ(x) ⊃ x ↓ α

We will use similar ideas of IMPS for our work. The Chiron de�nedness checking

system will check de�nedness in a type and employ theorems concerning the domain

and range of functions and the relations between types. And it will also use the

method of local context to check de�nedness within an expression.

CHAPTER 3

PROBLEM AND OBJECTIVES

3.1 De�nedness in Chiron

Because Chiron supports the paradigm of permitting unde�nedness, in which terms

may be unde�ned and functions may be partial, many questions about the de�ned-

ness of expressions must be answered in the course of a proof.

The unde�ned expressions are handled in Chiron according to the traditional

approach [6, 7] to unde�nedness:

• The value of an unde�ned term is the unde�ned value ⊥.

• The value of an unde�ned type is the universal superclass Dc.

• The value of an unde�ned formula is f.

De�nedness is expressed in Chiron by two operators: e ↓ α and e↓. The �rst read
�e is de�ned in α�, means the e is de�ned and its value is in the class denoted by α.

The latter is read �e is de�ned�, which means e is de�ned and its value is of the type

denoted by C.

19

20 3. Problem and Objectives

3.2 De�nedness Checking of Chiron Expressions

If a system is developed based on the Chiron logic such as MathScheme, it must

provide automated support for checking that expressions are well de�ned or de�ned

with a value in a particular type.

Now we think about an example from [6]:

∀x, y : Z, z : Q . 2 < z ⊃ (x ∗ y − 3!÷ z) ↓ Q

To prove this assertion in MathScheme, we need to check some de�nedness facts

including:

• N is nonempty.

• Z is nonempty.

• Q is nonempty.

• N is a subtype of Z.

• Z is a subtype of Q.

• 3 ↓ N.

• ! is de�ned at 3.

• ∗ and − are total on Z× Z.

• ∀x, y : Z . y 6= 0 ⊃ x÷ y ↓ Z.

• ∀x : Q . 2 < x ⊃ x 6= 0.

This thesis presents a Chiron de�nedness checking system to check the de�nedness

problems of formulas like those above. It provides automated support for checking

the de�nedness of Chiron expressions in the course of a proof, so that users can avoid

proving a large number of (mostly trivial) theorems. The ultimate goal of this system

is to provide a powerful mechanism to automatically reduce a de�nedness problem to

simpler de�nedness problems that can be easily, or perhaps automatically, checked.

The objectives of our system are listed as follows.

3. Problem and Objectives 21

Objective 1: To provide (constructive) theorems for checking the de�nedness of Ch-

iron expressions.

There are several possibilities of unde�ned expressions in Chiron:

• Operator, type, and function applications may be nondenoting.

• Function abstractions may be nonexistent.

• De�nite and inde�nite descriptions may be improper.

• Out of range variables and evaluations.

The de�nedness checking system should have a collection of theorems for deter-

mining whether an expression is de�ned or not and concerning the relations between

types.

Objective 2: To design a representation of de�nedness problems.

A de�nedness problem can often be reduced to other de�nedness problems. An

AND/OR tree is a good data structure for representation the reduction of de�nedness

problems. By using AND/OR trees, it is easy to represent de�nedness problems and

reduce them to simpler problems which can be checked by de�nedness checking rules.

The de�nedness checking system should have the following categories of AND/OR

trees based on the main categories of proper expressions of Chiron:

• Operator and operator applications.

• Constants and variables.

• Type applications and dependent function types.

• Function applications and abstractions.

• Conditional terms.

• De�nite and inde�nite descriptions.

• Quotations.

• Evaluations.

22 3. Problem and Objectives

The other categories of proper expressions, which are not considered in this thesis,

can be handled similarly.

Objective 3: To provide a mechanism for performing de�nedness checking tasks on

formulas automatically.

Since the AND/OR trees may be very large, one job of the de�nedness checking

mechanism is to avoid full development of the AND/OR tree implied by the problem.

Therefore, as the tree grows, the de�nedness checking system must make decisions

about which leaf nodes to reduce.

We analyse the original de�nedness problem and simplify it to some subproblems

based on the AND/OR trees so that by checking the de�nedness of the subproblems

we can generate a solution to the original problem. In arti�cial intelligence research,

there are many search methods such as breadth-�rst, depth-�rst, and best-�rst meth-

ods to �nd possible solutions. Di�erent problem solving methods have their own ben-

e�ts when they are used to handle di�erent de�nedness problems. We should employ

a similar problem solving methods to present a novel algorithm for our de�nedness

checking system. This algorithm is capable of reducing de�nedness problems to sim-

pler problems and checking the de�nedness conditions easily, and e�ciently, and in

some cases, fully automatically.

CHAPTER 4

THEOREMS ABOUT DEFINEDNESS IN

CHIRON

4.1 Overview

The theorems of de�nedness are the foundation of the de�nedness checking system.

There is a variety of theory-speci�c information about Chiron used by the de�nedness

checking system :

• The de�nedness facts about particular kinds of terms.

• The types of expressions, particularly the types of variables and constants.

• The relationships between types.

• Facts about the domain and range of functions and operators.

This Chapter presents the theorems for de�nedness checking of the logic Chiron based

on the axioms and valuation functions from [9].

4.2 De�nedness Theorems

The following theorems specify the de�nedness facts of equalities.

23

24 4. Theorems about De�nedness in Chiron

Theorem 1 (Equivalence Relations)

(1) =ty is an equivalence relation.

(2) ' is an equivalence relation.

(3) a ' b ≡ (a↓ ∨ b↓) ⊃ a = b.

Proof Parts 1 and 2 follows from the Axiom Schema 2 in [9]. And part 3 is the

de�nition of quasi-equality constructor '. 2

The following theorems deal with the de�nedness of variables.

Theorem 2 (Variable De�nedness)

(1) (x : α)↓ ⊃ (x : α) ↓ α.

(2) (x : α)↓ ⊃ (α 6=ty ∇).

Proof Part 1 from Axiom Schema 5 in [9]. And part 2 follows from the de�nition of

operator de�ned-in and the de�nition of the valuation function on variables. 2

The following theorems specify the general de�nedness laws for operators. For a kind

k, let

k =


k if k = type

C if k is a type

k if k = formula.

Theorem 3 (Operator Application)

(1) ei1 ↓ ki1 ∧ · · · ∧ eim ↓ kim ⊃
(o :: k1, . . . , kn, type)(e1, . . . , en) =ty

(o :: k1, . . . , kn, type)(e1, . . . , en)

where n ≥ 1 and ki1 , . . . , kim is a subsequence of types in the sequence k1, . . . , kn

of kinds.

(2) ei1 ↓ ki1 ∧ · · · ∧ eim ↓ kim ⊃
(o :: k1, . . . , kn, β)(e1, . . . , en) '
(o :: k1, . . . , kn, β)(e1, . . . , en)

4. Theorems about De�nedness in Chiron 25

where n ≥ 1 and ki1 , . . . , kim is a subsequence of types in the sequence k1, . . . , kn

of kinds.

(3) ei1 ↓ ki1 ∧ · · · ∧ eim ↓ kim ⊃
(o :: k1, . . . , kn, formula)(e1, . . . , en) ≡
(o :: k1, . . . , kn, formula)(e1, . . . , en)

where n ≥ 1 and ki1 , . . . , kim is a subsequence of types in the sequence k1, . . . , kn

of kinds.

(4) (o :: k1, . . . , kn, β)(e1, . . . , en)↓ ⊃
(o :: k1, . . . , kn, β)(e1, . . . , en) =

(o :: k1, . . . , kn,C)(e1, . . . , en)

where n ≥ 0.

(5) (strict(o) ∧ a↑) ⊃
(o :: k1, . . . , ki−1, α, ki+1, . . . , kn, type)

(e1, . . . , ei−1, a, ei+1, . . . , en) =ty C

where n ≥ 1.

(6) (a↓ ∧ a ↑ α) ⊃
(o :: k1, . . . , ki−1, α, ki+1, . . . , kn, type)

(e1, . . . , ei−1, a, ei+1, . . . , en) =ty C

where n ≥ 1.

(7) (strict(o) ∧ a↑) ⊃
(o :: k1, . . . , ki−1, α, ki+1, . . . , kn, β)

(e1, . . . , ei−1, a, ei+1, . . . , en)↑

where n ≥ 1.

(8) (a↓ ∧ a ↑ α) ⊃
(o :: k1, . . . , ki−1, α, ki+1, . . . , kn, β)

(e1, . . . , ei−1, a, ei+1, . . . , en)↑

where n ≥ 1.

(9) (strict(o) ∧ a↑) ⊃
(o :: k1, . . . , ki−1, α, ki+1, . . . , kn, formula)

26 4. Theorems about De�nedness in Chiron

(e1, . . . , ei−1, a, ei+1, . . . , en) ≡ F

where n ≥ 1.

(10) (a↓ ∧ a ↑ α) ⊃
(o :: k1, . . . , ki−1, α, ki+1, . . . , kn, formula)

(e1, . . . , ei−1, a, ei+1, . . . , en) ≡ F

where n ≥ 1.

(11) (o :: k1, . . . , kn, β)(e1, . . . , en)↓ ⊃
(o :: k1, . . . , kn, β)(e1, . . . , en) ↓ β

where n ≥ 0.

Proof Parts 1 − 4, 6, 8, 10 − 11 are parts of Axiom Schemas 3. Parts 5, 7, 9 follow

from the de�nition of the operator is-strict-op-name. 2

The de�nedness laws for the built-in operators named expr-term-type, in, and term-equal

are speci�ed by the following theorem.

Theorem 4 (Built-In Operator De�nedness)

(1) a ↑ Ety ⊃ Ea =ty C.

(2) a ∈ b ⊃ (a↓ ∧ b↓).

(3) a =α b ⊃ (a ↓ α ∧ b ↓ α).

Proof Follows from Axiom Schemas 4. 2

The following theorems deal with the extensionality of types.

Theorem 5 (Types)

(1) � is a partial order for types.

(2) ∇ is the minimum value in � .

(3) C is the maximum value in � .

(4) α� β ≡ (∀x : C . x ↓ α ⊃ x ↓ β).

4. Theorems about De�nedness in Chiron 27

Proof Part 1 and 4 follow from the de�nition of operator type-le. Part 2 follows from

the de�nition of operator empty-type, and part 3 follows of the speci�cation of C. 2

The following theorems specify the de�nedness in a type operator.

Theorem 6 (De�nedness in a Type)

(1) (a ↓ α ∧ α� β) ⊃ a ↓ β.

(2) (a ↓ α ∧ α ∩ β =ty ∇) ⊃ a ↑ β.

(3) ∀ a : α . a↓ ⊃ a ↓ α.

(4) a↓ ⊃ a ↓ C.

(5) a↑ ⊃ a ↑ α

where α is of any type.

(6) a ↑ ∇.

Proof Pick a model M = (S, V), and assume Vϕ((a ↓) ∧ (α � β)) ≡ T. By the

de�nition of de�ned-in, Vϕ(a) ∈ Vϕ(α) and Vϕ(α) ⊆ Vϕ(β) follows from the de�nition

of type-le. Therefore, Vϕ(a) ∈ Vϕ(β), and so part 1 is proved to be true. Part 2 can

be proved by same method. And the last four parts follow form the de�nition of

operator de�ned-in. 2

The following theorems deal with the de�nedness of type applications.

Theorem 7 (Type Application)

(1) α =ty ∇ ⊃ α(a) =ty ∇.

(2) a↑ ⊃ α(a) =ty C.

Proof Pick a model M = (S, V), and assume Vϕ(α =ty ∇) ≡ T. By the de�nition of

type-equal and empty-type, Vϕ(α) = ∅. Therefore, Vϕ(α)[Vϕ(a)] = ∅, and so part 1 is

proved to be true. Part 2 follows from the de�nition in [9] of the valuation function

on type applications. 2

De�nedness involving dependent function types is handled by the following theorem.

28 4. Theorems about De�nedness in Chiron

Theorem 8 (Dependent Function Type)

(1) (Λx : α . β) 6= ∇.

(2) (α′ � α) ∧ (∀x : α′ . β′ � β) ⊃ Λx : α′ . β′ � Λx : α . β.

Proof

Part 1 (λx : ∇ . ∅) ↓ (Λx : α . β) follows from the de�nition of the valuation

function on dependent function types. Therefore, part 1 is proved to be true.

Part 2 Pick a model M = (S, V), and assume Vϕ((α′ � α)∧ (∀x : α′ . β′ � β) ≡
T). Let f ∈ Vφ(Λx : α′ . β′). If f(d) is de�ned, then d ∈ Vφ(α′) and so d ∈ Vφ(α) by

hypothesis. Also, when f(d) is de�ned, f(d) ∈ Vφ[x 7→d](β′) and f(d) ∈ Vφ[x 7→d](β) by

hypothesis. Therefore, f ∈ Vφ(Λx : α . β) and so part 2 is proved to be true. 2

The laws for de�nedness of conditional terms are speci�ed by the following two the-

orem.

Theorem 9 (Conditional Terms)

(1) A ⊃ if(A, b, c) ' b.

(2) ¬A ⊃ if(A, b, c) ' c.

Proof This is Axiom Schemas 8 in [9]. 2

The de�nedness of de�nite description is handled by the following theorem, one part

for proper de�nite descriptions and another for improper de�nite descriptions.

Theorem 10 (De�nite Description)

(1) (∃ !x : α . A) ⊃ (ι x : α . A) ↓ α.

(2) ¬(∃ !x : α . A) ⊃ (ι x : α . A)↑ .

Proof This is Axiom Schemas 9 in [9]. 2

The de�nedness of inde�nite description is handled by the following theorem, one part

for proper inde�nite descriptions and another for improper inde�nite descriptions.

4. Theorems about De�nedness in Chiron 29

Theorem 11 (Inde�nite Description)

(1) (∃x : α . A) ⊃ (ε x : α . A) ↓ α).

(2) ¬(∃x : α . A) ⊃ (ε x : α . A)↑ .

Proof This is the �rst two parts of Axiom Schema 10 in [9]. 2

The following theorem deals with the de�nedness of quotation.

Theorem 12 (Quotation)

(1) pαq ↓ Ety

where α is a type.

(2) paq ↓ Ete

where a is a term.

(3) paq ↓ Epαq
te

where a is a term of type α.

(4) pAq ↓ Efo

where A is a formula.

(5) psq ↓ Esy

where s ∈ S.

(6) poq ↓ Eon

where o ∈ O.

Proof Parts 1− 4 follow from Axiom Schemas 13 in [9] and parts 5 and 6 are parts

1 and 2 of Axiom Schemas 11 in [9]. 2

The following theorems deal with the de�nedness of evaluation.

Theorem 13 (Evaluation)

30 4. Theorems about De�nedness in Chiron

(1) [[pαq]]ty =ty α

where α is eval-free.

(2) ¬gea(b, ptypeq) ⊃ [[b]]ty =ty C.

(3) [[paq]]α = if(a ↓ α, a,⊥C)

where a is eval-free.

(4) ¬gea(b, pαq) ⊃ [[b]]α ↑ .

(5) [[pAq]]fo ≡ A

where A is eval-free.

(6) ¬gea(b, pformulaq) ⊃ [[b]]fo ≡ F.

Proof This is Axiom Schemas 12 in [9]. 2

CHAPTER 5

AND/OR TREES

5.1 Overview

From a broadest view, any computational task can be regarded as part of the larger

problem process that includes problem solving. In arti�cial intelligence research,

many problem-solving methods solve problems by searching for a solution in a space

of possible solutions. One approach to problem solving is problem reduction. In this

approach, we analyse the original problem and simplify it to some subproblems so

that solutions to the subproblems produce a solution to the original problem.

The main purpose for us is to develop a Chiron de�nedness checking system for

the MathScheme project that automatically reduces a de�nedness problem to simpler

de�nedness problems that can be easily, or perhaps automatically, checked. There-

fore, the de�nedness checking problem could be considered as a problem-reduction

problem. As demonstrated in the literature in arti�cial intelligence [23], a good for-

malism for representing the problem-reduction approach to problem solving is based

on AND/OR trees [19]. We can conveniently diagram the reduction of a de�nedness

problem to alternative sets of problems by using three-valued AND/OR trees.

This chapter is divided into two main sections. The �rst section describes the

main idea of AND/OR trees by a simple example. The second section presents how

AND/OR trees can represent di�erent categories of de�nedness problems in Chiron

31

32 5. AND/OR Trees

and explains why those trees are sound based on the de�nedness theorems given in

the Chapter 4.

5.2 Formalization of AND/OR Trees for De�nedness

Problems

An AND/OR tree is a representation of a reduction problem involving conjunctions

and disjunctions of subproblems. Suppose, we have a problem A which can be solved

either by solving problems B and C, or by solving problem D. Problems B and C

constitute one set of problems, problem D another. The relationship is shown by the

structure in Figure 5.1. There the nodes of this structure are labelled by the problems

they represent.

In the �gure, the node labelled E serves as the parent for problems B and C.

Since the problem A is reduced to alternative subproblems D or E, the node labelled

A is called an OR node, which is indicated with a single-lined square. Problem E,

however, is reduced to a set of subproblems B and C, all of which must be solved

to solve the parent node E. So the node labelled E is called an AND node and it

indicated with a double-lined square. The nodes labelled B, C and D, which are indi-

cated with an ellipse, are called leaf nodes. Structures like those shown in Figure 5.1

are called AND/OR trees.

We will often employ the following terms in describing AND/OR trees: parent

nodes, successor nodes, AND nodes, OR nodes, and leaf nodes. The AND/OR trees

use for a de�nedness checking system are the same as classical AND/OR trees except

the individual nodes of the AND/OR trees hold Chiron formulas.

De�nition 1 (AND node) A node is an AND node if the problem it represents

will be solved if all of the subproblems represented by its successors are solved.

De�nition 2 (OR node) A node is an OR node if the problem it represents will be

solved if any of the the subproblems represented by its successors are solved.

De�nition 3 (Leaf node) A node is a leaf node if it does not have any successor.

5. AND/OR Trees 33

A

E

B C

D

Figure 5.1: AND/OR tree for D ∨ (B ∧ C).

De�nition 4 (Start node) A start node is an OR node associated with a Chiron

formula which represents the initial de�nedness problem. The start node is the root

of an AND/OR tree.

The nodes of classical AND/OR trees are usually marked as solved or unsolved.

For de�nedness checking we mark AND/OR nodes di�erently. They are given values

true, false, and unknown to represent the status of each node. The general de�nitions

of the three values are as follows:

De�nition 5 (True) The status of a node is true if the formula held by the node is

known to be true.

De�nition 6 (False) The status of a node is false if the formula held by the node

is known to be false.

De�nition 7 (Unknown) The status of a node is unknown if the formula held by

the node is not known.

Now we present the propositions for checking the status of di�erent nodes.

Proposition 1 (True)

• The status of an AND node is true if all of the formulas held by its successors

are known to be true.

34 5. AND/OR Trees

• The status of an OR node is true if at least one of the formula held by its

successors is known to be true.

Proposition 2 (Unknown) A node is an unknown node if it is neither true nor

false.

From these theorems, we can generate the node status truth tables which will be

useful later for our de�nedness checking process. For an AND node, the truth table

is as follows:

Table 5.1: AND node status truth table

AND True False Unknown

True True Unknown Unknown

False Unknown Unknown Unknown

Unknown Unknown Unknown Unknown

And for an OR node, the truth table is as follows:

Table 5.2: OR node status truth table

OR True False Unknown

True True True True

False True Unknown Unknown

Unknown True Unknown Unknown

Then we need to prove that the AND/OR trees are sound. The de�nition of

soundness is as follows:

De�nition 8 (Sound) An AND/OR tree is sound if whenever the leaf nodes are

true the root of the tree is also true.

A solution tree of an AND/OR Tree T is then de�ned to be any subtree S of T

having the following properties:

• The root node of T is in S.

5. AND/OR Trees 35

• Suppose a node A of T is an AND node and is included in S. Then all of the

successors of A are also included in S.

• Suppose a node A of T is an OR node and is included in S. Then one and only

one of the successors of A is also included in S.

• All of the leaf nodes in the solution graph have the status true.

Assume that in our example above the node B is an unknown node, and the nodes

C and D are true nodes. Then the status of node E is unknown. Therefore, we show

in Figure 5.2 a solution tree is indicated by the subtree whose edges are thick, i.e., in

this case the tree composed of nodes A and D.

A

E

B C

D

Figure 5.2: Example of a solution graph of an AND/OR tree.

5.3 Reducing De�nedness Problems in Chiron Using

Starter Trees

An AND/OR tree may be generated to reduce the de�nedness problems in Chiron.

The generation of this tree comprises a starter tree building process that represent

basic de�nedness problems reducing techniques.

De�nition 9 (Starter tree) An AND/OR tree is a starter tree if it represents the

reduction of a de�nedness problem of basic Chiron proper expressions.

36 5. AND/OR Trees

In this section we shall present starter trees for reducing de�nedness problems in

Chiron based on the proper expressions given in [9] and prove the soundness of those

trees based on the theorems given in Chapter 4.

5.3.1 General Cases

Figure 5.3 is the AND/OR tree used to record how the assertion of a term a of type

α de�ned in a type β is reduced.

a ↓ β

(a↓) ∧ (α� β)

a ↓ α � β

Figure 5.3: AND/OR tree for the general cases of being de�ned in a type.

Soundness Proof a ↓ α follows immediately from a ↓ by Theorem 6(3). Then

a ↓ β follows from a ↓ α and α � β by Theorem 6(1). Therefore the formula of the

root node is true when a↓ and α� β are true, and so the tree in Figure 5.3 is sound. 2

Figure 5.4 is the AND/OR tree used to record how the assertion of a term a is

unde�ned in a type β is reduced.

Soundness Proof a ↑ β follows immediately from a ↑ by Theorem 6(5). Also,

a ↑ β follows from β =ty ∇ by Theorem 6(2). Therefore the formula of the root node

is true when a↑ or β =ty ∇ is true, and so the tree in Figure 5.4 is sound. 2

5. AND/OR Trees 37

a ↑ β

a ↑ β =ty ∇

Figure 5.4: AND/OR tree for general cases unde�ned in a type.

5.3.2 Operator Application

If o ∈ O and k1, . . . , kn+1 are kinds where n ≥ 0, then

(op, o, k1, . . . , kn+1)

is an n-ary operator.

Chiron has two kinds of operators, strict and non-strict. The de�nedness checker

can check the context to see whether an operator is strict or non-strict, i.e., whether

the context contains strict(o) or ¬strict(o).

Suppose O = (op, o, k1, . . . , kn, kn+1) is an operator and e1 . . . , en are expressions

such that ki = type and ei is a type, ki is a type and ei is a term, or ki = formula and

ei is a formula for all i with 1 ≤ i ≤ n. Then

(op-app, O, e1, . . . , en)

is an expression called an operator application. The operator application is a type if

kn+1 = type, a term of type kn+1 if kn+1 is a type, and a formula if kn+1 = formula.

There are many di�erent operators in Chiron, so it is important to consider the

general facts about of operator applications. First, let us think about the type oper-

ator application. Figure 5.5 is the AND/OR tree used to record how the assertion of

an operator application (o :: k1, . . . , kn, type)(e1, . . . , en) equals to C is reduced.1

1Notice that when we describe AND/OR trees, we use the Chiron compact notations for node

contents whenever it is convenient.

38 5. AND/OR Trees

(o :: k1, . . . , kn, type)(e1, . . . , en) =ty C

(strict(o)) ∧ (ei ↑ for some i)

strict(o) ei ↑ for some i

Figure 5.5: AND/OR tree for type operator applications equal to C.

Soundness Proof The soundness of the tree in Figure 5.5 follows from Theorem

3(5). 2

Figure 5.6 is the AND/OR tree used to check whether a term operator application

(o :: k1, . . . , kn, β)(e1, . . . , en) is unde�ned.

(o :: k1, . . . , kn, β)(e1, . . . , en) ↑

(strict(o)) ∧ (ei ↑ ki for some i)

strict(o) ei ↑ ki for some i

Figure 5.6: AND/OR tree for unde�ned term operator application.

Soundness Proof The soundness of the tree in Figure 5.6 follows from Theorem

3(7). 2

5. AND/OR Trees 39

Figure 5.7 is the AND/OR tree used to check whether a formula operator appli-

cation (o :: k1, . . . , kn, formula)(e1, . . . , en) is false.

(o :: k1, . . . , kn, formula)(e1, . . . , en) ≡ F

(strict(o)) ∧ (ei ↑ ki for some i)

strict(o) ei ↑ ki for some i

Figure 5.7: AND/OR tree for formula operator application false.

Soundness Proof The soundness of the tree in Figure5.7 follows from Theorem

3(9). 2

5.3.3 Constants

Suppose O = (op, o, k) is an operator, then

(con, o, k)

is a constant of type k. It is a type if k is type, a term if k is of type α, a formula if

k is formula.

Term constants are almost always de�ned, type constants are almost always

nonempty. There are no applicable theorems, thus the de�nedness checker will check

the context to see whether a term constant is de�ned or a type constant is nonempty.

5.3.4 Variables

If x ∈ S and α is a type, then

(var, x, α)

40 5. AND/OR Trees

is a term of type α called a variable. As in traditional predicate logic, a variable may

occur as either bound or free in a proper expression. The value of a bound variable

(var, x, α) is restricted to be in the type α. The value of a free variable (var, x, α) is

either in the type α or is the unde�ned value ⊥.

The method to check the de�nedness problems of variables is covered under the

general cases in Section 3. Figure 5.3 is the AND/OR tree used to check whether

a variable is de�ned in a given type β. And Figure 5.4 is used to check whether a

variable is unde�ned in a given type β.

5.3.5 Type Application

If α is a type and a is a term, then

(type-app, α, a)

is a type called a type application. If a is unde�ned, the type application denotes the

domain Dc of all classes.

The general de�nedness AND/OR Trees for type applications are present as the

following �gures:

Figure 5.8 is the AND/OR tree used to record how the assertion of a type appli-

cation equals to empty is reduced.

α(a) =ty ∇

α =ty ∇

Figure 5.8: AND/OR tree for empty type applications.

Soundness Proof The soundness of the tree in Figure 5.8 follows from Theorem

7(1). 2

5. AND/OR Trees 41

Figure 5.9 is the AND/OR tree used to record how the assertion of a type appli-

cation equals to C is reduced.

α(a) =ty C

a ↑

Figure 5.9: AND/OR tree for type applications equal to C.

Soundness Proof The soundness of the tree in Figure 5.9 follows from Theorem

7(2). 2

5.3.6 Dependent Function Types

If (var, x, α) is a variable and β is a type, then

(dep-fun-type, (var, x, α), β)

is a type called a dependent function type.

The general de�nedness AND/OR trees for dependent function type are presented

by the following �gures.

Figure 5.10 is the AND/OR tree used to record how the assertion of a function

de�ned in a dependent function type is reduced.

Soundness Proof The soundness of the tree in Figure 5.10 follows from Theorem

8(2). 2

Figure 5.11 is the AND/OR tree used to record how the assertion of a function

unde�ned in a dependent function type is reduced.

42 5. AND/OR Trees

Λx : α′ . β′ � Λx : α . β

(α′ � α) ∧ (∀x : α′ . β′ � β)

α′ � α ∀x : α′ . β′ � β

Figure 5.10: AND/OR tree for function is de�ned in a dependent function type.

f ↑ (Λx : α . β)

f 6= ∅ ∧
β =ty ∇

f 6= ∅ ∧
α =ty ∇

¬fun(f)

Figure 5.11: AND/OR tree for functions unde�ned in a dependent function type.

Soundness Proof

Based on the de�nition of a dependent function type, we know that if f is a term

of type Λx : α . β and a is a term of type α, then the application f(a) is of type

(Λx : α . β)(a).

f(a) ↑ (Λx : α . β)(a) follows immediately from f 6= ∅ ∧ β =ty ∇, and f ↑ (Λx :

α . β) follows from f(a) ↑ (Λx : α . β)(a) by the de�nition of a dependent function

type. Also, a ↑ α follows immediately from fun(f) 6= ∅ ∧ α =ty ∇ by Theorem 6(6),

and f ↑ (Λx : α . β) follows from a ↑ α by the de�nition of a dependent function

type. And f ↑ (Λx : α . β) follows from ¬fun(f) by the same de�nition. Therefore

5. AND/OR Trees 43

the formula of the root node is true when fun(f) 6= ∅∧β =ty ∇, fun(f) 6= ∅∧α =ty ∇
or ¬fun(f) is true, and so the tree is sound. 2

5.3.7 Function Application

If f is a term of type γ and a is term of type α, then

(fun-app, f, a)

is a term of type (type-app, γ, a) called a function application.

Figure 5.12 is the AND/OR tree used to record how the assertion of a function

application de�ned in a given type is reduced.

(f : Λx : α . β)(a) ↓ γ

(a ↓ α) ∧ (total(f, term(α))) ∧
(Λx : α . β)(a)

a ↓ α total(f, term(α))

(Λx :

α .

β)(a)�
γ

(f(a)↓) ∧ (Λx : α . β)(a) � γ)

f(a)↓
(Λx : α .

β)(a) � γ

Figure 5.12: AND/OR tree for function application is de�ned in a given type.

Soundness Proof

Part 1 In mathematics, a function f from α to β is total if the domain of f

is the full denotation of α. (f : Λx : α . β)(a) ↓ (Λx : α . β)(a) follows imme-

diately from a ↓ α and total(f, term(α)) by Theorem 6(1) and the de�nition of a

total function. Then (f : Λ x : α . β)(a) ↓ γ follows from (Λx : α . β)(a) � γ

44 5. AND/OR Trees

and (f : Λ x : α . β)(a) ↓ (Λx : α . β)(a) by Theorem 6(1). Therefore the formula

of the root node is true when a ↓ α, total(f, term(α)) and (Λx : α . β)(a)� γ are true.

Part 2 (f : Λx : α . β)(a) ↓ (Λx : α . β)(a) follows immediately from f(a) ↓ by
the Theorem 6(3). Then (f : Λx : α . β)(a) ↓ γ follows from (Λx : α . β)(a)� γ and

(f : Λ x : α . β)(a) ↓ (Λx : α . β)(a) by the Theorem 6(1). Therefore the formula of

the root node is true when f(a)↓ and (Λx : α . β)(a)� γ are true.

So the formula of the root node is true when the part 1 or the part 2 is true, and

so the tree in Figure 5.12 is sound. 2

Figure 5.13 is the AND/OR tree used to record how the assertion of a function

application unde�ned in a given type is reduced.

f(a) ↑ γ

f ↑ f(a) ↑ a ↑

Figure 5.13: AND/OR tree for function application is unde�ned in a given type.

Soundness Proof f(a)↑ follows immediately from f ↑ or a↑ by the de�nition of

a total function, and f(a) ↑ γ follows from f(a) ↑ by Theorem 6(5). Therefore the

formula of the root node is true when f ↑, f(a) ↑, or a ↑ is true, and so the tree in

Figure 5.13 is sound. 2

5.3.8 Function Abstraction

If (var, x, α) is a variable and b is a term of type β, then

(fun-abs, (var, x, α), b)

is a term of type (dep-fun type, (var, x, α), β) called a function abstraction.

5. AND/OR Trees 45

Figure 5.14 is the AND/OR tree used to record how the assertion of a function

abstraction is de�ned is reduced.

(λx : α . β) ↓

(term(α) ↓ V) ∧ (term(β) ↓ V)

term(α) ↓ V term(β) ↓ V

Figure 5.14: AND/OR tree for function abstraction is de�ned.

Soundness Proof The soundness of the tree in Figure 5.14 follows from the

semantics of a function abstraction. 2

5.3.9 Conditional Terms

If A is a formula and b, c are terms, then

(if, A, b, c)

is an if-then-else term called a conditional term.

Figure 5.15 is the AND/OR tree used to record how the assertion of a conditional

term de�ned in a given Type is reduced.

Soundness Proof

Part 1 if(A, b, c) ' b follows immediately from A by Theorem 9(1). Then

if(A, b, c) ↓ β follows from if(A, b, c) ' b and b ↓ β by Theorem 1(2). Next, (if, A, b, c) ↓
α follows from if(A, b, c) ↓ β and β � α by Theorem 6(1). Therefore the formula of

46 5. AND/OR Trees

if(A, b, c) ↓ α

A ∧ (b ↓ β) ∧ (β � α)

A b ↓ β β � α

¬A ∧ (c ↓ γ) ∧ (γ � α)

¬A c ↓ γ γ � α

Figure 5.15: AND/OR tree for conditional term is de�ned in a given type.

the root node is true when A, b ↓ β and β � α are true.

Part 2 if(A, b, c) ' c follows immediately from ¬A by Theorem 9(2). Then

if(A, b, c) ↓ β follows from if(A, b, c) ' c and c ↓ γ by Theorem 1(2). Next, if(A, b, c) ↓
α follows from if(A, b, c) ↓ β and γ � α by Theorem 6(1). Therefore the formula of

the root node is true when ¬A, c ↓ γ and γ � α are true.

So the formula of the root node is true when the part 1 or the part 2 is true, and

so the tree in Figure 5.15 is sound. 2

Figure 5.16 is the AND/OR tree used to record how the assertion of a conditional

term unde�ned in a given type is reduced.

Soundness Proof

Part 1 if(A, b, c) ↑ α follows from α =ty ∇ by Theorem 5(2).

Part 2 if(A, b, c) ' b follows immediately from A by Theorem 9(1). Then

if(A, b, c) ↑ follows from if(A, b, c) ' b and b ↑ by Theorem 1(2). Next, if(A, b, c) ↑ α
follows from if(A, b, c)↑ by Theorem 6(5). Therefore the formula of the root node is

true when A and b↑ are true.

5. AND/OR Trees 47

if(A, b, c) ↑ α

α =ty ∇ A ∧ (b ↑)

A b ↑

¬A ∧ (c ↑)

¬A c ↑

Figure 5.16: AND/OR tree for conditional term is unde�ned in a given type.

Part 3 if(A, b, c) ' c follows immediately from D by Theorem 9(2). Then

if(A, b, c) ↑ follows from if(A, b, c) ' c and c ↑ by Theorem 1(2). Next, if(A, b, c) ↑ α
follows from if(A, b, c)↑ by Theorem 6(5). Therefore the formula of the root node is

true when D and c↑ are true.

So the formula of the root node is true when one case of the part 1, part 2, or

part 3 is true, and so the tree in Figure 5.16 is sound. 2

5.3.10 De�nite Description

If (var, x, α) is a variable and B is a formula, then

(def-des, (var, x, α), B)

is a term called a de�nite description.

Figure 5.17 is the AND/OR tree used to record how the assertion of a de�nite

description de�ned in a given Type is reduced.

48 5. AND/OR Trees

(ι x : α . A) ↓ γ

(∃ !x : α . A)∧(α� γ)

∃ !x : α . A α � γ

Figure 5.17: AND/OR tree for de�nite description is de�ned in a given type.

Soundness Proof (ι x : α . A) ↓ α follows immediately from ∃ !x : α . A by

Theorem 10(1). Then (ι x : α . A) ↓ γ follows from (ι x : α . A) ↓ α and α � γ by

Theorem 6(1). Therefore the formula of the root node is true when ∃ !x : α . A and

α� γ are true, and so the tree in Figure 5.17 is sound. 2

Figure 5.18 is the AND/OR tree used to record how the assertion of a de�nite

description unde�ned in a given Type is reduced.

(ι x : α . A) ↑ γ

¬(∃ !x : α . A) γ =ty ∇

Figure 5.18: AND/OR tree for de�nite description is unde�ned in a given type.

Soundness Proof (ι x : α . A) ↑ follows immediately from ¬(∃ !x : α . A) by

Theorem 10(2), and (ι x : α . A) ↑ γ follows from (ι x : α . A) ↑ by Theorem 6(5).

Also, (ι x : α . A) ↑ γ follows from γ =ty ∇ by Theorem 5(2). Therefore the formula

of the root node is true when ¬(∃ !x : α . A) or γ =ty ∇ is true, and so the tree in

Figure 5.18 is sound. 2

5. AND/OR Trees 49

5.3.11 Inde�nite Description

If (var, x, α) is a variable and B is a formula, then

(indef-des, (var, x, α), B)

is a term called an inde�nite description.

Figure 5.19 is the AND/OR tree used to record how the assertion of a inde�nite

description de�ned in a given Type is reduced.

(ε x : α . A) ↓ γ)

(∃x : α . A) ∧ (α� γ)

∃x : α . A α � γ

Figure 5.19: AND/OR tree for inde�nite description is de�ned in a given type.

Soundness Proof (ε x : α . A) ↓ α follows immediately from ∃x : α . A by

Theorem 11(1). Then (ε x : α . A) ↓ γ follows from (ε x : α . A) ↓ α and α � γ by

Theorem 6(1). Therefore the formula of the root node is true when ∃x : α . A and

α� γ are true, and so the tree in Figure 5.19 is sound. 2

Figure 5.20 is the AND/OR tree used to record how the assertion of a inde�nite

description unde�ned in a given Type is reduced.

50 5. AND/OR Trees

(ε x : α . A) ↑ γ

¬(∃x : α . A) γ =ty ∇

Figure 5.20: AND/OR tree for inde�nite description is unde�ned in a given type.

Soundness Proof (ε x : α . A) ↑ follows immediately from ¬(∃x : α . A) by

Theorem 11(2), and (ε x : α . A) ↑ γ follows from (ε x : α . A) ↑ by Theorem 6(5).

Also, (ε x : α . A) ↑ γ follows from γ =ty ∇ by Theorem 5(2). Therefore the formula

of the root node is true when ¬(∃x : α . A) or γ =ty ∇ is true, and so the tree in

Figure 5.20 is sound. 2

5.3.12 Quotation

If e is any expression, proper or improper, then

(quote, e)

is a term of expression constructions type

(op-app, (op, expr, type))

called a quotation.

Every quotation is de�ned. Figure 5.21 is the AND/OR tree used to record how

the assertion of a type quotation de�ned in a type β is reduced.

Soundness Proof By the theorem 12(1), pαq ↓ Ety is true. pαq ↓ β follows

immediately from pαq ↓ Ety and Ety � β by Theorem 6(1). Therefore the formula

of the root node is true when Ety � β is true, and so the tree in Figure 5.21 is sound. 2

Figure 5.22 is the AND/OR tree used to record how the assertion of a term

quotation of type α de�ned in a type β is reduced.

5. AND/OR Trees 51

pαq ↓ β

Ety � β

Figure 5.21: AND/OR tree for type quotation is de�ned in a given type.

paq ↓ β

Epαq
te � β

Figure 5.22: AND/OR tree for term quotation is de�ned in a given type.

Soundness Proof By the Theorem 12(3), paq ↓ Epαq
te is true. paq ↓ β follows im-

mediately from paq ↓ Epαq
te and Epαq

te � β by Theorem 6(1). Therefore the formula of

the root node is true when Epαq
te � β is true, and so the tree in Figure 5.22 is sound. 2

Other categories of quotations are handled by the same way as above.

5.3.13 Evaluation

If a is a term and k is a kind, then

(eval, a, k)

is an expression called an evaluation that is a type if k = type, a term of type k if k

is a type, and a formula if k = formula.

Figure 5.23 is the AND/OR tree used to record the assertion of a type evaluation

equals to C is reduced.

52 5. AND/OR Trees

[[a]]ty =ty C

¬gea(b, ptypeq)

Figure 5.23: AND/OR tree for type evaluation is of C type.

Soundness Proof The soundness of the tree in Figure 5.23 follows from Theorem

13(2). 2

Figure 5.24 is the AND/OR tree used to record how the assertion of a term eval-

uation is unde�ned is reduced.

[[b]]α ↑

¬gea(b, pαq)

Figure 5.24: AND/OR tree for term evaluation is unde�ned.

Soundness Proof The soundness of the tree in Figure 5.24 follows from Theorem

13(4). 2

Figure 5.25 is the AND/OR tree used to record how the assertion of a formula

evaluation is false is reduced.

5. AND/OR Trees 53

¬[[b]]fo

¬gea(b, pformulaq)

Figure 5.25: AND/OR tree for formula evaluation is false.

Soundness Proof The soundness of the tree in Figure 5.25 follows from Theorem

13(6). 2

CHAPTER 6

DEFINEDNESS CHECKING

MECHANISM

6.1 Overview

Since the AND/OR trees may be very large, one job of the de�nedness checking mech-

anism is to avoid the full development of the AND/OR tree implied by the problem.

Therefore, as the tree grows, decisions must be made about which leaf nodes to reduce.

In this chapter, we revisit di�erent search methods such as breath-�rst, depth-�rst,

and best-�rst methods discussed in Mahanti and Bagchi's work [15] and Nillson's book

[19]. We use similar ideas to present a novel algorithm for our de�nedness checking

system.

Section 2 discusses some di�erent search methods, breadth-�rst, depth-�rst search,

and ordered-search methods for AND/OR trees. Section 3 presents a new algorithm

for checking the de�nedness of Chiron proper expressions.

54

6. De�nedness Checking Mechanism 55

6.2 Classical AND/OR Tree Search Methods

In this section, we shall be concerned with various AND/OR tree searching processes

that e�ciently order the expansion of nodes and do termination checks. The breadth-

�rst methods expand nodes in the order of their successors, whereas the depth-�rst

search methods expand the most recently generated nodes �rst. To start this section,

we �rst brie�y de�ne the terminology of classical AND/OR trees used in this chap-

ter. In the later subsections, we will show the sequence of steps for di�erent search

methods.

6.2.1 De�nitions and Notation

For de�nedness checking we give values true, false, and unknown, which are de�ned

in Chapter 5 to represent the status of AND/OR nodes. But the nodes of classical

AND/OR trees are usually marked as solved or unsolved. The general de�nitions of

classical AND/OR trees and its algorithms are as follows:

De�nition 10 (Start node) A start (or root) node is a node that is associated with

the original problem description and is denoted by s.

De�nition 11 (Terminal node) A terminal node is a leaf node that corresponds

to a primitive problem or a problem with a known solution.

De�nition 12 (Nonterminal node) A nonterminal node is a leaf node that is not

a terminal node.

De�nition 13 (Solved node)

• A terminal node is a solved node.

• A OR node is a solved node if at least one of its successors is solved.

• An AND node is a solved node if all of its successors are solved.

De�nition 14 (Unsolved node)

• A nonterminal node is an unsolved node.

• An OR node is an unsolved node if all of its successors are unsolved nodes.

56 6. De�nedness Checking Mechanism

• An AND node is an unsolved node if at least one of its successors is an unsolved

node.

De�nition 15 (OPEN) OPEN is a �nite set of nodes ready for expansion.

De�nition 16 (CLOSED) CLOSED is a �nite set of nodes that already have had

the expansion procedure applied to them.

De�nition 17 (Labeling procedure) A labeling procedure is used in simple re-

cursive or iterative procedures that operate on an AND/OR tree to label all of the

solved nodes.

De�nition 18 (Depth)

• The depth of the start node is 0.

• The depth of any other node is 1 plus the depth of its parent.

As mentioned in Chapter 5, for any node m in an implicit AND/OR tree T , a

solution tree D(m) with root m is a �nite subtree of T de�ned as:

(1) m is in D(m).

(2) If n is an OR node in T and n is in D(m), then exactly one of its successors in

T is in D(m).

(3) If n is an AND node in T and n is in D(m), then all its immediate successors

in T are in D(m).

(4) No other nodes in T are in D(m).

6.2.2 Breadth-First Search

The breadth-�rst method expands nodes in the order in which they have been gener-

ated. Most of the steps are concerned with the termination checks. A simple algorithm

for searching trees by breadth-�rst method consists of the following sequence of steps:

(1) Put the start node s on a list called OPEN.

(2) If OPEN is empty, exit with failure; otherwise continue.

6. De�nedness Checking Mechanism 57

(3) Remove the �rst node on OPEN and put it on a list called CLOSED; call this

node n.

(4) Expand node n, generating all of its successors.

(a) Put the successors at the end of OPEN and provide pointers from these

successors back to n.

(b) If there are no successors, label n unsolved and continue; otherwise go to

(7).

(5) Apply the labeling procedure to the search tree.

(a) If the start node is labeled unsolved, exit with failure; otherwise continue.

(b) If the start node is labeled solved, exit with the solution tree that veri�es

that the start node is solved; otherwise continue.

(c) Remove from OPEN any solved and unsolved nodes.

(6) Go to (3).

(7) If any of the successors are solved nodes, label them solved and go to (5);

otherwise go to (3).

An example of how breadth-�rst procedure expands nodes is illustrated in Figure

6.1. The numbers held by the nodes indicate the order of node expansions and the

solution tree found is indicated by the thick branches.

6.2.3 Depth-First Search

A depth-�rst search method expands the most recently generated nodes �rst. It

attempts to �nd a solution tree within a certain depth bound, hence there is no node

deeper than the depth bound is expanded. A simple algorithm for searching trees

depth-�rst consists of the following sequence of steps:

(1) Put the start node s on a list called OPEN.

(2) If OPEN is empty, exit with failure; otherwise continue.

58 6. De�nedness Checking Mechanism

1

2

4 5 6

3

7 8 9

Figure 6.1: An AND/OR tree showing the order of node expansions in a breadth-�rst

search.

(3) Remove the �rst node on OPEN and put it on a list called CLOSED; call this

node n.

(4) If the depth of n is equal to the depth bound, label n unsolved and go to (5);

otherwise continue.

(5) Expand node n, generating all of its successors.

(a) Put these successors (in arbitrary order) at the beginning of OPEN and

provide pointers back to n.

(b) If there are no successors, label n unsolved and continue; otherwise go to

(8).

(6) Apply the labeling procedure to the search tree.

(a) If the start node is labeled unsolved, exit with failure; otherwise continue.

(b) If the start node is labeled solved, exit with the solution tree that veri�es

that the start node is solved; otherwise continue.

(c) Remove from OPEN any solved and unsolved nodes.

(7) Go to (3).

6. De�nedness Checking Mechanism 59

(8) If any of the successors are solved nodes, label them solved and go to (6);

otherwise go to (3).

An example of how depth-�rst procedure expands nodes is illustrated in Figure 6.2.

In this example the depth bound is set at 2, the numbers held by the nodes indicate

the order of node expansions and the solution tree found is indicated by the thick

branches.

1

2

3 4 5

6

7 8 9

Figure 6.2: An AND/OR tree showing the order of node expansions in a depth-�rst

search (depth-bound = 2).

6.2.4 Other Search Methods

The ordered-search method is another algorithm for AND/OR trees, which is used

in searching for solution trees achieving minimal cost (either sum cost or max cost,

depending on the situation). In this algorithm we shall make use of the idea of the

estimated cost and heuristic function of a solution tree.

6.3 De�nedness Checking Algorithm

An AND/OR tree search problem is to �nd a path from an initial state to a �nal

state, and the solution of the search problem is a path from the initial state to the

�nal state. The solution always has the backtracking process. This problem can be

solved in two ways:

60 6. De�nedness Checking Mechanism

• Forward search: The search starts the search from the initial state and a path

is built stepwise in the forward direction towards the �nal state.

• Backward search: The search starts the search from the �nal state and a path

is built in the backward direction towards the initial state.

Either breadth-�rst, depth-�rst, or ordered-search methods can be used in Chiron

de�nedness checking system. Depth-�rst search is an aggressive but dangerous pro-

cedure when a tree is complicated. When a tree has many levels, depth-�rst search,

while easily implemented, it can waste resources to an incredible degree. When depth-

�rst search is not a good idea, breadth-�rst search can be considered. The breadth-

�rst search is wasteful when all paths lead to the destination node at more or less the

same depth, but it is a careful and conservative method. The ordered-search is useful

in searching for solution tree achieving minimal cost.

The objective for us is to generate an AND/OR tree for the de�nedness check-

ing system that indicates the reduction of a de�nedness problem to alternative sets of

problems that can be easily, or perhaps automatically, checked. Since the starter trees

are not big, considering the time-limit, the storage-space limit, and the depth of the

deepest node in the search tree, we combine the careful and conservative breadth-�rst

methods with backward search to check the de�nedness problems.

6.3.1 Overview of De�nedness Checking Algorithm

The resulting algorithm is decomposed in four phases:

(1) First, it builds a starter tree for a particular de�nedness checking problem.

(2) Then it applies the leaf checking procedure, using the breadth-�rst method, to

check whether a primitive problem is solved. There are two ways to check the

leaf nodes:

• Check if the context implies that the node's formula is true or false.

• Check the simpli�er to see whether the node's formula is reduced to a new

formula.

6. De�nedness Checking Mechanism 61

(3) Next, it applies the node labeling process based on the propositions of AND/OR

trees to update ancestor nodes.

(4) In case the primitive problem cannot be solved by the tree, it �nally starts

expanding the leaf nodes of the tree.

6.3.2 Steps of De�nedness Checking Algorithm

The structure of the procedure is quite simple as can be seen as the algorithm consists

of the following steps:

(1) Match the input formula with the start nodes of starter trees, then build the

corresponding tree.

(2) Execute leaf checking procedure.

(a) Put the start node (or root) s on queue called q.

(b) If q is empty, exit with failure; otherwise continue.

(c) Remove the �rst node on q; call this node n.

(d) Expand node n, generating all of its successors. Put the successors in q. If

there are no successors, exit with unknown; If n is a leaf node, continue;

otherwise go to (2)(c).

(e) Check if the formula held by n is already stored in the context. If it is in

the context, label it true and go to (4); if n is not in the context, continue.

(f) Call the simpli�er to see if the formula held by n reduces to a truth value

or a simpler formula. If the formula held by n is simpli�ed to true, label

n true and go to (4); if the formula held by n is simpli�ed to false, label n

false and go to (4); if the formula held by n is reduces to a simpler formula

which is not a truth value, replace the formula held by n with the new

formula and go to (2)(e); otherwise, continue.

(3) Perform the procedure to expand an AND/OR tree.

(a) Match the formula of n with the start nodes of starter trees.

(b) If there is such a starter tree, expand n by building the corresponding tree

and go to (2); otherwise, label n unknown and continue.

62 6. De�nedness Checking Mechanism

(4) Execute the node labeling procedure.

(a) Apply the node labeling procedure to the tree.

(b) If the start node is labeled true, exit with true; if the start node is la-

beled false, exit with false; if the start node is labeled unknown, exit with

unknown; otherwise continue.

(5) Remove from q any nodes that are true, false, or unknown. (This step allows us

to avoid the unnecessary e�ort that would be expended in attempting to solve

unsolved problems.)

(6) Go to (2).

CHAPTER 7

IMPLEMENTATION

7.1 Overview

We shall repeat here the four phases of the de�nedness checking algorithm that were

given in the last chapter.

(1) First, it builds a starter tree for a particular de�nedness checking problem.

(2) Then it applies the leaf checking procedure, using the breadth-�rst method, to

check whether the primitive problem is solved. There are two ways to check the

leaf nodes:

• Checking if the the node's formula is already stored in the context.

• Calling the simpli�er to see whether the node's formula is reduced to a

new formula.

(3) Next it applies the node labeling process to update ancestor nodes;

(4) In case the primitive problem can not be solved by the tree, it will expand the

leaf nodes of the tree.

In this chapter, we describe the implementation of the application of AND/OR tree

search algorithm to the de�nedness problem. Since the Chiron de�nedness checking

system works on the Objective Caml (OCaml) implementation of Chiron formula

expression, it is thus natural to implement our system in OCaml.

63

64 7. Implementation

7.2 Implementation

7.2.1 Building Starter Trees

Phase 1 of de�nedness checking algorithm is implemented as a function which turns

a formula into a starter tree of which each node holds a formula.

We �rst introduce the type of nodes in an AND/OR trees.

type status = Unchecked | True | False | Unknown

type node_rec = {mutable content : `p formula; mutable status : status}

type node =

| Leaf of node_rec * node option

| And of node_rec * node option * (node list) ref

| Or of node_rec * node option * (node list) ref

Note that node_rec is a record type of nodes which contains the formulas of nodes

and the status (unchecked, true, false, or unknown) of nodes. Here, we use a new

status Unchecked for representing the initial status of a node. The content and status

are marked as mutable, in which case their value can be changed.

The �rst argument of each constant of type node is a node_rec; the second argu-

ment indicates the parent of the node; and the last argument is a list containing the

children of the node. Here, we use a reference type to implement the list of children

so that the list can be easily updated after a tree is expanded.

We implement phase 1 with the function get_root. It matches an input formula

with the roots of starter trees and builds a starter tree based on the trees given in

Chapter 5. If an input formula does not match any starter tree, it can not be checked.

let rec get_root checkExpr =

match checkExpr with

|...

7. Implementation 65

...

| _ -> failwith "Can not be checked."

7.2.2 Leaf Checking Procedure

We implement phase 2 of the algorithm as two steps, �rst it uses a bread-�rst method

to search the starter tree built in phase 1 by the function get_root until a leaf node is

met, then it starts leaf checking by two methods: match the formula with the context

or simplify the formula.

Search for the leaf nodes

Function expand_root builds a queue q, puts the root of the AND/OR tree in the

queue, and then uses breadth-�rst method to search the AND/OR tree.

let rec expand_root n c =

let q = Queue.create() in

Queue.add (n) q;

let rec bfs ns = ... in

let nr = get_rec n in

getStatus nr;;

In the above function, if the node taken from the queue is matched to an OR

node, we scan the list of children and add each node to the queue.

let rec bfs ns =

let nr = get_rec n in

let ns = getStatus nr in

while ns = Unchecked do

if Queue.length q = 0 then raise Not_found;

let s = Queue.take q in

match s with

| Or (_, par, ch) ->

66 7. Implementation

for i = 0 to (List.length !ch) - 1 do

Queue.add (List.nth !ch i) q

done;

bfs ns

If it is matched to an AND node, we return the following corresponding result.

| And (_, par, ch) ->

for i = 0 to (List.length !ch) - 1 do

Queue.add (List.nth !ch i) q

done;

bfs ns

Otherwise, we start the second step to check the Leaf node.

| Leaf (r, par) -> check_leaf r par c

done

and check_leaf r par c =

...

bfs (updateNodes (get_parent par))

Check Leaf nodes

First, we match the node with the context to see whether the node is true or false.

Thus, the beginning of the function is as follows.

check_leaf r par c =

while r.status = Unknown do

let lc1 = getContent r in

if inContext lc1 c then

r.status <- True

7. Implementation 67

else

...

Then, if the node is not in the context, the simpli�er will reduce the node to a

new formula.

let lc2 = simp_formula lc1 in

r.content <- lc2;

if (lc2 = R.falsef) then r.status <- False

else if (lc2 = R.truef) || (inContext lc2 c)

then r.status <- True

else

...

Note that, the above function checks the context again to update the status of

nodes.

The leaf checking phase always needs to update the trees to see whether the root

is true or false. Thus we need phase 3 to update the nodes of the trees.

7.2.3 Node Labeling Procedure

We now discuss the implementation of phase 3, which gets the status of a node and

updates the status of the parents and the ancestors bottom-up.

let rec updateNodes n =

match n with

...

In the above function, if n is matched to an OR node, we return the corresponding

result.

68 7. Implementation

| Or (r, par, ch) ->

let l1 = List.map getStatus (List.map get_rec !ch) in

if List.exists (fun x -> x = True) l1 then r.status <- True

else r.status <- Unknown;

if par = None then r.status

else updateNodes (get_parent par)

If n is matched to an And node, we return the corresponding result.

| And (r, par, ch) ->

let l1 = List.map getStatus (List.map get_rec !ch) in

if List.exists (fun x -> x = False) l1 then r.status <- False

else if List.for_all (fun x -> x = True) l1 then r.status <- True

else r.status <- Unknown;

updateNodes (get_parent par)

Since the parent nodes are not Leaf nodes, the corresponding result will be as

follows:

| Leaf (r, par) -> failwith "No such case."

7.3 Expanding Trees

At last, we can match the formula of the leaf node to the roots of AND/OR trees to

expand the original tree.

let con = getContent r in

if ((expand_root (get_root con) c) = True) then r.status <- True

else if ((expand_root (get_root con) c) = False)

7. Implementation 69

then r.status <- False

else r.status <- Unknown

Putting all together, we get the following code for the main function.

let check checkExpr c = expand_root (get_root checkExpr) c

It simply gets the root, builds the starter tree and then combines the four phases.

The whole code is given in the appendix.

CHAPTER 8

CONCLUSION

Proofs produced by a mechanized mathematics system must take relatively large in-

ference steps, so that users are not overwhelmed with too many details. Consequently

the user wants to simplify expressions to make them more understandable. Because

simpli�cation in a logic like Chiron involves large numbers of de�nedness require-

ments, it is crucial to involve a considerable amount of de�nedness checking.

There are many approaches to handling partial functions and unde�nedness in tra-

ditional logics, but there are fewer mechanized mathematics systems developed based

on a logic with unde�nedness. Our idea on reasoning about de�nedness in mecha-

nized mathematics systems have been greatly inspired by IMPS. Ideas like context

and two levels of de�nedness checking are employed in it. This thesis has presented a

Chiron de�nedness checking system for the MathScheme project that can check if the

proper expressions of Chiron are well de�ned or de�ned with a value in a particular

type. The most signi�cant feature of this work is the design and implementation of an

AND/OR three-based approach for automated de�nedness checking which is based

on ideas from arti�cial intelligence. Another contribution of this work is to present

and implement a new de�nedness checking mechanism.

We have provided theorems used to determining whether an expression is de�ned

or not, and theorems concerning the relations between types. In addition, a formal-

ization of three-valued AND/OR trees for checking problems of de�nedness has been

70

8. Conclusion 71

given by slightly changing the de�nitions of nodes for AND/OR trees. Moreover,

we have proposed a new de�nedness checking algorithm which combine the breadth-

�rst methods and backward search to check the de�nedness problems held by nodes

of AND/OR trees. Finally, a full functional de�nedness checking system has been

implemented in OCaml. This system provides automated support for reducing a de-

�nedness problem of Chiron to simpler de�nedness problems that can be easily, in

some cases automatically, checked in the the course of proof. Although determining

the de�nedness of an expression is an undecidable problem, based on evidence from

de�nedness checking in IMPS, most of the de�nedness checking of Chiron proper

expressions can likely be done automatically by a fully implemented version of this

system.

CHAPTER 9

FUTURE WORK

The de�nedness checking system could be improved in the future in the following

ways:

In the current work, we chose the simple strategy to �nd only one solution tree.

When the de�nedness information of initial formula is obtained, the checking process

is stopped. Thus, the �rst extension of the approach could be to have a mechanism to

travel the whole tree (when the tree is not big) to obtain more complete de�nedness

information.

Furthermore, the upper level of de�nedness checking mentioned in Section 2.4

could be considered, but regretfully that approach to call the simpli�er to reduce the

results of the lower level was not available at the time of writing this thesis. Therefore,

in the future, another improvement to the system may be brought through additional

levels of de�nedness checking for more a complete de�nedness checking activity.

Moreover, the de�nedness checking system should have a tracker that can store a

de�nedness checking processes and display the processes step by step when the user

wants to see it.

Finally, because this thesis only presented 13 categories of AND/OR trees based on

the main categories of proper expressions of Chiron, the most ambitious plan includes

72

9. Future Work 73

developing starter trees for all categories of Chiron proper expressions. The other

categories of theorems should be applied. The other categories of proper expressions

can be handled similarly as the way provided in this work.

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deep gratitude to my academic su-

pervisor, Dr. William M. Farmer, for guiding me throughout the complete process of

developing this thesis and implementation, and for his support and lots of valuable

and irreplaceable help during my whole stay at McMaster University. He gave me

many worthy suggestions on helping me formulate this thesis and realize my ideas.

Without his inspiration and encouragement, it would not have been possible to com-

plete this thesis.

I sincerely appreciate the time spent by my examination committee members,

Dr. Jacques Carette and Dr. Ridha Khedri, on their valuable and detailed responses

to the �rst draft of my thesis.

My special thanks goes to my family, my father Shun Qing Hu and mother Si Xin Luo,

for raising me and always standing by me. Without their sel�ess love and support, I

could not have been able to make it this far. I love you my mom and dad!

74

APPENDIX � SOURCE CODE

This appendix contains a complete Ocaml code implementation for the Chiron de-

�nedness checking system. Section 1 introduces the de�nition of types for AND/OR

trees. Section 2 presents the method for building AND/OR trees corresponding

to di�erent categories of Chiron expressions. Section 3 and 4 show how the leaf

checking procedure and node labeling procedure works. Finally, the main function of

the system is given.

A.1 Type De�nitions for AND/OR Trees

(*Define the types and operations of nodes*)

type status = Unchecked | True | False | Unknown

(*Record of nodes*)

type node_rec = {mutable content : `p formula;

mutable status : status}

(*Each node has node record, a single parent, and a list of children*)

type node =

75

76 A. APPENDIX � Source Code

| Leaf of node_rec * node option

| And of node_rec * node option * (node list) ref

| Or of node_rec * node option * (node list) ref

let creat_and x = And (x, None, ref [])

let creat_Or x = Or (x, None, ref [])

let get_rec = function

Leaf (record, _) -> record

| And (record, _, _) -> record

| Or (record, _, _) -> record

let get_parent = function

Some p -> p

| None -> failwith "No parent."

let getContent x = x.content

let getStatus x = x.status

A.2 Implementing Categories of Starter Trees

let get x = x

A.2.1 General Cases

let build_gcsDef cname t1 t2=

let rcont = FOpApp ("Defined_in", [KDTerm (`Constant

A. APPENDIX � Source Code 77

(cname,TConstant (cname)), t1); KDType t2]) in

let lcont1 = FOpApp ("Defined_in", [KDTerm (`Constant (cname,

TConstant (cname)), t1); KDType (TConstant "Class")])

in

let lcont2 = FOpApp ("Type_le", [KDType t1; KDType t2]) in

let rootc = ref [] in

let and1c = ref [] in

let root = Or ({content = `p rcont; status = Unchecked}, None,

rootc) in

let and1 = And ({content = `p rcont; status = Unchecked}, Some

root, and1c) in

let leaf1 = Leaf ({content = `p lcont1; status = Unchecked}, Some

and1) in

let leaf2 = Leaf ({content = `p lcont2; status = Unchecked}, Some

and1) in

and1c := [leaf1; leaf2];

rootc := [and1];

get root;;

let build_gcsUDef cname t1 t2 =

let rcont = FOpApp ("Not", [KDFormula (FOpApp ("Defined_in",

[KDTerm (`Constant (cname, TConstant (cname)), t1);

KDType t2]))]) in

let lcont1 = FOpApp ("Not", [KDFormula (FOpApp ("Defined_in",

[KDTerm (`Constant (cname, TConstant (cname)), t1);

KDType (TConstant "Class")]))]) in

let lcont2 = FOpApp ("Type_equal", [KDType t2; KDType (TConstant

"Empty_type")]) in

let rootc = ref [] in

let root = Or ({content = `p rcont; status = Unchecked}, None,

rootc) in

let leaf1 = Leaf ({content = `p lcont1; status = Unchecked}, Some

root) in

let leaf2 = Leaf ({content = `p lcont2; status = Unchecked}, Some

root) in

78 A. APPENDIX � Source Code

rootc := [leaf1;leaf2];

get root;;

A.2.2 Operator Application

let kinded_to_trm_typ = function

| KDTerm (p,t) -> p,t

| _ -> failwith "Nothing."

let build_tOpAppC op1 kdl =

let rcont = FOpApp ("Type_equal", [KDType (TOpApp (op1, kdl));

KDType (TConstant "Class")]) in

let lcont1 = FOpApp ("Strict", [KDTerm (`Constant (op1, TConstant

op1), TConstant op1)]) in

let lorcont = FBinder (Exists, trm, TConstant "Class", FOpApp

("Not", [KDFormula (FOpApp ("Defined_in", [KDTerm

(`Constant (trm, C.type of trm), C.type of trm);

KDType (TConstant "Class")]))])) in

let rootc = ref [] in

let and1c = ref [] in

let lor1c = ref [] in

let root = Or ({content = `p rcont; status = Unchecked},None, rootc)

in

let and1 = And ({content = `p rcont; status = Unchecked},Some root,

and1c) in

let lor1 = Or ({content = `p lorcont; status = Unchecked},Some root,

lor1c) in

let leaf1 = Leaf ({content = `p lcont1; status = Unchecked}, Some

and1) in

let leaf_list1 = ref [] in

let trm_typ = List.map kinded_to_trm_typ kdl in

let and_array = Array.make (List.length trm_typ) (And ({content = `p

A. APPENDIX � Source Code 79

rcont; status = Unchecked}, Some root, ref [])) in

let i = ref 0 in

while !i < (List.length trm_typ) -1 do

let (a,typ) = List.nth trm_typ !i in

let leaf_list2 = [Leaf ({content = `p (FOpApp ("Defined_in",

[KDTerm (a, C.type of a); KDType "Class"])); status =

Unchecked}, Some (Array.get and_array(!i))); Leaf ({content = `p

(FOpApp ("Not", [KDFormula (FOpApp ("Defined_in", [KDTerm (a,

TConstant "Class"); KDType (typ)]))])); status = Unchecked},

Some (Array.get and_array !i))] in

Array.set and_array !i (And ({content = `p rcont; status =

Unchecked}, Some root, ref leaf_list2));

leaf_list1 := !leaf_list1 @ [Leaf ({content = `p (FOpApp

("Not", [KDFormula (FOpApp ("Defined_in", [KDTerm (a, C.type

of a); KDType "Class"]))])); status = Unchecked}, Some lor1)];

i := !i+1

done;

lor1c := !leaf_list1;

and1c := [leaf1; lor1];

rootc := (Array.to_list and_array) @ [and1];

get root;;

let build_opAppUDef op1 kdl =

let rcont = FOpApp ("Not", [KDFormula (FOpApp ("Defined_in", [KDTerm

(`OpApp (op1, kdl, TConstant op1), C.type of (op1, kdl,

TConstant op1)); KDType (TConstant "Class")]))]) in

let lcont1 = FOpApp ("Strict", [KDTerm (`Constant (op1, TConstant

op1), TConstant op1)]) in

let lorcont = FBinder (Exists, trm, TConstant "Class", FOpApp

("Not", [KDFormula (FOpApp ("Defined_in", [KDTerm

(`Constant (trm, C.type of trm), C.type of trm);

KDType (TConstant "Class")]))])) in

let rootc = ref [] in

let and1c = ref [] in

let lor1c = ref [] in

80 A. APPENDIX � Source Code

let root = Or ({content = `p rcont; status = Unchecked},None, rootc)

in

let and1 = And ({content = `p rcont; status = Unchecked},Some root,

and1c) in

let lor1 = Or ({content = `p lorcont; status = Unchecked},Some root,

lor1c) in

let leaf1 = Leaf ({content = `p lcont1; status = Unchecked}, Some

and1) in

let leaf_list1 = ref [] in

let trm_typ = List.map kinded_to_trm_typ kdl in

let and_array = Array.make (List.length trm_typ) (And ({content = `p

rcont; status = Unchecked}, Some root, ref [])) in

let i = ref 0 in

while !i < (List.length trm_typ) -1 do

let (a,typ) = List.nth trm_typ !i in

let leaf_list2 = [Leaf ({content = `p (FOpApp ("Defined_in",

[KDTerm (a, C.type of a); KDType (TConstant "Class")])); status

= Unchecked}, Some (Array.get and_array(!i))); Leaf ({content =

`p (FOpApp ("Not", [KDFormula (FOpApp ("Defined_in", [KDTerm

(a, TConstant "Class"); KDType (typ)]))])); status = Unchecked},

Some (Array.get and_array !i))] in

Array.set and_array !i (And ({content = `p rcont; status =

Unchecked}, Some root, ref leaf_list2));

leaf_list1 := !leaf_list1 @ [Leaf ({content = `p (FOpApp

("Not", [KDFormula (FOpApp ("Defined_in", [KDTerm (a, C.type

of a); KDType (TConstant "Class")]))])); status = Unchecked},

Some lor1)];

i := !i+1

done;

lor1c := !leaf_list1;

and1c := [leaf1; lor1];

rootc := (Array.to_list and_array) @ [and1];

get root;;

let build_fOpAppFalse op1 kdl =

A. APPENDIX � Source Code 81

let rcont = FOpApp ("Formula_equal", [KDFormula (FOpApp (op1, kdl));

KDFormula (FConstant "False")]) in

let lcont1 = FOpApp ("Strict", [KDTerm (`Constant (op1, TConstant

op1), TConstant op1)]) in

let lorcont = FBinder (Exists, "trm", TConstant "Class", FOpApp

("Not", [KDFormula (FOpApp ("Defined_in", [KDTerm

(`Constant (trm, (TConstant "Expr_term")), TConstant

"Expr_term"); KDType (TConstant "Class")]))])) in

let rootc = ref [] in

let and1c = ref [] in

let lor1c = ref [] in

let root = Or ({content = `p rcont; status = Unchecked},None, rootc)

in

let and1 = And ({content = `p rcont; status = Unchecked},Some root,

and1c) in

let lor1 = Or ({content = `p lorcont; status = Unchecked},Some root,

lor1c) in

let leaf1 = Leaf ({content = `p lcont1; status = Unchecked}, Some

and1) in

let leaf_list1 = ref [] in

let trm_typ = List.map kinded_to_trm_typ kdl in

let and_array = Array.make (List.length trm_typ) (And ({content = `p

rcont; status = Unchecked}, Some root, ref [])) in

let i = ref 0 in

while !i < (List.length trm_typ) -1 do

let (a,typ) = List.nth trm_typ !i in

let leaf_list2 = [Leaf ({content = `p (FOpApp ("Defined_in",

[KDTerm (a, TConstant "Expr_term"); KDType (TConstant

"Class")])); status = Unchecked}, Some (Array.get

and_array(!i))); Leaf ({content = `p (FOpApp ("Not", [KDFormula

(FOpApp ("Defined_in", [KDTerm (a, TConstant "Class"); KDType

(typ)]))])); status = Unchecked}, Some (Array.get and_array

!i))]

in

Array.set and_array !i (And ({content = `p rcont; status =

82 A. APPENDIX � Source Code

Unchecked}, Some root, ref leaf_list2));

leaf_list1 := !leaf_list1 @ [Leaf ({content = `p (FOpApp (

"Not", [KDFormula (FOpApp ("Defined_in", [KDTerm (a, TConstant

"Expr_term"); KDType (TConstant "Class")]))])); status =

Unchecked}, Some lor1)];

i := !i+1

done;

lor1c := !leaf_list1;

and1c := [leaf1; lor1];

rootc := (Array.to_list and_array) @ [and1];

get root;;

A.2.3 Type Application

let build_tAppEmp t trm =

let rcont = FOpApp ("Type_equal", [KDType (TTypeApp (t,trm)); KDType

(TConstant "Empty_type")]) in

let lcont1 = FOpApp ("Type_equal", [KDType t; KDType (TConstant

"Empty_type")]) in

let rootc = ref [] in

let root = Or ({content =`p rcont; status = Unchecked},None, rootc)

in

let leaf1 = Leaf ({content = `p lcont1; status = Unchecked}, Some

root) in

rootc := [leaf1];

get root;;

let build_tAppC t trm =

let rcont = FOpApp ("Type_equal", [KDType (TTypeApp (t, trm));

KDType (TConstant "Class")]) in

let lcont1 = FOpApp ("Not", [KDFormula (FOpApp ("Defined_in",

A. APPENDIX � Source Code 83

[KDTerm (trm, TConstant "Expr_term"); KDType (TConstant

"Class")]))]) in

let rootc = ref [] in

let root = Or ({content = `p rcont; status = Unchecked},None, rootc)

in

let leaf1 = Leaf ({content = `p lcont1; status = Unchecked}, Some

root) in

rootc := [leaf1];

get root;;

A.2.4 Dependent Function Types

let build_depFunDef t1 t2 t3 t4 trm =

let rcont = FOpApp ("Type_le", [KDType (TBinder (Dep_fun_type, trm,

t1, t2)); KDType (TBinder (Dep_fun_type, trm, t3, t4))])

in

let lcont1 = FOpApp ("Type_le", [KDType t1; KDType t3]) in

let lcont2 = FBinder (Forall, trm, t1, FOpApp ("Type_le", [KDType

t2; KDType t4])) in

let rootc = ref [] in

let and1c = ref [] in

let root = Or ({content = `p rcont; status = Unchecked},None, rootc)

in

let and1 = And ({content = `p rcont; status = Unchecked}, Some root,

and1c) in

let leaf1 = Leaf ({content = `p lcont1; status = Unchecked}, Some

and1) in

let leaf2 = Leaf ({content = `p lcont2; status = Unchecked}, Some

and1) in

and1c := [leaf1;leaf2];

rootc := [and1];

84 A. APPENDIX � Source Code

get root;;

let build_depFunUDef f t1 t2 trm =

let rcont = FOpApp ("Not", [KDFormula (FOpApp ("Defined_in", [KDTerm

(f, TConstant "Class"); KDType (TBinder (Dep_fun_type,

trm, t1, t2))]))]) in

let lcont1 = FOpApp ("And", [KDFormula (FOpApp ("Term_equal",

[KDterm (f, TConstant "Class"); KDTerm (`Constant

("Empty_set", TConstant "Empty_set"), TConstant

"Class"); KDType (TConstant "Class")])); KDFormula

(FOpApp ("Type_equal", [KDType t1; KDType (TConstant

"Empty_type")]))]) in

let lcont = FOpApp ("And", [KDFormula (FOpApp ("Term_equal", [KDterm

(f, TConstant "Class"); KDTerm (`Constant ("Empty_set",

TConstant "Empty_set"), TConstant "Class"); KDType

(TConstant "Class")])); KDFormula (FOpApp ("Type_equal",

[KDType t2; KDType (TConstant "Empty_type")]))]) in

let rootc = ref [] in

let root = Or ({content = `p rcont; status = Unchecked},None, rootc)

in

let leaf1 = Leaf ({content = `p lcont1; status = Unchecked}, Some

root) in

let leaf2 = Leaf ({content = `p lcont2; status = Unchecked}, Some

root) in

rootc := [leaf1;leaf2];

get root;;

A.2.5 Function Application

let build_funAppDef f t1 t2 t3 trm1 trm2 =

let rcont = FOpApp ("Defined_in", [KDTerm (`FunApp (`Constant (f,

A. APPENDIX � Source Code 85

TBinder (Dep_fun_type, trm1, t1, t2)), trm2), `TConstant

"Class"); KDType t3]) in

let lcont1 = FOpApp ("Defined_in", [KDTerm (trm2, `TConstant

"Class"); KDType t1]) in

let lcont2 = FOpApp ("Defined_in", [KDTerm (`Constant (f, TBinder

(Dep_fun_type, trm1, t1, t2)), TConstant "Class");

KDType (TConstant "Class")]) in

let lcont3 = FBinder (Forall, trm1, t1, FOpApp ("Type_le", [KDType

t2; KDType t3])) in

let lcont4 = FOpApp ("Defined_in", [KDTerm (`FunApp (`Constant (f,

TConstant "Class"), trm2), `TConstant "Class"); KDType

(TConstant "Class")]) in

let lcont5 = FBinder (Forall, trm1, t1, FOpApp ("Type_le", [KDType

t2; KDType t3])) in

let rootc = ref [] in

let and1c = ref [] in

let and2c = ref [] in

let root = Or ({content = `p rcont; status = Unchecked},None, rootc)

in

let and1 = Or ({content = `p rcont; status = Unchecked},None, and1c)

in

let and2 = Or ({content = `p rcont; status = Unchecked},None, and2c)

in

let leaf1 = Leaf ({content = `p lcont1; status = Unchecked}, Some

and1) in

let leaf2 = Leaf ({content = `p lcont2; status = Unchecked}, Some

and1) in

let leaf3 = Leaf ({content = `p lcont3; status = Unchecked}, Some

and1) in

let leaf4 = Leaf ({content = `p lcont4; status = Unchecked}, Some

and2) in

let leaf5 = Leaf ({content = `p lcont5; status = Unchecked}, Some

and2) in

and1c := [leaf1; leaf2; leaf3];

and2c := [leaf4; leaf5];

86 A. APPENDIX � Source Code

rootc := [and1; and2];

get root;;

let build_funAppUDef f t1 trm =

let rcont = FOpApp ("Not", [KDFormula (FOpApp ("Defined_in", [KDTerm

((`FunApp (`Constant (f, TConstant "Class"),trm)),

TConstant "Class"); KDType t3]))]) in

let lcont1 = FOpApp ("Not", [KDFormula (FOpApp ("Defined_in",

[KDTerm (`Constant (f, C.type of f), C.type of f);

KDType (TConstant "Class")]))]) in

let lcont2 = FOpApp ("Not", [KDFormula (FOpApp ("Defined_in",

[KDTerm (trm, C.type of trm); KDType (TConstant

"Class")]))]) in

let lcont3 = FOpApp ("Not", [KDFormula (FOpApp ("Defined_in",

[KDTerm (`FunApp (`Constant (f, C.type of f), trm),

C.type of trm); KDType (TConstant "Class")]))]) in

let rootc = ref [] in

let root = Or ({content = `p rcont; status = Unchecked}, None,

rootc) in

let leaf1 = Leaf ({content = `p lcont1; status = Unchecked}, Some

root) in

let leaf2 = Leaf ({content = `p lcont2; status = Unchecked}, Some

root) in

let leaf3 = Leaf ({content = `p lcont3; status = Unchecked}, Some

root) in

rootc := [leaf1;leaf2;leaf3];

get root;;

A.2.6 Function Abstraction

let build_fAbsDef t1 t2 trm =

A. APPENDIX � Source Code 87

let rcont = FOpApp ("Defined_in". [KDTerm (`FunAbs (trm, t1,

`Constant ("Expr_term", t2)), TBinder (Dep_fun_type,

trm, t1, t2)); KDType (TConstant "Class")]) in

let lcont1 = FOpApp ("Defined_in", [KDTerm (`OpApp ("Type_to_term",

[KDType t1], `Constant ("Expr_term", TConstant

"Class")); KDType (TConstant "Set")]) in

let lcont1 = FOpApp ("Defined_in", [KDTerm (`OpApp ("Type_to_term",

[KDType t2], `Constant ("Expr_term", TConstant

"Class")); KDType (TConstant "Set")]) in

let rootc = ref [] in

let and1c = ref [] in

let root = Or ({content = `p rcont; status = Unchecked},None, rootc)

in

let and1 = And ({content = `p rcont; status = Unchecked}, Some root,

and1c) in

let leaf1 = Leaf ({content = `p lcont1; status = Unchecked}, Some

and1) in

let leaf2 = Leaf ({content = `p lcont2; status = Unchecked}, Some

and1) in

and1c := [leaf1;leaf2];

rootc := [and1];

get root;;

A.2.7 Conditional Terms

let build_ifConDef t1 trm1 trm2 fo =

let t2 = C.typeof trm1 in

let t3 = C.typeof trm2 in

let rcont = FOpApp ("Defined_in", [KDTerm (`If (fo, trm1, trm2),

TConstant "Class"); KDType t1]) in

let lcont1 = FOpApp ("Formula_equal", [KDFormula fo; KDFormula

88 A. APPENDIX � Source Code

(FConstant "True")]) in

let lcont2 = FOpApp ("Defined_in", [KDTerm (trm1, TConstant

"Class"); KDType t2]) in

let lcont3 = FOpApp ("Type_le", [KDType t2; KDType t1]) in

let lcont4 = FOpApp ("Formula_equal", [KDFormula fo; KDFormula

(FConstant "False")]) in

let lcont5 = FOpApp ("Defined_in", [KDTerm (trm2, TConstant

"Class"); KDType t3]) in

let lcont6 = FOpApp ("Type_le", [KDType t3; KDType t1]) in

let rootc = ref [] in

let and1c = ref [] in

let and2c = ref [] in

let root = Or ({content = `p rcont; status = Unchecked},None,rootc)

in

let and1 = And ({content = `p rcont; status = Unchecked}, Some root,

and1c) in

let and2 = And ({content = `p rcont; status = Unchecked},Some root,

and2c) in

let leaf1 = Leaf ({content = `p lcont1; status = Unchecked}, Some

and1) in

let leaf2 = Leaf ({content = `p lcont2; status = Unchecked}, Some

and1) in

let leaf3 = Leaf ({content = `p lcont3; status = Unchecked}, Some

and1) in

let leaf4 = Leaf ({content = `p lcont4; status = Unchecked}, Some

and2) in

let leaf5 = Leaf ({content = `p lcont5; status = Unchecked}, Some

and2) in

let leaf6 = Leaf ({content = `p lcont6; status = Unchecked}, Some

and2) in

and1c := [leaf1;leaf2;leaf3];

and2c := [leaf4;leaf5;leaf6];

rootc := [and1;and2];

get root;;

A. APPENDIX � Source Code 89

let build_ifConUDef t1 trm1 trm2 fo =

let rcont = FOpApp ("Not", [KDFormula (FOpApp ("Defined_in", [KDTerm

(`If (fo, trm1, trm2), TConstant "Class"); KDType

t1]))]) in

let lcont1 = FOpApp ("Type_equal", [KDType t1; KDType (TConstant

"Empty_type")]) in

let lcont2 = FOpApp ("Formula_equal", [KDFormula fo; KDFormula

(FConstant "True")]) in

let lcont3 = FOpApp ("Not", [KDFormula (FOpApp ("Defined_in",

[KDTerm (trm1, TConstant "Expr_term"); KDType

(TConstant "Class")]))]) in

let lcont4 = FOpApp ("Formula_equal", [KDFormula fo; KDFormula

(FConstant "False")]) in

let lcont5 = FOpApp ("Not", [KDFormula (FOpApp ("Defined_in",

[KDTerm (trm2, TConstant "Expr_term"); KDType

(TConstant "Class")]))]) in

let rootc = ref [] in

let and1c = ref [] in

let and2c = ref [] in

let root = Or ({content = `p rcont; status = Unchecked},None, rootc)

in

let and1 = And ({content = `p rcont; status = Unchecked}, Some root,

and1c) in

let and2 = And ({content = `p rcont; status = Unchecked}, Some root,

and2c) in

let leaf1 = Leaf ({content = `p lcont1; status = Unchecked}, Some

root) in

let leaf2 = Leaf ({content = `p lcont2; status = Unchecked}, Some

and1) in

let leaf3 = Leaf ({content = `p lcont3; status = Unchecked}, Some

and1) in

let leaf4 = Leaf ({content = `p lcont4; status = Unchecked}, Some

and2) in

let leaf5 = Leaf ({content = `p lcont5; status = Unchecked}, Some

and2) in

90 A. APPENDIX � Source Code

and1c := [leaf2;leaf3];

and2c := [leaf4;leaf5];

rootc := [leaf1;and1;and2];

get root;;

A.2.8 De�nite Description

let build_defDesDef t1 t2 fo trm =

let rcont = FOpApp ("Defined_in", [KDTerm (`Binder (Def_des, trm,

t1, fo), TConstant "Class"); KDType t2]) in

let lcont1 = FBinder (Uni_exists, trm, t1, fo) in

let lcont2 = FOpApp ("Type_le", [KDType t1; KDType t2]) in

let rootc = ref [] in

let and1c = ref [] in

let root = Or ({content = `p rcont; status = Unchecked},None, rootc)

in

let and1 = And ({content = `p rcont; status = Unchecked}, Some root,

and1c) in

let leaf1 = Leaf ({content = `p lcont1; status = Unchecked}, Some

and1) in

let leaf2 = Leaf ({content = `p lcont2; status = Unchecked}, Some

and1) in

and1c := [leaf1;leaf2];

rootc := [and1];

get root;;

let build_defDesUDef t1 t2 fo trm =

let rcont = FOpApp ("Not", [KDFormula (FOpApp ("Defined_in", [KDTerm

(`Binder (Def_des, trm, t1, fo), TConstant "Class");

KDType t2]))]) in

let lcont1 = FOpApp ("Not", [KDFormula (FBinder (Uni_exists, trm,

A. APPENDIX � Source Code 91

t1,fo))]) in

let lcont2 = FOpApp ("Type_equal", [KDType t2; KDType (TConstant

"Empty_type")]) in

let rootc = ref [] in

let root = Or ({content = `p rcont; status = Unchecked},None, rootc)

in

let leaf1 = Leaf ({content = `p lcont1; status = Unchecked}, Some

root) in

let leaf2 = Leaf ({content = `p lcont2; status = Unchecked}, Some

root) in

rootc := [leaf1;leaf2];

get root;;

A.2.9 Inde�nite Description

let build_indefDesDef t1 t2 fo trm =

let rcont = FOpApp ("Defined_in", [KDTerm (`Binder (Indef_des, trm,

t1, fo), TConstant "Class"); KDType t2]) in

let lcont1 = FBinder (Exists, trm, t1, fo) in

let lcont2 = FOpApp ("Type_le", [KDType t1; KDType t2]) in

let rootc = ref [] in

let and1c = ref [] in

let root = Or ({content = `p rcont; status = Unchecked},None, rootc)

in

let and1 = And ({content = `p rcont; status = Unchecked}, Some root,

and1c) in

let leaf1 = Leaf ({content = `p lcont1; status = Unchecked}, Some

and1) in

let leaf2 = Leaf ({content = `p lcont2; status = Unchecked}, Some

and1) in

and1c := [leaf1;leaf2];

92 A. APPENDIX � Source Code

rootc := [and1];

get root;;

let build_indefDesUDef t1 t2 fo trm =

let rcont = FOpApp ("Not", [KDFormula (FOpApp ("Defined_in", [KDTerm

(`Binder (Indef_des, trm, t1, fo), TConstant "Class");

KDType t2]))]) in

let lcont1 = FOpApp ("Not", [KDFormula (FBinder (Exists, trm, t1,

fo))]) in

let lcont2 = FOpApp ("Type_equal", [KDType t2; KDType (TConstant

"Empty_type")]) in

let rootc = ref [] in

let root = Or ({content = `p rcont; status = Unchecked},None, rootc)

in

let leaf1 = Leaf ({content = `p lcont1; status = Unchecked}, Some

root) in

let leaf2 = Leaf ({content = `p lcont2; status = Unchecked}, Some

root) in

rootc := [leaf1;leaf2];

get root;;

A.2.10 Quotation

let build_quoDef t1 t2 =

let rcont = FOpApp ("Defined_in", [KDTerm (`Quote t1); KDType t2])

in

let lcont = FOpApp ("Type_le", [KDType (TConstant "Expr_type");

KDType t2]) in

let rootc = ref [] in

let root = Or ({content = `p rcont; status = Unchecked},None, rootc)

in

A. APPENDIX � Source Code 93

let leaf = Leaf ({content = `p lcont; status = Unchecked}, Some

root) in

rootc := [leaf];

get root;;

let build_quoDef trm t =

let rcont = FOpApp ("Defined_in", [KDTerm (`Quote trm); KDType t])

in

let lcont = FOpApp ("Type_le", [KDType (TConstant "Expr_term_type");

KDType t]) in

let rootc = ref [] in

let root = Or ({content = `p rcont; status = Unchecked},None, rootc)

in

let leaf = Leaf ({content = `p lcont; status = Unchecked}, Some

root) in

rootc := [leaf];

get root;;

A.2.11 Evaluation

let build_tEvalC trm =

let rcont = FOpApp ("Type_equal", [KDType (TEval (trm)); KDType

(TConstant "Class")]) in

let lcont1 = FOpApp ("Not", [KDFormula (FOpApp ("Gea", [KDTerm (trm,

TConstant "Class"); KDType (TConstant "Expr_type")]))])

in

let rootc = ref [] in

let root = Or ({content = `p rcont; status = Unchecked},None, rootc)

in

let leaf1 = Leaf ({content = `p lcont1; status = Unchecked}, Some

root) in

94 A. APPENDIX � Source Code

rootc := [leaf1];

get root;;

let build_evalUDef trm =

let rcont = FOpApp ("Not", [KDFormula (FOpApp ("Defined_in", [KDTerm

(`Eval (trm, TConstant "Class"), TConstant "Class");

KDType (TConstant "Expr_type")]))]) in

let lcont1 = FOpApp ("Not", [KDFormula (FOpApp ("Gea", [KDTerm (trm,

TConstant "Class"); KDType (TConstant "Expr_type")]))])

in

let rootc = ref [] in

let root = Or ({content = `p rcont; status = Unchecked},None, rootc)

in

let leaf1 = Leaf ({content = `p lcont1; status = Unchecked}, Some

root) in

rootc := [leaf1];

get root;;

let build_fEvalFalse trm =

let rcont = FOpApp ("Formula_equal", [KDFormula (FEval (trm));

KDFormula (FConstant ("False"))]) in

let lcont1 = FOpApp ("Not", [KDFormula (FOpApp ("Gea", [KDTerm (trm,

TConstant ("Class")); KDFormula (FConstant

("Expr_formula"))]))]) in

let rootc = ref [] in

let root = Or ({content = `p rcont; status = Unchecked},None, rootc)

in

let leaf1 = Leaf ({content = `p lcont1; status = Unchecked}, Some

root) in

rootc := [leaf1];

get root;;

A. APPENDIX � Source Code 95

A.3 Building Starter Trees

let rec get_root checkExpr =

match checkExpr with

| FOpApp ("Defined_in", [KDTerm (`Constant (cname, TConstant

(cname)), t1); KDType t2]) ->

build_gcsDef cname t1 t2

| FOpApp ("Not", [KDFormula (FOpApp ("Defined_in", [KDTerm

(`Constant (cname, TConstant (cname)), t1); KDType t2]))]) ->

build_gcsUDef cname t1 t2

| FOpApp ("Type_equal", [KDType (TOpApp (op1, kdl)); KDType

(TConstant "Class")]) ->

build_tOpAppC op1 kdl

| FOpApp ("Not", [KDFormula (FOpApp ("Defined_in", [KDTerm (`OpApp

(op1, kdl, TConstant op1), C.type of (op1, kdl, TConstant op1));

KDType (TConstant "Class")]))]) ->

build_opAppUDef op1 kdl

| FOpApp ("Formula_equal", [KDFormula (FOpApp (op1, kdl));

KDFormula (FConstant "False")]) ->

build_fOpAppFalse op1 kdl

| FOpApp ("Type_equal", [KDType (TTypeApp (t,trm)); KDType

(TConstant "Empty_type")]) ->

build_tAppEmp t trm

| FOpApp ("Type_equal", [KDType (TTypeApp (t, trm)); KDType

(TConstant "Class")]) ->

build_tAppC t trm

| FOpApp ("Type_le", [KDType (TBinder (Dep_fun_type, trm, t1,

t2)); KDType (TBinder (Dep_fun_type, trm, t3, t4))]) ->

build_depFunDef t1 t2 t3 t4 trm

| FOpApp ("Not", [KDFormula (FOpApp ("Defined_in", [KDTerm (f,

TConstant "Class"); KDType (TBinder (Dep_fun_type, trm, t1,

t2))]))]) ->

build_depFunUDef f t1 t2 trm

96 A. APPENDIX � Source Code

| FOpApp ("Defined_in", [KDTerm (`FunApp (`Constant (f, TBinder

(Dep_fun_type, trm1, t1, t2)), trm2), `TConstant "Class"); KDType

t3]) ->

build_funAppDef f t1 t2 t3 trm1 trm2

| FOpApp ("Not", [KDFormula (FOpApp ("Defined_in", [KDTerm

((`FunApp (`Constant (f, TConstant "Class"),trm)), TConstant

"Class"); KDType t3]))]) ->

build_funAppUDef f t1 trm

| FOpApp ("Defined_in". [KDTerm (`FunAbs (trm, t1, `Constant

("Expr_term", t2)), TBinder (Dep_fun_type, trm, t1, t2)); KDType

(TConstant "Class")]) ->

build_fAbsDef t1 t2 trm

| FOpApp ("Defined_in", [KDTerm (`If (fo, trm1, trm2), TConstant

"Class"); KDType t1]) ->

build_ifConDef t1 trm1 trm2 fo

| FOpApp ("Not", [KDFormula (FOpApp ("Defined_in", [KDTerm (`If

(fo, trm1, trm2), TConstant "Class"); KDType t1]))]) ->

build_ifConUDef t1 trm1 trm2 fo

| FOpApp ("Defined_in", [KDTerm (`Binder (Def_des, trm, t1, fo),

TConstant "Class"); KDType t2]) ->

build_defDesDef t1 t2 fo trm

| FOpApp ("Not", [KDFormula (FOpApp ("Defined_in", [KDTerm

(`Binder (Def_des, trm, t1, fo), TConstant "Class"); KDType

t2]))]) ->

build_defDesUDef t1 t2 fo trm

| FOpApp ("Defined_in", [KDTerm (`Binder (Indef_des, trm, t1, fo),

TConstant "Class"); KDType t2]) ->

build_indefDesDef t1 t2 fo trm

| FOpApp ("Not", [KDFormula (FOpApp ("Defined_in", [KDTerm

(`Binder (Indef_des, trm, t1, fo), TConstant "Class"); KDType

t2]))]) ->

build_indefDesUDef t1 t2 fo trm

| FOpApp ("Defined_in", [KDTerm (`Quote t1); KDType t2]) ->

build_quoDef t1 t2

| FOpApp ("Defined_in", [KDTerm (`Quote trm); KDType t]) ->

A. APPENDIX � Source Code 97

build_quoDef trm t

| FOpApp ("Type_equal", [KDType (TEval (trm)); KDType (TConstant

"Class")]) ->

build_tEvalC trm

| FOpApp ("Not", [KDFormula (FOpApp ("Defined_in", [KDTerm (`Eval

(trm, TConstant "Class"), TConstant "Class"); KDType (TConstant

"Expr_type")]))]) ->

build_evalUDef trm

| FOpApp ("Formula_equal", [KDFormula (FEval (trm)); KDFormula

(FConstant ("False"))]) ->

build_fEvalFalse trm

| _ -> failwith "Can not be checked."

A.4 Node Labeling Procedure

let rec updateNodes n =

match n with

| Or (r, par, ch) ->

let l1 = List.map getStatus (List.map get_rec !ch) in

if List.exists (fun x -> x = True) l1 then r.status <- True

else r.status <- Unknown;

if par = None then r.status

else updateNodes (get_parent par)

| And (r, par, ch) ->

let l1 = List.map getStatus (List.map get_rec !ch) in

if List.exists (fun x -> x = False) l1 then

r.status <- False

else if List.for_all (fun x -> x = True) l1 then

r.status <- True

else r.status <- Unknown;

updateNodes (get_parent par)

98 A. APPENDIX � Source Code

| Leaf (r, par) -> failwith "No such case."

A.5 Leaf Checking Procedure

let rec expand_root n c =

let q = Queue.create() in

Queue.add (n) q;

let rec bfs ns =

let nr = get_rec n in

let ns = getStatus nr in

while ns = Unchecked do

if Queue.length q = 0 then raise Not_found;

let s = Queue.take q in

match s with

| Or (_, par, ch) ->

for i = 0 to (List.length !ch) - 1 do

Queue.add (List.nth !ch i) q

done;

bfs ns

| And (_, par, ch) ->

for i = 0 to (List.length !ch) - 1 do

Queue.add (List.nth !ch i) q

done;

bfs ns

| Leaf (r, par) -> check_leaf r par c

done

and check_leaf r par c =

while r.status = Unknown do

let lc1 = getContent r in

if inContext lc1 c then

r.status <- True

A. APPENDIX � Source Code 99

else

begin

let lc2 = simp_formula lc1 in

r.content <- lc2;

if (lc2 = R.falsef) then r.status <- False

else if (lc2 = R.truef) || (inContext lc2 c) then

r.status <- True

else

begin

let con = getContent r in

if ((expand_root (get_root con) c) = True)

then r.status <- True

else if ((expand_root (get_root con) c) = False) then

r.status <- False

else r.status <- Unknown

end

end

done;

bfs (updateNodes (get_parent par))

in

let nr = get_rec n in

getStatus nr;;

A.6 Function for De�nedness Checking

let check checkExpr c = expand_root (get_root checkExpr) c

BIBLIOGRAPHY

[1] Objective Caml. Home page at http://caml.inria.fr/ (accessed July 26,

2011).

[2] Bruce W. Char, Keith O. Geddes, Gaston H. Gonnet, Benton L. Leong,

Michael B. Monagan, and Stephen M. Watt. Maple V Language Reference Man-

ual. Springer-Verlag, 1991.

[3] W. M. Farmer, J. D. Guttman, and F. J. Thayer Fábrega. imps: An updated sys-

tem description. In M. McRobbie and J. Slaney, editors, Automated Deduction�

CADE-13, volume 1104 of Lecture Notes in Computer Science, pages 298�302.

Springer-Verlag, 1996.

[4] William M. Farmer. A partial functions version of church's simple theory of

types. The Journal of Symbolic Logic, 55(3):pp. 1269�1291, 1990.

[5] William M. Farmer. A simple type theory with partial functions and subtypes.

Annals of Pure and Applied Logic, 64(3):211 � 240, 1993.

[6] William M. Farmer. Reasoning about partial functions with the aid of a com-

puter. Erkenntnis, 43:279 �294, November 1995.

100

BIBLIOGRAPHY 101

[7] William M. Farmer. Formalizing Unde�nedness Arising in Calculus, volume

3097 of Lecture Notes in Computer Science, pages 475 � 489. Springer Berlin /

Heidelberg, 2004.

[8] William M. Farmer. Chiron: A multi-paradigm logic. In R. Matuszewski and

A. Zalewska, editors, From Insight to Proof: Festschrift in Honour of Andrzej

Trybulec, volume 10(23) of Studies in Logic, Grammar and Rhetoric, pages 1�19.

University of Biaªystok, 2007.

[9] William M. Farmer. Chiron: A set theory with types, unde�nedness, quotation,

and evaluation. SQRL Report 38, McMaster University, 2007. Revised 2010.

[10] William M. Farmer, Joshua D. Guttman, and F. Javier Thayer. IMPS: An

Interactive Mathematical Proof System. volume 11, pages 213�248, 1993.

[11] William M. Farmer, Joshua D. Guttman, and F. Javier Thayer. The IMPS user's

manual. Technical Report M-93B138, The MITRE Corporation, 1993. Available

at http://imps.mcmaster.ca/ (accessed August 26, 2010).

[12] William M. Farmer, Joshua D. Guttman, and F. Javier Thayer. Contexts in

mathematical reasoning and computation. Journal of Symbolic Computation,

19(1-3):201�216, 1995.

[13] J. D. Guttman. A proposed interface logic for veri�cation environments. Tech-

nical Report M91 - 19, The MITRE Corporation, 1991.

[14] Richard D. Jenks and Robert S. Sutor. Axiom : The Scienti�c Computation

System. Springer-Verlag, 1992.

[15] Ambuj Mahanti and Amitava Bagchi. And/or graph heuristic search methods.

J. ACM, 32:28�51, January 1985.

[16] Mathscheme: An integrated framework for computer algebra and computer the-

orem proving. Web site at

http://www.cas.mcmaster.ca/research/mathscheme/ (accessed July 26,

2011).

[17] Leonard G. Monk. Inference rules using local contexts. Journal of Automated

Reasoning, 4(4):445�462, 1988.

102 BIBLIOGRAPHY

[18] Hong Ni. Chiron: Mechanizing mathematics in OCaml. Master's thesis, McMas-

ter University, 2009.

[19] Nils Robert Nilsson. Problem-solving Methods in Arti�cial Intelligence. McGraw-

Hill computer science series. McGraw-Hill, New York, NY, 1971.

[20] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL � A

Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[21] Natara Shankar, Sam Owre, John M. Rushby, and David W. J. Stringer-Calvert.

PVS Prover Guide. Computer Science Laboratory, SRI International, Menlo

Park, CA, September 1999.

[22] The Coq Development Team. The Coq proof assistant reference manual: Version

8.3. Technical Report 38, June 2004. http://coq.inria.fr.

[23] Patrick Henry Winston. Arti�cial Intelligence. Addison - Wesley, Reading, MA,

1977.

[24] Stephen Wolfram. Mathematica: A system for doing mathematics by computer

(2nd ed.). Addison Wesley Longman Publishing Co., Inc., Redwood City, CA,

USA, 1991.

[25] Han Yin Zhang. Simpli�cation infrastructure for an implementation of the chiron

logic. Master's thesis, McMaster University, 2010.

