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Abstract

Let Θn be the group of h-cobordism classes of homotopy spheres, i.e. closed smooth

manifolds which are homotopy equivalent to Sn, under connected sum. A homotopy

sphere Σn which is not diffeomorphic to Sn is called “exotic.” For an oriented smooth

manifold Mn, the inertia group I(M) ⊂ Θn is defined as the subgroup of homotopy

spheres such that M#Σ is orientation-preserving diffeomorphic to M . This thesis

collects together a number of results on I(M) and provides a summary of some

fundamental results in Geometric Topology. The focus is on dimension 7, since it

is the smallest known dimension with exotic spheres. The thesis also provides two

new results: one specifically about 7-manifolds with certain S1 actions, and the other

about the effect of surgery on the homotopy inertia group Ih(M).
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Introduction

In 1956, John Milnor [Mil56b] produced a class of 7-dimensional smooth manifolds

that were pair-wise non-diffeomomorphic, yet all homeomorphic to the standard

sphere S7. This provided a counter-example to the Smooth Poincaré Conjecture.

The next major advance was the 1963 work of Milnor with Michel Kervaire

[KM63], which studied these homotopy spheres in high dimensions. By treating the

set of h-cobordism classes of homotopy spheres as a group Θn, under the operation

of connected sum, they found that there exist exotic spheres in the vast majority of

dimensions but also that in each dimension there are only finitely many.

A natural question arose: for a manifold M , if the connected sum is formed be-

tween M and a homotopy sphere Σ of the same dimension, does it produce a new

smooth manifold? The collection of homotopy spheres which admit an orientation

preserving diffeomorphismM →M#Σ form the inertia group ofM , denoted I(M).

There is a canonical topological identification hΣ : M →M#Σ which is identity out-

side of the attaching region; the subset of the inertia group consisting of spheres that

admit a diffeomorphism homotopic to hΣ is called the homotopy inertia group

Ih(M). When originally defined, it was not immediate that neither I(M) or Ih(M)

are homotopy invariants.

The computation of I(M) for an arbitrary M has proven to be exceedingly diffi-

cult, but there are cases where it is known. Some results provide sufficient conditions

for I(M) = 0: for example, it is known that I(Sp × Sq) = 0 when p+ q ≥ 5 [Sch71],

and I(CP n) = 0 for n ≤ 8 [Kaw68]. On the other hand for every n there is a manifold

Mn such that I(M) = Θn [Win75]. There is no systematic method for approaching
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the problem in general, and as such many problems are still open. What is I(CP n)

when n > 8? When is Ih(M) = I(M) or 0?

It is known that Ih(M) is an h-cobordism invariant [Bru71], so a natural question

is “If M and N are cobordant, how are Ih(M) and Ih(N) related?" Milnor [Mil61]

studied the problem of finding a highly connected manifold in the cobordism class of

any given manifold Mn, via elementary surgery theory. By choosing an embedding

f : Sk ×Dn−k →M

one can form a new manifold

χ(M, f) = M \ f(Sk × 0) ∪ (Dk+1 × Sn−k−1)

using an appropriate attaching map. In fact, M and N are cobordant iff N can be

obtained from M by a sequence of elementary surgeries. One new result from this

thesis says something about this problem:

Theorem (3.4.1). LetMn be a smooth manifold and let f : Sk×Dn−k be an embedding
with k < min{bn

2
c, n− 3}.

Then Ih(M) ⊂ I(χ(M, f)).

The other new result is about 7-manifolds with admitting semi-free S1 actions:

Corollary (3.3.6). Let M7 be a closed smooth manifold satisfying H1(M ;Z/2) ∼= 0,
and suppose it admits a semi-free S1 action with fixed-point set F 5. Suppose further
that the quotient space W is parallelizable, and that resulting S1 bundle ξ : M \ F →
W \ F has e(ξ) ≡ 0 (mod 2) and e2(ξ) = 0.

Then I(M) = 0.



Chapter 1

Background

1.1 Basic Definitions and Concepts

It is assumed that the reader is familiar with general and algebraic topology. The

main points will be highlighted in this section. Almost nothing will be proven.

We make the following notational conventions:

For a set A, P(A) denotes its power set.

Rn is n-dimensional Euclidean space, Dn is the unit disk, and Sn is the unit sphere,

with their natural smooth structures and orientations. Define Rn
+ = {(x1, . . . , xn) ∈

Rn | x1 ≥ 0}. Cn is n-dimensional complex space, and Hn is n-dimensional quater-

nionic space.

If F is one of R,C, or H, then FP n is the associated projective space.

Topological spaces are typically denoted by X, Y, Z. For x a point in a topological

space, the set of all open neighbourhoods is denoted by Ux.
Smooth manifolds tend to be denoted byMn, Nn, where n indicates the dimension;

W is usually reserved for a coboundary. Homotopy spheres will be represented by Σn.

Unless otherwise stated, all smooth manifolds will be oriented and path-connected.

A fibre bundle over a topological space B will be denoted ξ : F i // E
ρ // B.

The trivial Rn bundle over B will be denoted εn. For a smooth manifold M , the tan-

gent bundle will be denoted τM . If k is a characteristic class ofM then the expressions

3
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k(τM) and k(M) (in the appropriate cohomology group) will be interchangeable.

1.1.1 Topology and Manifolds

For a thorough treatment of General Topology, the reader is referred to [Mun75].

Recall some definitions:

Definition 1.1.1. Let X be a set. A topology on X is a collection of subsets
T ⊂ P(X) with the following properties:

1. ∀A ⊂ T , ∪A ∈ T

2. ∀A ⊂ T with |A| <∞, ∩A ∈ T

A pair (X, T ), where T is a topology on X, is called a topological space.
A subset U ⊂ X is open if U ∈ T . If x ∈ U and U is open, U will be called an

open neighbourhood of x. The neighbourhood system at x is

Ux := {U ∈ T | x ∈ U}

Remark 1.1.2. For any topological space (X, T ), taking A = ∅ ⊂ T gives

∪∅ = ∅ ∈ T and ∩ ∅ = X ∈ T

Given a function f : X → Y , it induces a function f−1 : P(Y )→ P(X).

Definition 1.1.3. If (X, TX) and (Y, TY ) are topological spaces, then a function
f : X → Y is continuous if ∀U ∈ TY , f−1(U) ∈ TX .

A continuous function f is an open map if ∀U ∈ TX , f(U) ∈ TY .
A topological (or continuous) embedding is an injective open map.
A homeomorphism is a surjective topological embedding.
The group of self-homeomorphisms f : X → X is denoted Top(X)

Definition 1.1.4. Let f, g : X → Y be two continuous functions. f and g are ho-

motopic (denoted f ∼ g) if there is a homotopy from f to g, that is a continuous
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function F : X × I → Y such that ∀x ∈ X, F (x, 0) = f(x) and F (x, 1) = g(x).
A continuous function f : X → Y is a homotopy equivalence if there is a con-

tinuous function g : Y → X such that fg ∼ idY and gf ∼ idX .
For any spaces X and Y , let [X, Y ] denote the set of homotopy-classes of maps

from X to Y .

Definition 1.1.5. A collection of subsets B ⊂ P(X) is a basis for a topology if

1. ∪B = X

2. ∀B1, B2 ∈ B,∀x ∈ B1 ∩B2, ∃B3 ∈ B such that x ∈ B3 ⊂ B1 ∩B2.

The topology generated by B is TB := {∪A | A ⊂ B}.
A topological space (X, TX) is second countable if there is a basis B for a topol-

ogy, where TB = TX and B is a countable set.

Definition 1.1.6. A topological space is Hausdorff if ∀x 6= y ∈ X there are open
nhds Ux and Uy (of x and y respectively) such that Ux ∩ Uy = ∅.

Definition 1.1.7. A topological space (X, T ) is locally Euclidean of dimension

n if ∀x ∈ X, ∃U ∈ Ux and a homeomorphism φ : U → V where V is an open subset
of Rn

+.
The pair (U, φ) will be called a chart at x. A collection of charts which covers X

will be called a topological atlas A. The boundary of X, denoted ∂X, is the set
of all x ∈ X such that there is a chart (U, φ) at x where φ(x) = (0, x2, . . . , xn) (for
some x2, . . . , xn ∈ R).

For any two charts (Ui, φi), (Uj, φj) ∈ A there is a transition function

φj,i = φj ◦ (φi|Ui∩Uj)−1 : φi(Ui ∩ Uj)→ φj(Ui ∩ Uj)

Remark 1.1.8. It is more than likely that Ui ∩ Uj = ∅. In this case, the transition
function φj,i is just ∅ : ∅ → ∅.

In any case, the transition function will always be a homeomorphism (this is vac-
uously true when φj,i = ∅).
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Definition 1.1.9. A topological space is a topological manifold of dimension n

if it is second countable, Hausdorff, and locally Euclidean of dimension n.
A topological manifold is closed if it is compact and without boundary, and is

open if it is non-compact and without boundary.

Remark 1.1.10. If X is a topological manifold of dimension n with boundary, then
∂X is a topological manifold of dimension n− 1.

1.1.2 Fibre Bundles

A fibre bundle generalizes the tangent bundle of a smooth manifold. The standard

reference on the theory of fibre bundles is [Ste99]. The basic definitions of fibre bun-

dle, local trivialization, structure group, bundle map, bundle equivalence,

etc., are to be found there. To define these notions properly there is a large amount of

discussion which is not appropriate for a “review” section. Instead, important results

and concepts are stated.

Theorem 1.1.11 (Homotopy Lifting Property). Let

ξ : F // E
ρ // B

be a fibre bundle, let f : X → B be a continuous function with lift f̃ : X → E, and let
F : X × I → B be continuous with F (x, 0) = f(x) for all x ∈ X.

Then there is a lift F̃ : X × I → E.

Corollary 1.1.12. Any bundle over a contractible space is trivial.

The following result could be called the “reconstruction theorem.”

Theorem 1.1.13 ([Ste99, 3.2]). Let X, Y be any topological spaces, G a topological
group that acts on Y , and let {Ui}i∈Λ be an open covering of X. Suppose that for
each pair i, j ∈ Λ there is a continuous function gji : Uj ∩ Ui → G so that for each
x ∈ Ui ∩ Uj ∩ Uk there is the relation gkj(x)gji(x) = gki(x).

Then there is a bundle with base X, fibre Y and coordinate transformation group
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G, with cocycles given by {gji}i,j∈Λ. Furthermore, any two bundles over X with this
information will be equivalent.

The spirit of this theorem is that to define a bundle it is enough to give local

trivializations and a collection of coordinate transformations which “stitch together”

the pieces.

Definition 1.1.14. Let π : E → X be a bundle with fibre Y , and structure group G.
Suppose G acts on another space Z. Then the associated bundle with fibre Z is
the bundle given by Theorem 1.1.13 where the fibre Y is replaced by Z.

The reconstruction theorem combined with the notion of “associated bundles” in-

dicates that to classify bundles with structure group G it suffices to classify principal

G-bundles.

The spirit of “stitching together trivial parts” almost immediately gives a classifi-

cation of bundles over the sphere, since the two hemispheres are contractible.

Proposition 1.1.15. Let G be a topological group. Then the equivalence classes of
principal G-bundles over Sn are in natural bijective correspondence with πn−1(G).

When the base space becomes more complicated, the situation is not as simple.

However, there is a result with a simple statement:

Theorem 1.1.16. Let X be a topological space, G a topological group. Then there
is a space BG (called the classifying space of G) such that equivalence classes of
principal G-bundles are in natural bijective correspondence with [X,BG].

In particular, there is a universal bundle G→ UG→ BG so that the homotopy
class of the function f : X → BG corresponds to the bundle f ∗(UG)

Remark 1.1.17. In Steenrod this is shown for G a compact Lie group [Ste99, §19.6].
The general case was handled by Milnor [Mil56a]
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1.1.3 Smooth Manifolds

For a reference on differentiable manifolds, the reader is referred to [Lee03] or [Kos93]

Definition 1.1.18. Let A be a topological atlas for a topological manifold X of di-
mension n. A is a smooth atlas for X if every transition function is smooth (as a
function between open subsets of Rn).

Two smooth atlases A1 and A2 are compatible if A1∪A2 is also a smooth atlas.
A smooth structure is a smooth atlas which is maximal with respect to compat-

ibility (that is, A is maximal if every A′ 6⊂ A is not compatible).

There is a non-standard but equivalent definition of a smooth structure, given

in lectures by Milnor about Differential Topology [Mil07, p.146] (notes taken by

Munkres). The spirit of this definition is that the smoothness of a manifold can

be expressed in terms of the smooth real-valued functions defined on open subsets.

(The two notions of “smooth structure” will be used interchangeably.)

Definition 1.1.19. A smooth structure on X will be a collection D of real-valued
functions f : U → R, defined on open subsets of X, with the following properties:

1. For each p ∈ X there is a chart (U, φ) at p with the property that if f is a
real-valued function defined on an open subset of U , then f ∈ D iff
fφ−1 : φ−1(U) ⊂ Rn → R is smooth. (Such a φ will be called a reference map

at p.)

2. If f is a real-valued function defined on the open set W ⊂ X, Ui a collection
of open subsets of W , and U := ∪Ui, then f |U ∈ D iff f |Ui ∈ D for each i.
(In particular, if U = X then a global function is smooth if it is smooth on a
collection of open sub-domains which cover X.)

The elements of a smooth structure will be called the smooth functions on X.

Now let X1 and X2 be manifolds with smooth structures D1,D2, and let U ⊂ X1

open. It is said that g : U → X2 is a smooth function on U if for each f2 ∈ D2 with
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domainW , the function f2g is in D1, with possibly empty domain g−1(W ). Any refer-

ence map is smooth from its domain to Rn, which is given the trivial chart (Rn, id). It

is readily shown that the composition of smooth functions is also smooth. A smooth

embedding (usually just “embedding,” sometimes “imbedding”) is a smooth topolog-

ical embedding whose inverse is smooth; a diffeomorphism is a surjective smooth

embedding. The group of self-diffeomorphisms of a smooth manifold M is denoted

Diff(M).

Definition 1.1.20. Let Mn be a smooth manifold with smooth atlas A consisting of
contractible open sets. Define the tangent bundle τM to be the Rn bundle given by
the Reconstruction Theorem 1.1.13 as follows: let τM |U = U × Rn for each U ∈ A,
and define the transition function for U ∩ V by idU∩V ×D(φV φ

−1
U ).

By the theory of Morse [Mil63a] any smooth manifold admits a handlebody

decomposition, and hence a CW decomposition.

Topological properties of the tangent bundle are often used to distinguish smooth

manifolds.

Definition 1.1.21. Let Mn be a smooth manifold.
For 0 ≤ k ≤ n let M(k) be the k-skeleton of a CW decomposition, Mn is

k-parallelizable if τM |M(k)
∼= εn.

Mn is parallelizable if it is n-parallelizable. It is parallelized if a particular
trivialization is chosen t : τM →M × Rn.

Mn is a π-manifold (or s-parallelizable or stably parallelizable) if

τM ⊕ ε1 ∼= εn+1

Lemma 1.1.22 ([KM63, Lemma 3.3]). Let M be an n-dimensional submanifold of
Sn+k where n < k. Then M is a π-manifold iff its normal bundle is trivial.

Lemma 1.1.23 ([KM63, Lemma 3.4]). A connected manifold with non-vacuous bound-
ary is a π-manifold iff it is parallelizable.
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Recall that a bundle with group G is classified by a map f : Mn → BG. The

structure group of an oriented manifold is reduced to SOn by choosing a metric. SOn

has a double-cover, which is simply-connected if n ≥ 3, called the spin group

Spinn
2:1 // SOn

.

Definition 1.1.24. Let Mn be an oriented manifold, whose tangent bundle is classi-
fied by the map f : M → BSOn. Then M is a spin manifold if there is a lift

B Spinn

��
M

f
//

f̃
;;

BSOn

A spin structure on M is a bundle corresponding to one such lift f̃ : M → B Spinn.

Lemma 1.1.25 ([Mil65, lemma 1]). If M is a spin manifold, then the spin structure
is unique iff H1(M ;Z/2) = 0.

1.2 Algebraic Topology

1.2.1 Obstruction and Characteristic Classes

The problem of finding a section of a fibration is studied by obstruction theory.

We will outline some main ideas, and refer the reader to [Ste99] and [Hu59] for a

more thorough treatment. In the literature the development is done relative to some

subcomplex of the base space, but for the sake of clarity we will omit that.

Let F // E
ρ // B be a fibre bundle. A CW structure on B might suggest

that a section could be defined inductively, by extending it one skeleton at a time.

Indeed for the base case, the 0-skeleton, constructing a section is trivial as long as

F is not empty. Supposing that a section s : B(n−1) → E has been constructed, the
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problem of extending s to B(n) becomes the problem of extending it over each n-cell.

Suppose C is an n-cell and s : B(n−1) → E is a section of the subbundle over the

(n − 1) skeleton. s is defined on ∂C ∼= Sn−1, and so determines a map s̃ : Sn−1 →
ρ−1(C). Since C is contractible, by the homotopy lifting property of fibre bundles the

contraction can be lifted, and so s̃ can be homotoped to a map into a single fibre Fx,

i.e. Sn−1 → Fx. Then s can be extended over C iff the induced element of πn−1(Fx)

is trivial.

Recall that the collection of n-cells generates the n-th chain group of cellular

homology

Ccell
n (B) := Hn(B(n), B(n−1)).

For each n-cell C, s determines an element of πn−1(Fx) for some x ∈ C, but when

{πn−1(Fx) | x ∈ B} (or just {πn−1(F )} for short) is treated as a bundle of coeffi-

cients [Ste99, §31] then s induces a homomorphism

o(s) : Ccell
n (B)→ {πn−1(F )}

In other words, s induces an element of Cn
cell(B; {πn−1(F )}). In fact, o(s) is a cocylcle.

Definition 1.2.1. Let F // E
ρ // B be a fibre bundle with B a CW complex, and

let s : B(n−1) → E be a section over the (n−1)-skeleton. Define the n-th obstruction

group as Hn
cell(B; {πn−1(F )}). The obstruction cocycle of s is the element

o(s) ∈ Hn
cell(B; {πn−1(F )})

described above.
Given a section s : B(n−1) → E which can be extended over B(n), let

o(s) := {o(s′)} ⊂ Cn+1
cell (B; {πn(F )})

where s′ ranges over extensions of s to the n-skeleton.

Theorem 1.2.2 ([Ste99, 34.2]). Suppose s : B(n−1) → E is a section which can be
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extended over B(n).
Then o(s) is a cohomology class, and s is extendable over B(n+1) iff o(s) = 0.

Definition 1.2.3. Suppose now that F is (k − 1)-connected. Define the character-
istic cohomology class of this bundle to be

o ∈ Hk+1(B; πk(F )),

the class of all o(f) such that f is a section of B(k) (i.e. an extension of ∅ : ∅ → E

where by convention B(−1) = ∅).

A typical application of obstruction theory is the proof that every homotopy sphere

is a π-manifold, as in [KM63, Theorem 3.1].

Closely related to obstruction theory is the theory of characteristic classes

of vector bundles. The reader is referred to Milnor-Stasheff [MS74] for a concise

development of the theory of Stiefel-Whitney, Euler, Chern, and Pontryagin

classes.

We note that for a smooth manifold M with tangent bundle τM , the first Stiefel-

Whitney class ω1(τM) ∈ H1(M ;Z/2) represents the obstruction to defining an orienta-

tion onM . Furthermore, ifM is oriented then it is a spin manifold (Definition 1.1.24)

iff ω2(M) = 0.

A result of Kervaire relates characteristic classes to obstruction classes:

Lemma 1.2.4 ([Ker59, Lemma 1.1]). Let ξ be a stable G bundle over a CW complex
K, where G = SOn, Un. Let f be a section on K(q), where q = 4k if G = SOn and
q = 2r if G = Un. Then

1. pk(ξ) = ak(2k − 1)!o(f) if G = SOn

2. cr(ξ) = (r − 1)!o(f) if G = Un

where ak = 2 for k odd and 1 for k even.
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1.2.2 Signature and Theorems of Hirzebruch

The signature, an important invariant for studying 4k-manifolds, comes from study-

ing their intersection forms. The majority of material of this section comes from

[MS74, Milnor-Stasheff].

Definition 1.2.5. Let M2k be a compact, oriented manifold with fundamental class
µ ∈ H2k(M,∂M ;Z), and let α, β ∈ Hk(M,∂M ;Z). Define the intersection of α
and β as

λM(α, β) := 〈α ∪ β, µ〉

The intersection form is the bilinear form

λM : Hk(M,∂M ;Z)×Hk(M,∂M ;Z)→ H2k(M,∂M ;Z) ∼= Z

If a1, . . . , an is a basis for Hk(M,∂M ;Z), then λM is described by the matrix

(ai,j) = 〈ai ∪ aj, µ〉. If k is even then λM is symmetric, and so its matrix can be

diagonalized over Q.

Definition 1.2.6 ([MS74, p.224]). Suppose k is even, and choose a basis for Hk(M,∂M ;Q)

so that the quadratic form λ̃M over these coefficients is diagonal. Then define the
signature σ(M) to be the number of positive diagonal entries minus the number of
negative entries.

Hirzebruch [Hir56] showed for a closed 4k-manifold M , σ(M) can be expressed as

a polynomial in the Pontryagin numbers 〈pk(τM), µ〉. To do this, he studied formal

power series and “multiplicative sequences” of polynomials.

Definition 1.2.7. For a commutative unital ring Λ, let A∗ = (A0, A1, A2, . . . ) be a
commutative, graded algebra; let AΠ be the ring of formal power series

a = a0 + a1 + a2 . . . ai ∈ Ai
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Consider a sequence of polynomials K = {K1(x1), K2(x1, x2), K3(x1, x2, x3), . . . }.
Given a series a = 1 + a1 + a2 + . . . , define

K(a) = 1 +K1(a1) +K2(a1, a2) + . . .

Definition 1.2.8. K = {K1(x1), K2(x1, x2), . . . } = {Kn} is a multiplicative se-

quence of polynomials if

1. Each Kn(x1, . . . , xn) is homogenous of degree n if xi is given degree i.

2. K(ab) = K(a)K(b) for all such Λ-algebras A∗ and a, b ∈ AΠ with leading term
1.

In particular, take A∗ = Λ[t]. The following lemma due to Hirzebruch is crucial:

Lemma 1.2.9. Given f(t) = 1 + λ1t + λ2t
2 + · · · ∈ Λ[t], there is one and only one

multiplicative sequence {Kn} with coefficients in Λ satisfying the condition

K(1 + t) = f(t).

An equivalent condition is that the coefficient of xn1 in each Kn is equal to λn

Definition 1.2.10. Let f(t) ∈ Λ[t] have leading term 1. Then the the multi-

plicative sequence belonging to f (or associated to f) is the sequence given
by Lemma 1.2.9.

This result says that formal power series with coefficients in Λ and leading term

1 have an injective map into the set of multiplicative sequences. Moving from the

formality back to the realm of manifolds, suppose that the variables are pontryagin

classes:

Definition 1.2.11. For a 4k-manifold M with fundamental class µ, and any multi-
plicative sequence K = {Kn} with rational coefficients, define the K-genus as

Kk[M ] := 〈Kk(p1, . . . , pk), µ〉
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Definition 1.2.12. Let {Lk(p1, . . . , pk)} be the multiplicative sequence of polynomials
belonging to the power series

√
t

tanh
√
t

= 1 +
1

3
t− 1

45
t2 + · · ·+ (−1)k−1 22kBk

(2k!)
tk . . .

(where Bk is the k-th Bernoulli number).

For example: L1 = 1
3
p1, L2 = 1

45
(7p2 − p2

1), L3 = 1
945

(62p3 − 13p2p1 + 2p3
1), . . .

The following theorem is commonly referred to as the “Hirzebruch signature theo-

rem”:

Theorem 1.2.13 ([MS74, 19.4]). For any smooth, closed, oriented 4k-manifold M ,

σ(M) = Lk[M ]

Corollary 1.2.14. If M8 is a smooth, closed, oriented 8 manifold, then

σ(M) = 〈 1

45
(7p2 − p2

1), µ〉

There is another series of interest to spin manifolds, Â:

Definition 1.2.15. Let Â = Ân be the multiplicative sequence associated with
√
z/2

sinh(
√
z/2)

.
Then the Â-genus, Â[X], is defined as Âk(p1, . . . , pk)[X].

Later on, in Section 2.4 we will see an invariant which is based on the Â-genus,

and the fact that it is integral for spin manifolds:

Theorem 1.2.16 (Hirzebruch). Let X be a closed, smooth, oriented spin manifold
of dimension 4k. Then the Â-genus is an integer; if k is odd, then Â[X] is even.

1.2.3 Pontryagin-Thom and Stable Homotopy

The theory of exotic spheres is inexorably linked to the so-called “J-homomorphism”

(or Hopf-Whitehead homomorphism), which relates the homotopy of spheres to the
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homotopy of orthogonal groups. It is remarkable that such a fundamentally smooth

phenomenon can be described by something which is homotopic in nature. What

bridges this apparent gap is the so-called “Pontryagin-Thom” construction, which is

summarized in this section. Most of the following is from [Kos93, Kosinski].

Definition 1.2.17. Let Mn+k be a manifold (without boundary, for simplicity) and
let V k be a submanifold with trivial normal bundle and tubular neighbourhood N .
A trivialization (or framing) of the normal bundle is a choice of diffeomorphism
t : N → V × Rn.

Construction 1.2.18. (Pontryagin-Thom construction)
Let (V k, t) be a trivialized submanifold of Mn+k, with trivialized normal bundle

N . Compose t with projection onto the Rn factor, giving πt : N → Rn (a diffeo-
morphism on each fibre). Compactify Rn by adding ∗, so that πt becomes a map to
Sn. Extend this map continuously by sending the complement of N to ∗, “forget-
ting” about everything outside of N . The resulting continuous surjection is called the
Pontryagin-Thom construction:

p(V k, t) : Mn+k → Sn

Theorem 1.2.19 ([Kos93, IX,5.5]). Let M be compact and closed. Then “p” gives
a bijection between Ωk(M) (the set of compact framed k-dimensional submanifolds of
M modulo framed cobordism) and [Mn+k, Sn].

That is, every continuous map f : M → Sn is homotopic to p(V k, t) for some
framed submanifold (V k, t), and this framed submanifold is unique up to framed cobor-
dism.

Corollary 1.2.20. Let M = Sk+n. Then the above theorem says that every class in
πn+k(S

n) is represented by some p(V k, t) for V k ⊂ Sn+k a framed submanifold.

This construction gives an alternative way to define the suspension homomor-

phism. Given f : Sn+k → Sn, f is homotopic to p(V k, t) for V k ⊂ Sn+k. The

standard embedding Sn+k ⊂ Rn+k+1 adds a trivial factor to the normal bundle of
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V and extends the trivialization t to some t′. Then define the suspension of f as

Sf := p(V k, t′) : Sn+k+1 → Sn+1 (well-defined since p is bijective). This induces a

group homomorphism

S : πk+n(Sn)→ πk+n+1(Sn+1)

Proposition 1.2.21. (Freudenthal Suspension Theorem)
S is surjective if n > k and bijective if n > k + 1

Definition 1.2.22. Let n > k + 1. Then the k-th stable homotopy group is
defined as Πk := πk+n(Sn).

As above, Πk is isomorphic to the framed cobordism group Ωk(Sn+k). This group

has a special subgroup of interest, namely framed k-spheres Ωk
S(Sn+k). In the future

these will be denoted Ωfr
k and Sfrk respectively, to eliminate any reference to n.

For another application of the Pontryagin-Thom construction, consider the stan-

dard embeddings Sk ⊂ Rk+1 ⊂ Rn+k, with tubular nhd N . The normal bundle of Sk

in Rn+k is then isomorphic to the normal bundle ν from Sk ⊂ Rk+1, plus n− 1 trivial

bundles. Choosing a trivialization t : N → Sk × Rn of ν gives a map

p(Sk, t) : Rn+k → Sn

Compactifying Rn+k extends the domain of p(Sk, t), yielding a map which is better

suited for homotopy theory:

p̃(Sk, t) : Sn+k → Sn

Thus a trivialization t of N induces a homotopy class, say J(t) ∈ πn+k(S
n).

A framing of the normal bundle of Sk in Rn+k can be given by a section of the

corresponding Stiefel bundle with fiber Vn,n = SOn, i.e. a map Sk → SOn, and so they

are parametrized (up to equivalence) by πk(SOn). Hence the preceding construction

sets up a function
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J : πk(SOn)→ πn+k(S
n)

This function is a group homomorphism, and has the property that Im J = Skfr ⊂
Πk (when n > k + 1). Since the sphere is the only compact, closed, connected

manifold in dimension 1, it follows that J : π1(SOn) → πn+1(Sn) is surjective for

n > 2. Furthermore, for n = 2 then J is an isomorphism π1(SO2) ∼= π3(S2) ∼= Z.
For n > k + 1 the codomain of J becomes the stable homotopy group. There is

stability in the domain of J as well, since πk(SOn) ∼= πk(SOm) for n,m > k + 1. In

fact, this gives a homomorphism for each k

Jk : πk(SO)→ Πk

The image of Jk is Skfr. Let Sk ⊂ Rn+k have a normal bundle N trivialized by t,

corresponding to an element of πk(SOn). Then t is in the kernel of Jk iff Sk ⊂ Rn+k+1
+

bounds a manifold whose normal bundle has a trivialization extending t.

Definition 1.2.23. Let Mn be a closed s-parallelizable manifold, let k > n + 1, and
choose an imbedding i : M → Sn+k (which exists and is unique up to isotopy). Since
M is an s-parallelizable submanifold of Sn+k its rank k normal bundle is trivial. For
each trivialization t, there is a map p(M, t) : Sn+k → Sk, or in other words an element
of Πn.

Define p(M) := {p(M, t)} ⊂ Πn

1.3 Operating on Smooth Manifolds

There are some standard manifold operations, used to take one or more smooth

manifolds and produce another one. The first operation studied in this section is a

way of taking two manifolds and attaching them along a common submanifold. The

second is a way of modifying a given manifold so as to reduce a particular homotopy

group.
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1.3.1 Attaching Manifolds

One of the elementary constructions in Differential Topology is that of “Attaching

Manifolds along a submanifold.” Kosinski [Kos93] gives a standard treatment of this

procedure.

Construction 1.3.1 (M1#NM2). Let Nn be an n-dimensional smooth manifold and
let M1,M2 be (n+k)-dimensional manifolds, all oriented and possibly with non-empty
boundary.

Let Dn+k be a closed Riemannian k-disk bundle over N and let E be the associated
open disk bundle; let D∂ and E∂ denote their restrictions to ∂N . Identifying N with
the zero section of E, let E0 = E \N .

Let f ′i : D → Mi be embeddings such that f ′i(D∂) ⊂ ∂Mi, the images are trans-
verse to the respective boundaries, f ′1 is orientation preserving, and f ′2 is orientation
reversing. Let fi denote the restriction to E0. Denote by M̃i the manifold Mi \f ′i(N).

Define αE : E0 → E0 by αE(vx) = (1 − ||vx||) vx
||vx|| ; αE should be thought of as

turning E0 inside out.
Finally, construct M1#NM2 by forming a quotient of M̃1

∐
M̃2 using the orien-

tation preserving diffeomorphism f2αEf
−1
1 : f1(E0)→ f2(E0)

Equivalently, M1#NM2 can be defined as the result of the following topological

pushout diagram (see Appendix A)

M̃1

E0

M̃2

M(f1, f2)

f1

f2αE

k

l

Proposition 1.3.2. The topological manifold produced by Construction 1.3.1 is a
smooth manifold.
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Proof. By Lemma A.2.1, the topological pushout is actually a smooth pushout.

For the sake of notation, it is often assumed that f2 is actually orientation preserv-

ing and that it factors as f2 = gαE. If the embeddings involved are being emphasized,

the attached manifold will be denoted by M(f1, f2).

The smooth structure of M(f1, f2) is invariant up to isotopy of the embeddings.

Furthermore, M1#N(M2#N ′M3) = (M1#NM2)#N ′M3 when the embeddings of D

and D′ are disjoint. (See, for example, Appendix A.)

Example 1.3.3. As a special case let N be a 0-dimensional manifold, i.e. a one-
point set, and let gi : N →Mi i = 1, 2 be embeddings into the interiors of M1 and M2

respectively. The resulting manifoldM1#NM2 is called the connected sumM1#M2.
Since there is a blanket assumption of path-connectedness, the connected sum does not
depend on the gi.

There is an analogous construction for when N is a submanifold of the boundary:

Construction 1.3.4 ([Kos93, VI.5]). Let M1,M2 be (n + k + 1)-dimensional mani-
folds. Let N be a closed compact n-manifold, and let ξ be a rank k vector bundle over
N with total space E; identify N with the 0-section of E.

Let h1, h2 be embeddings of E into ∂M1, ∂M2. Using a collared nhd of ∂(Mi) inMi,
extend hi to h̄i : E×R+ →Mi. Let E0 = E×R+ \ (N × 0), and let M̃i = Mi \ h̄i(E0)

Define αE : E0 → E0 analogously to the above.
Construct M1\NM2 as the quotient of M1

∐
M2 by the diffeomorphism

h̄2αEh̄
−1
1 : h̄1(E0)→ h̄2(E0)

Just as above, this construction can be interpreted as a topological pushout so

that Lemma A.2.1 applies to say that M1\NM2 has a natural smooth structure.

Example 1.3.5. Suppose again that N is a 0-manifold, but this time embedded into
the boundaries of M1 and M2. The resulting manifold is called the boundary sum

M1\M2.
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Example 1.3.6. SupposeM1 andM2 have boundaries which are orientation-reversing
diffeomorphic

φ : ∂M1 → −∂M2

Then by taking N = ∂X1 and the diffeomorphisms hi : N → (−1)i+1∂Mi, the bound-
ary attaching operation produces a closed smooth manifold M1\NM2. But there is an
obvious way to topologically attach these manifolds, by forming that quotientM1∪φM2.
This operation results in a topological manifold which is homeomorphic to M1\NM2,
so we will often use M1 ∪φM2 to actually mean the smooth manifold construction.

1.3.2 Elementary Surgery

A. Wallace and R. Thom initiated the study of “surgery” on smooth manifolds.

Milnor’s 1961 paper “A Procedure for Killing Homotopy Groups of Differentiable

Manifolds”[Mil61] carefully analyzes the effects of Thom’s “spherical modifications”

on the topology of a manifold.

Construction 1.3.7. Let n = p+ q + 1 and let Mn be a smooth manifold. Consider
a smooth orientation preserving embedding

f : Sp ×Dq+1 →M q+p+1

The smooth manifold χ(M, f) is defined as follows:
First take the manifolds M0 = M \ f(Sp × 0) and E = D̊p+1 × Sq. Then define

two embeddings:

1. f̊ : Sp × (D̊q+1 \ 0)→M0, the restriction of f , and

2. s : Sp × (D̊q+1 \ 0)→ E by s(u, rv) = (ru, v) for u ∈ Sq, v ∈ Sp, r ∈ (0, 1).

The modified (or surgered) manifold χ(M, f) is defined as the pushout of f̊
and s (as in Appendix A).

Definition 1.3.8. Two manifolds of the same dimension are χ-equivalent if they
are connected by a finite sequence of surgeries.
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Theorem 1.3.9 ([Mil61, Theorem 1]). Two compact oriented manifolds without
boundary are χ-equivalent iff they are cobordant.

The main application of this procedure is a reduction of the groups πk and Hk.

Definition 1.3.10. Let λ ∈ πp(M). An embedding f : Sp → M represents λ if
λ = f∗(ι), where ι is a generator of πp(Sp ×Dn−p).

Lemma 1.3.11 ([Mil61, Lemma 3]). Let f0 be any continuous map in λ, and that
n ≥ 2p + 1. Then there exists and embedding Sp × Dn−p → M representing λ iff
f∗(τM) is trivial.

Theorem 1.3.12 ([Mil61, Theorem 2]). Let M be a π-manifold of dimension n ≥
2p + 1. Then any homotopy class is πp(M) is represented by an embedding f such
that χ(M, f) is a π-manifold.

Corollary 1.3.13. Any compact π-manifold of dimension n is cobordant to a π-
manifold which is bn

2
− 1c-connected.

Lemma 1.3.14 ([Mil61, Lemma 7]). Let M be m-parallelizable of dimension 2m with
m even. For β ∈ Hm(M), let f0 : Sm → M be an imbedding representing β. Then
the normal bundle of f0(Sm) is trivial iff the intersection number 〈β, β〉 is zero.

Recall that the signature is a cobordism invariant, so that it does not change with

surgeries.

Theorem 1.3.15 ([Mil61, Theorem 4]). Let M be m-parallelizable and (m − 1)-
connected of dimension 2m where m 6= 2 is even. Suppose the intersection form of
M has signature 0, and that ∂M has no homology in dimensions m and m− 1. Then
M is χ-equivalent to an m-connected manifold.

1.3.3 Plumbing

Construction 1.3.16. Let Mm, Nn be manifolds, let ξM be an n-disk bundle over M
and let ξN be an m-disk bundle over N . M and N have contractible neighbourhoods
UM , UN so that

ξM |UM ∼= UM × Dn and ξN |UN ∼= UN × Dm
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Let φM : UM → Dm and φN : UN → Dn, and let s : Dm × Dn → Dn × Dm send (x, y)

to (y, x). Then, identify the total spaces of ξM and ξN by the diffeomorphism

UM × Dn φM×id// Dm × Dn s // Dn × Dm φN×id// UN × Dm

The result will be a topological manifold “with corners,” which can be smoothed. We
will say that the resulting smooth manifold is plumbed from ξM and ξN

Example 1.3.17. Take k copies of the closed manifold Mm, and let G be a connected
graph with k vertices v1, . . . , vk labelled by integers. For each 1 ≤ i ≤ n, let ξi be the
m-disk bundle over Mm with Euler number vi. Then, starting with adjacent vertices
vi and vj, plumb together ξi and ξj and inductively plumb adjacent bundles with the
resulting manifold.

1.4 E4k and G4k

There is a general construction for producing a manifold of dimension 4k with signa-

ture 8.

Definition 1.4.1 (E4k). Take 8 copies of the tangent disk bundle ξ over S2k. Plumb
them according to the following graph:

2 2 2 2 2 2 2

2

After smoothing corners, the resulting manifold will be called the E4k manifold.

E4k is parallelizable, has signature 8, and the boundary of E4k is a homotopy

sphere if k > 1. For an alternate description and proofs of these assertions, see

[Mil07, Differentiable Manifolds which are Homotopy Spheres].

Kervaire and Milnor investigated a minimum signature for almost parallelizable 4n-

manifolds.
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Let jn be the order of the finite cyclic group Jπ4n−1(SOm) in the stable range

m > 4n. Let an = 2 for n odd and 1 for n even.

Theorem 1.4.2 ([MK60, Theorems 1,2]). If M4n is almost parallelizable, the pn[M ]

is divisible by jnan(2n− 1)!.
Furthermore, there exists an almost parallelizable manifold G4n with this Pontrya-

gin number.

Theorem 1.4.3 ([MK60, 457]).

σ(G4n) = 22n−1(22n−1 − 1)Bnjnan/n

The index of any almost parallelizable 4n-manifold is a multiple of this number.

In particular, σ(G8) = 224.



Chapter 2

Homotopy Spheres

Differential Topology seeks to distinguish between smooth manifolds who are homotopy-

equivalent. A reasonable place to start would be with the simplest closed manifolds:

spheres.

Definition 2.0.1. A (smooth) homotopy sphere of dimension n is a closed smooth
manifold M which homotopy equivalent to the standard sphere Sn.

An exotic sphere is a homotopy sphere which is not diffeomorphic to Sn.

The Topological Poincaré Conjecture states that every homotopy sphere is home-

omorphic to Sn. This “conjecture” has recently been verified in all dimensions. It

was known classically for n = 1, 2, and proven in high dimensions (n > 4) as a conse-

quence of Smale’s h-cobordism theorem [Sma61]. The case n = 4 follows from Freed-

man’s classification of topological 4-manifolds, and n = 3 follows from Thurston’s

Geometrization Conjecture, proven by Perelman. (It is interesting to note that the

proofs are not direct, but rather the result follows from very powerful results about

all manifolds of a given dimension.)

On the other hand, the Smooth Poincaré Conjecture, which asserts that every

homotopy n-sphere is diffeomorphic to Sn, is false, as was first demonstrated by

Milnor [Mil56b] in dimension 7. There are certain high dimensions for which the con-

jecture is true, but whether it is true in arbitrarily high dimensions remains unknown.

25
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A useful fact about homotopy spheres is that they are always stably parallelizable.

Theorem 2.0.2 ([KM63, Theorem 3.1]). Every homotopy sphere Σn is a π-manifold.

Proof. This can be seen by studying the obstruction to trivializing the bundle

τ(Σ)⊕ ε1.

For this bundle to be trivial, there need to be n + 1 independent nowhere-vanishing
sections, or equivalently a section of the associated Stiefel bundle with fibre Vn+1,n+1 =

On+1. Since homotopy spheres can be oriented, this reduces to looking for a section
of the associated SOn+1 bundle. Σn is (n− 1)-connected, so the only obstruction is

on(Σ) ∈ Hn
(
Σ;πn−1(SOn+1)

)
Pass to the stable limit πn−1(SO) and apply Bott Periodicity: when n ≥ 2

πn−1(SO) =Z if n ≡ 0, 4 mod 8

Z2 if n ≡ 1, 2 mod 8

0 otherwise

In the first case, write n = 4k. Work of Kervaire and Milnor [MK60] has shown
that on can be identified with a multiple of the k-th Pontryagin class pk(τ⊕ε1) = pk(τ).
Hirzebruch’s signature theorem expresses the signature σ(Σ) as a polynomial in the
pontryagin numbers, but since Σn is (4k − 1)-connected it must be the case that
σ = akpk(Σ). The vanishing of H2k(Σ) now says that there is no intersection form,
so 0 = σ = pk(Σ). Therefore on = 0.

The second case uses the homomorphism Jn−1 : πn−1(SO) → πn−k−1(Sk) defined
above. Rohlin showed that Jn−1(on) = 0, while it was shown by Adams [AW65] that
Jn−1 is injective when n is congruent to 1 or 2 modulo 8, so on = 0.

The final case trivially has on = 0. Hence the obstruction always vanishes.
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2.1 Dimension 7

This section summarizes the work of Milnor in “On Manifolds Homeomorphic to the

7-Sphere.” For a more complete development, the reader is referred to the original

source [Mil56b].

Lemma 2.1.1. Let ξ = {S3 → E
ρ→ S4} be a 3-sphere bundle over the 4-sphere with

euler number e. Then E is a homotopy sphere iff e = ±1.

Proof. E is clearly simply connected, so if it has the same cohomology as S7 they will
be homotopy equivalent. Recall the Gysin sequence for vector a bundle with total
space E ′ and base B:

· · · → H i(B)
∪e→ H i+n(B)

ρ∗→ H i+n(E ′0)→ H i+1(B)
∪e→ . . .

where E ′0 = E ′ \ B. E is a sphere bundle, but if E ′ is the associated R4 bundle then
E ′0 retracts onto its sphere bundle, which is naturally isomorphic to E. Thus there is
the sequence

· · · → H i(S4)
∪e→ H i+4(S4)

ρ∗0→ H i+4(E)→ H i+1(S4)
∪e→ . . .

For i 6= −1, 0, 3, 4 (i.e. i + 4 6= 3, 4, 7, 8) H i(S4) ∼= H i+1(S4) ∼= 0 and hence
H i+4(E) ∼= H i+4(S4). Using i = −4 yields H0(E) ∼= Z, and H i+4(E) ∼= 0 for any
other value of i aside from −1, 0, 3, 4, so these are the only cases remaining.

Using i = 4 trivially gives H8(M7
k ) ∼= 0 and i = 3 gives H7(E) ∼= H4(S4) ∼= Z.

For the last two cases, consider this part of the sequence:

0→ H3(E)→ H0(S4)
∪e→ H4(S4)→ H4(E)→ 0

The proof up to this point has made no assumptions about e. If e = ±1 then
∪e : H0(S4) → H4(S4) is an isomorphism, so by exactness H3(E) ∼= H4(E) ∼= 0.
Combined with the above results, H i(E) ∼= Z when i = 0, 7 and ∼= 0 for all other
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values, hence has the same cohomology as S7. Conversely, if H3(E) ∼= H4(E) ∼= 0

then ∪e is an isomorphism, and so e must be ±1.

The structure group of an S3 bundle over an orientable smooth manifold can be

reduced to SO4 (after choosing a metric). Since the base is a sphere S4, by Steenrod

[Ste99, §18] they are determined up to bundle isomorphism by a homotopy class of

continuous maps from the equator into the structure group. Hence they are classified

by π3(SO4) ∼= Z⊕ Z [Ste99, §22]. For the purposes of this discussion we will use the

parametrization given by Milnor [Mil56b, p.402]:

Definition 2.1.2. Given a pair (h, j) ∈ Z+Z, define the function fh,j : S3 → SO(4)

by fh,j(q) · q′ = qhq′qj, where R4 is identified with H.

Definition 2.1.3. Let ξh,j be the S3 bundle over S4 corresponding to the function fi,j

Lemma 2.1.4. e(ξh,j) = h+ j

Corollary 2.1.5. If h + j = 1, then the entire space ξh,j is a homotopy sphere.
Thus there is a parametrization of some homotopy 7-spheres by pairs (h, j) such that
h+ j = 1.

Definition 2.1.6. For integers h, j such that h + j = 1, let k = h − j and Mk =

E(ξh,j).

Milnor [Mil56b] distinguished members of this class using a fundamental geometric

result:

Theorem 2.1.7. Every oriented 7-manifold bounds an oriented 8-manifold.

Proof. The oriented cobordism group ΩSO
7 is trivial [Tho54, IV.13], hence every ori-

ented 7-manifold bounds.

Let B8 be a manifold bounded byMk (compatibly oriented) and consider the long

exact cohomology sequence of the pair (B,Mk). Part of it is as follows:
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· · · ← H4(Mk)← H4(B)
i← H4(B,Mk)← H3(Mk)← . . .

Since Mk is a homotopy sphere, the groups on the ends are 0, and so i is an

isomorphism. In fact, i will be an isomorphism whenever H3(M) = H4(M) = 0, so

let M be any 7-manifold with this property, and let B8 be a cobounding 8-manifold.

Definition 2.1.8. Let µ = [B,M ] denote the fundamental class of H8(B,M). Let
q(B) := 〈(i−1p1)2, µ〉.

Theorem 2.1.9 ([Mil56b],Theorem 1). Let M bound B8. Then 2q(B) − σ(B) is
well-defined (up to choice of B) modulo 7.

Proof. Chose B1 and B2 bounded by M . Attach these manifolds along their common
boundary to form C8, and let q(C) = 〈p2

1, [C]〉. C is a closed manifold, so by the
Hirzebruch signature theorem

σ(C) =
1

45
(7〈p2, [C]〉 − 〈p2

1, [C]〉)

Rearranging and simplifying, this implies that 2〈p2
1, [C]〉−σ(C) ≡ 0 (mod 7). But

σ(C) = σ(B1)− σ(B2) and q(C) = q(B1)− q(B2) [Mil56b, Lemma 1], so

2q(B1)− σ(B1) ≡ 2q(B2)− σ(B2) (mod 7)

Definition 2.1.10. Let λ(M) = [2q(B)− σ(B)] (mod 7), where B8 is any manifold
bounded by M .

Corollary 2.1.11 ([Mil56b], Corollary 1). If λ(M) 6≡ 0 (mod 7), then H4(B) 6= 0

for any cobounding 8-manifold B. In particular, M is not the standard sphere S7.
If λ(Mk) 6≡ 0 (mod 7), then Mk is an exotic sphere.

Lemma 2.1.12 ([Mil56b], Lemma 3). Let ι denote the standard generator for H4(S4).
Then p1(ξh,j) = ±2(h− j)ι.
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Proof. p1(ξh,j) is linear in h and j, and if the orientation of the fibre S3 is reversed
this class will not change. It follows that p1(ξh,j) = p1(ξ−h,−j). Thus p1 = c(h − j)ι
for some constant c. When k = h− j = 1 the associated disk bundle is diffeomorphic
to HP 2 with an 8-disk removed [Mil56b, p403], and it is known [Hir53] that p1(HP 2)

is twice a generator of H4(HP 2). Hence c = ±2.

Lemma 2.1.13 ([Mil56b]. Lemma 4). λ(Mk) ≡ k2 − 1 (mod 7)

Proof. λ(Mk) can be computed using any cobounding manifold B8
k, so take the as-

sociated disk bundle. Then Bk retracts onto the base space S4, so the generator of
H4(Bk) is given by α = ρ∗(ι). Orientations can be chosen so that σ(Bk) = 1.

The tangent bundle of Bk is given by τ(Bk) = ρ∗(τ(S4))
⊕

ρ∗(ξh,j); that is, the
tangent bundle of Bk is the sum of the bundle of vectors tangent to the base space
with the bundle of vectors tangent to the fibre. p1(S4) = 0, so by the Whitney
product formula

p1(Bk) = ρ∗(p1(ξh,j)) = ρ∗(2(h− j)ι) = 2kα

Thus q(Bk) = 4k2 and λ(Mk) = 2(4k2)− 1 ≡ k2 − 1 (mod 7)

Corollary 2.1.14. If k2 6= 1 (mod 7) then Mk is an exotic sphere.

2.2 Θn

The spheres Milnor constructed in dimension 7 are given as the total space of an S3

bundle over S4, but not every homotopy sphere appears in this way: the connected

sum of 2 homotopy spheres is again a homotopy sphere, but not necessarily the total

space of a spherical fibration over a sphere. Regardless of the form they take, the

collection of all homotopy spheres of a given dimension (up to h-cobordism) has

been successfully studied as an algebraic object in the famous Kervaire-Milnor paper

“Groups of Homotopy Spheres. I” [KM63]. This section summarizes the work done

there.



31

Definition 2.2.1. Let n ∈ N. Define Θn to be the set of all homotopy spheres of
dimension n, modulo h-cobordism.

Lemma 2.2.2 ([KM63, Theorem 1.1]). Θn is an abelian group under connected sum,
#.

Proof. Appendix A, for example, shows that # is well-defined, associative, and com-
mutative.

Given homotopy spheres Σ,Σ′ of dimension n, Σ#Σ′ is simply connected by the
Van Kampen theorem, and from Meyer-Vietoris it is seem that the homology vanishes
is all dimensions but 0 and n. Thus Σ#Σ′ is again a homotopy sphere of dimension
n.

For any n-manifold M#Sn ∼=+ M , so Sn is the identity element for each n.
For any homotopy sphere Σ, let Σ̄ denote the same manifold with reversed orien-

tation. Σ#Σ̄ bounds a contractible manifold [KM63, Lemma 2.4], which happens iff
Σ#Σ̄ is h-cobordant to the standard sphere [KM63, Lemma 2.3]. Hence inverses are
given by reversing the orientation.

This group is related to the stable homotopy group. Recall p(Mn) ⊂ Πn from

Definition 1.2.23.

Lemma 2.2.3 ([KM63, Lemma 4.5]). p(Sn) is a subgroup of Πn. For any homotopy
sphere Σn, p(Σ) is a coset of this subgroup. Thus the correspondence Σ → p(Σ)

defines a homomorphism
p′ : Θn → Πn/p(S

n)

[KM63, Lemma 4.2] indicates that the kernel of this homomorphism consists ex-

actly of the homotopy n-spheres which bound parallelizable (n+ 1)-manifolds.

Definition 2.2.4. Let bPn+1 denote the kernel of the homomorphism p′.

Corollary 2.2.5. Θn/bPn+1 is isomorphic to a subgroup of Πn/p(S
n), and therefore

is finite.
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Theorem 2.2.6. bP2k+1 = 0 [KM63, Theorem 5.1]
bP4k is finite cyclic. [KM63, Corollary 7.6]
bP4k+2 is either 0 or cyclic of order 2. [KM63, Theorem 8.5]

Hence bPn+1 is finite for all n.

Corollary 2.2.7. Θn is finite for all n.

Combined with the h-cobordism theorem, this says that for n ≥ 5 there are finitely

many diffeomorphism classes of homotopy n-spheres. In the case n = 4, Θ4 = 0 but

since n = 4 is too small to apply the h-cobordism theorem this only says that any 2

homotopy 4-spheres are h-cobordant. In fact, at the time of writing it is not known

if there are any exotic 4-spheres.

2.3 Γn

There is another interpretation of homotopy spheres, which is equivalent in high

dimensions.

Definition 2.3.1. Define Γn := π0 Diff(Sn−1)

Proposition 2.3.2. Define a map Γn → Θn by [f ]→ Sn−1 ∪f Sn−1 = Σ(f)

Then if n ≥ 5 this map is an isomorphism.

There are more equivalent interpretations of this group:

Proposition 2.3.3. The above definition is equivalent to the following:

1. The group of concordance classes of diffeomorphisms of Sn−1, under composi-
tion.

2. The group of concordance classes rel ∂Dn−1 of diffeomorphisms of Dn−1 which
are id on ∂Dn−1

In any case, for σ ∈ Γn the corresponding diffeomorphism will be denoted hσ.
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2.4 Some Invariants for Smooth Manifolds

Since “homeomorphic” does not imply “diffeomorphic” it was necessary for mathemati-

cians, as we saw with λ in Section 2.1, to invent new invariants that were diffeomor-

phism invariants but not homotopy invariants. In the paper “Differentiable Manifolds

Which are Homotopy Spheres” [Mil07, p65] Milnor made another invariant λ′, based

on a minimum signature for certain 4k-manifolds. Eells and Kuiper [EK62] gave

a succinct description of Milnor’s “λ” invariants in terms of Hirzebruch’s signature

theorem, and also give their own invariant µ based on Hirzebruch’s “Â integrality”

theorem. This section is primarily results from these two papers.

In Section 2.1 we saw that Milnor [Mil59] had use a (mod 7) invariant λ(M)

for 7-manifolds in order to distinguish between homotopy spheres. This invariant

generalizes to higher dimensions:

Definition 2.4.1 ([EK62, §2]). A smooth (4k−1)-manifoldM satisfies the λ-conditions
if it is closed, oriented, and its rational homology groups satisfy

H2k(M ;Q) = 0, H4i(M ;Q) = 0 (0 < i < k)

Just as in [Mil59, Milnor], this cohomology assumption ensures that the “Pontrya-

gin class” j−1pi(W ) in H4i(W,M ;Q) is well-defined.

Let Lk denote the k-th polynomial associated with z1/2

tanh z1/2
(see [Hir56] or [MS74,

§19]) so that for a closed 4k-manifold W

σ(W ) = 〈Lk
(
p1(W ), . . . , pk−1(W ), pk(W )

)
, [W ]〉

Let sk = Lk(0, ..., 0, 1) be the coefficient of pk, and for the sake of brevity let

Lk(p1, . . . , pk−1, 0)[W ] = 〈Lk
(
j−1p1(W ), . . . , j−1pk−1(W ), 0

)
, [W,M ]〉
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Definition 2.4.2 ([EK62, §2 (2)]). For a (4k − 1)-manifold M satisfying the λ-
conditions and W any appropriate boundary, define λ(M) as

λ(M) ≡ σ(W )− Lk(p1, p2, . . . , pk−1, 0)[W ]

sk
(mod 1)

The well-definedness of this invariant is proven using Hirzebruch’s signature the-

orem, much like in Section 2.1.

In “Differentiable Manifolds Which are Homotopy Spheres” Milnor defined a dif-

ferent invariant λ′, but this invariant is defined specifically for homology spheres.

Definition 2.4.3 ([EK62, §2]). A smooth homology (4k − 1)-sphere M satisfies the
λ′-conditions if it is closed, oriented, and bounds a compact parallelizable 4k-manifold
W .

Definition 2.4.4. Let σk = gcd{σ(W )}, whereW varies over all almost-parallelizable
4k-manifolds without boundary (as studied in [Mil07, p65])

In the same paper, Milnor shows that if W is almost-parallelizable and ∂W 6= ∅,
then σ(W ) (mod σk) is a diffeomorphism invariant of ∂W . Furthermore, σ(W ) is

divisible by 8 whenever ∂W is a homology sphere.

Definition 2.4.5. LetM4k−1 be a smooth homology sphere satisfying the λ′-conditions.
Define

λ′(M) ≡ σ(W )

8
(mod

σk
8

)

The λ invariants are based on the Hirzebruch signature theorem for closed mani-

folds, which can be stated as

Lk(p1, . . . , pk)[X
4k] = σ(X)

where the Lk are the polynomials associated with
√
z

tanh
√
z
. Recall Âk, the k-th poly-

nomial associated with
√
z/2

sinh(
√
z/2)

. Recall also that the Â-genus is an integer for spin

4k-manifolds.
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Definition 2.4.6 ([EK62, §3]). A smooth (4k−1)-manifoldM satisfies the µ-conditions
if it is closed, oriented, and bounds a compact spin 4k-manifold W such that

1. The homomorphisms

j∗ : H2k(W,M ;Q)→ H2k(W ;Q), j∗ : H2i(W,M ;Q)→ H2k(W ;Q) (0 < i < k),

from the long exact sequence of the pair (W,M), are isomorphisms.

2. The inclusion homomorphism i∗ : H1(W ;Z/2)→ H1(M ;Z/2) is a surjection.

The first condition ensures that Pontryagin classes from W can be pulled back to

(W,M). The second condition is assumed because it is something which is true for

every coboundary W when H1(M ;Z/2) = 0.

Before defining µ, set ak := 4
3+(−1)k

, tk := Âk(0,...,0,1)
Lk(0,...,0,1)

, and

Nk(p1, . . . , pk−1)[X] := Âk(p1, . . . , pk−1, 0)[X]− tkLk(p1, . . . , pk−1, 0)[X]

Definition 2.4.7. Let M4k−1 satisfy the µ conditions, with given co-boundary W 4k.
Define

µ(W,M) =
Nk(p1, . . . , pk−1)[W ] + tkσ(W )

ak

Let µ(M) ≡ µ(W,M) (mod 1).

Theorem 2.4.8 ([EK62, p.97]). Nk(p1,...,pk−1)[W ]+tkσ(W )

ak
is independent of W . Thus

µ(M) only depends on the smooth structure of M .

Proposition 2.4.9 ([EK62, p.99]). Let ι be one of the invariants λ, λ′ or µ, and
suppose M4k−1 and N4k−1 satisfy the ι-conditions. Then

1. ι(M) = −ι(M)

2. ι(M#N) = ι(M) + ι(N)

3. If M and N are h-cobordant, then ι(M) = ι(N)
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In [EK62, §4], µ is compared to λ′.

Proposition 2.4.10. Let M be a closed, smooth, oriented homology (4k− 1)-sphere.
If M has a parallelizable co-boundary W , then both λ′(M) and µ(M) are defined. The
invariant λ′ gives a differentiable classification of such spaces M which is at least as
fine as that given by µ. For dimensions 4k − 1 where 1 ≤ k ≤ 5, both invariants give
the same information, and this is expressed by the formula

8λ′(M)

σk
≡ −µ(M) (mod 1)

for 1 ≤ k ≤ 5.

The main advantages of µ over λ′ are that µ is easier to compute and has a larger

domain of definition.

This thesis is interested in dimension 7, which is discussed in [EK62, §6]. For any

7-manifold M satisfying the µ-conditions,

µ(M) ≡ p2
1[W ]− 4σ[W ]

27 · 7
(mod 1)

On the other hand, when M also satisfies the λ conditions

λ(M) ≡ p2
1[W ]− 4σ[W ]

7
(mod 1)

Recall the family of S3 bundles M7
k from Section 2.1.

Proposition 2.4.11 ([EK62, §6 (13)]).

µ(M7
2h−1) ≡ h(h− 1)

56
(mod 1)

In particular, µ(M7
3 ) ≡ 1

28
(mod 1) when h = 2. [KM63, Kervarie-Milnor] had

shown that Θ7
∼= Z/28, so combining this fact with the additivity from Proposi-

tion 2.4.9 it follows that M7
3 is a generator Θ7. Thus
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Theorem 2.4.12 ([EK62, §6 p103]). Two smooth 7-manifolds which are homeomor-
phic to the 7-sphere are diffeomorphic iff they have the same µ values. Of the 28

diffeomorphism classes, precisely 16 occur as total spaces of S3 bundles over S4.

Corollary 2.4.13 ([EK62, §6 p103]). If M7 is any manifold satisfying the µ condi-
tions, then the underlying topological manifold admits at least 28 different differen-
tiable structures.



Chapter 3

The Inertia Group, I(M)

3.1 Definition and Variations

Definition 3.1.1. Let Mn be a smooth, oriented n-dimensional manifold. The in-

ertia group I(M) ⊂ Θn is defined as the set of Σ ∈ Θn for which there exists an
orientation preserving diffeomorphism φ : M →M#Σ

The exact origin of this definition is unknown to the author. Tamura [Tam62]

gave explicit inertial spheres for certain 3-sphere bundles over S4, but without using

this terminology.

Lemma 3.1.2. The inertia group is a group.

Proof. First, this set is non-empty since M ∼=+ M#Sn for any n-manifold M .
It must be shown that a connected sum of inertial spheres is inertial, i.e. if

φ1 : M ∼=+ M#Σ1 and φ2 : M ∼=+ M#Σ2, then there needs to be an orientation pre-
serving diffeomorphism M ∼=+ M#(Σ1#Σ2). Arranging that Σ1 and Σ2 are attached
using disjoint disks, φ1 can be “surgered” to produce a diffeomorphism

(φ1)# : M#Σ2
∼=+ (M#Σ1)#Σ2

There is a natural diffeomorphism α : (M#Σ1)#Σ2 →M#(Σ1#Σ2), so α◦ (φ1)# ◦φ2

is the required diffeomorphism.

38
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To verify that inverses remain in I(M), if Σ ∈ I(M) then

M#Σ̄ ∼=+ (M#Σ)#Σ̄ ∼=+ M#(Σ#Σ̄) ∼=+ M#Sn ∼=+ M

so Σ̄ ∈ I(M).

Stolz [Sto85, pVII] gives an interpretation which justifies the term “inertia.” If

Mk
n denotes the set of diffeomorphism classes of (k− 1)-connected n-manifolds, then

there is an action

Θn ×Mk
n →Mk

n

given by connected sum. Then for a fixed M ∈ Mk
n, the group I(M) is the isotropy

(or inertia) subgroup of this action. Furthermore, two manifolds M and N are in the

same orbit iff they are almost diffeomorphic (that is, M−{x0} ∼=+ N−{x1} for some

x0 ∈M and x1 ∈ N .)

Proposition 3.1.3. I(M) is not a homotopy invariant.

Proof. Let Σ10 denote the generator of the 3-component of Θ10. Then I(S3 ×Σ10) =

Θ13 [Kaw69a, Corollary 2].
On the other hand, if p + q ≥ 5 then I(Sp × Sq) = 0 [Kaw69a, Corollary 3] and

hence I(S3 × S10) = 0 6= I(S3 × Σ10).

There is a refined version of I(M) where the diffeomorphisms are required to “look

like” a standard topological identification M → M#Σ. M#Σ can be described by

removing a disk D from M and attaching Dn to M with an orientation preserving

diffeomorphism σ of the boundary Sn−1. Any orientation preserving diffeomorphism

of Sn−1 has degree 1, so σ is homotopic to idSn−1 . Using this homotopy it is possible

to construct a homeomorphism M#Sn ∼= M#Σ which is identity on M \ D (using

the construction of Proposition A.3.3, for example), where M#Sn is naturally dif-

feomorphic to M . This gives a homeomorphism hΣ : M ∼= M#Σ which is “identity”

outside the attaching region.
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Definition 3.1.4. If Mn is an n-manifold and Σn a homotopy sphere, then let

hΣ : M →M#Σ

be the standard topological identification [Bru71, Appendix II].
Define the homotopy inertia group Ih(M) to be the set of all Σ ∈ I(M) who

admit a diffeomorphism M →M#Σ which is homotopic to hΣ.

Proposition 3.1.5. Ih(M) is also not a homotopy invariant.

Proof. Brumfiel [Bru71, Remark II.10] shows that Ih(S1 × CP 3) = I(S1 × CP 3) =

Z/7 ⊂ Θ7. He also notes that there is a class of manifolds P 6
j which are all homotopy

equivalent to CP 3, but Ih(S1 × P 6
j ) = 0 when j ≡ 1 (mod 7).

Proposition 3.1.6 ([Fra84, Corollary 6.2]). Ih(M) is an h-coboridsm invariant when
the dimension of M is ≥ 8

The following two results show there is a significant discrepancy between these

two groups:

Theorem 3.1.7 ([Win71, Theorem 2.10]). For every n, there exists a smooth, closed,
simply-connected n-manifold Mn such that I(M) = Θn.

Theorem 3.1.8 (arXiv:0912.4874v1 [math.DG] (Taylor’s Theorem, 3.2)). If M is
a smooth, closed, oriented manifold of dimension 4k − 1 ≥ 7, then
Ih(M) ∩ bP4k has index ≥ 2 in bP4k.

In particular, Ih(M) 6= Θ4k−1.

Corollary 3.1.9. There exists a smooth, closed, simply-connected manifold in each
dimension 4k − 1 ≥ 7 such that Ih(M) 6= I(M).

These are not all of the variants that have been defined. Recall Γn from Section 2.3,

the group of diffeomorphisms of Dn−1 which are id on ∂Dn−1, modulo concordance

rel ∂Dn−1. For σ ∈ Γn, hσ denotes the corresponding diffeomorphism of Dn−1. Levine

[Lev70] makes use of the following definition:
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Definition 3.1.10. For M an n-manifold, let I1(M) be the set of all σ ∈ Γn+1 such
that the diffeomorphism which is hσ on an n-disk D ⊂ M and id everywhere else, is
concordant to id.

This definition is related to the usual definition as follows:

Proposition 3.1.11 ([Lev70, Proposition 1]).

I1(M) = I(M × S1)

Frame [Fra82] gave a variation of the inertia group, which he used for studying

the inertia group of fibre bundles:

Definition 3.1.12. Fix i ∈ N and let ∗ ∈ Si. Define Ĩ(Mn × Si) to be the set of
homotopy spheres Σ such that there is a diffeomorphism G : (M × Si)#Σ→M × Si

with G|M×∗ = id.

3.2 Collected Results

3.2.1 Miscellaneous

One simple result about Ih(M) is the following:

Proposition 3.2.1 ([Sch71, Proposition 1.2]). Let M be a closed smooth manifold of
dimension n ≥ 7. If M imbeds in Rn+1 then Ih(M) = 0.

Naoum [Nao73] gave a similar result for I(M):

Theorem 3.2.2 ([Nao73]). Let Mn be a smooth closed manifold of dimension ≥ 7

such that Hi(M
n;Z) is cyclic for each i ≥ 0.

If there exists a smooth embedding f : Mn → Sn+1 and a smooth, simply-connected
submanifold W ⊂ Sn+1 such that f(M) = ∂W , then I(M) = 0.

Corollary 3.2.3 ([Nao73]). Let Mn be a simply connected, parallelizable manifold
with cyclic homology groups. Let T 2n−1 be the total space of the tangent sphere bundle
of M .

Then I(T 2n−1) = 0.



42

Some results are concerning the types of homotopy spheres in I(M), based on

properties of M :

Lemma 3.2.4 ([Kaw69b, Lemma 9.1]). Let Mn be simply-connected and spin.
Then I(M) only contains homotopy spheres bounding spin manifolds.

Theorem 3.2.5 ([Fra82, Theorem 1]). Let Mn → C → N i be a smooth fibre bundle
with fibre Mn and base manifold N i.

Then Ĩ(M × Si) ⊂ I(C).

The following result concerns the inertia group of a fibre bundle:

Theorem 3.2.6 ([Fra82, Theorem 3]). Let n+ 2 < i, for i fixed.
Then Ih(M × Si) ⊂ Ĩ(M × Si), and so Ih(M × Si) ⊂ I(C) for any fibre bundle

Mn → C → Si.

Kawakubo proved some results about complex projective spaces.

Theorem 3.2.7 ([Kaw68, Theorem 1]). If n ≤ 8, then I(CP n) = 0

Proposition 3.2.8 ([Kaw69b, Proposition 9.2]). For all k ≥ 1,

I(CP 4k+1) 6= Θ8k+2

More generally, Conrad [Con73] studied manifolds in the homotopy type of CP n.

3.2.2 Connected Sums

It is not always the case that I(M#N) = I(M) + I(N), but there are some known

results about the inertia group of connected sums:

Proposition 3.2.9. For all n-manifolds M and N ,

I(M#N) ⊃ I(M) + I(N)

In particular, I(M#N) also contains the subgroup I(M) ∩ I(N).
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Proof. If Σ ∈ I(M) then there is a diffeomorphism φ : M ∼=+ M#Σ which wlog may
be chosen to fix the disk where M#N is formed. Then φ may be modified to a
diffeomorphism φ′ : M#N ∼=+ (M#Σ)#N in the obvious way. Then Σ ∈ I(M#N)

by associativity and commutativity of #.
Similarly for Σ ∈ I(N).

Proposition 3.2.10 ([Fra84, Proposition 3.2]). For all n-manifolds N and M with
n ≥ 5, Ih(M) ⊂ Ih(N#M)

Proposition 3.2.11 ([Fra84, Corollary 4.2]). Let Mn be 2-connected with n ≥ 7.
Then for all m, I(M) = I(M#m(S2 × Sn−2))

Lemma 3.2.12 ( [Fra84, Lemma 4.1]). If Mn and Nn are h-cobordant with n ≥ 5

then for sufficiently large m there is a diffeomorphismM#m(S2×Sn−2) ∼= N#m(S2×
Sn−2)

Lemma 3.2.13 ([Fra84, Corollary 6.1]). If n ≥ 8, then

Ih(M
n) = Ih(M

n#m(S2 × Sn−2))

Corollary 3.2.14. If Mn and Nn are h-cobordant with n ≥ 8, then Ih(M) = Ih(N)

3.2.3 Constructions

The first example known to the author of a manifold with a non-trivial inertia group

was given in Tamura’s 1962 paper “Sur les sommes connexes de certaines variétés

différentiables” [Tam62]. Here, much like in Milnor [Mil56b], he considered a class

of 8-manifolds B̄m,n which are D4 bundles over S4, and their associated 3-sphere

bundles Bm,n. These bundles correspond to characteristic maps mρ+ nσ ∈ π3(SO4),

where ρ(q) · q′ = qq′q−1 and σ(q) · q′ = qq′ (compare Definition 2.1.2). Tamura’s

parametrization is such that the Euler number is given by n. He shows

Theorem 3.2.15 ([Tam62]).

B
mn+n3+n

2
, 1−n2 # Bm,1

∼=+ B
m+n3+n

2
, 1−n2
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One corollary is that Bm,1 is homeomorphic to S7 for every m. Milnor [Mil56b]

showed more directly that the bundles with Euler number ±1 are exactly those home-

omorphic to S7. More relevant to this discussion is the following:

Corollary 3.2.16 ([Tam62]).

Bm,0#Bm−1,1
∼=+ Bm,0

In other words, Bm−1,1 ∈ I(Bm,0) for every m. Moreover, Tamura points out that

Bm−1,1 is a generator of the group of homotopy 7-spheres, and so

Corollary 3.2.17. I(Bm,0) = Θ7 for every m.

Although Tamura was not writing in terms of “inertia group” or I(M) (or a French

equivalent), this corollary opened the door to this field of research.

Recall (Proposition 2.3.3) the group Γn = π0(Diff(Sn−1)), which is naturally iso-

morphic to Θn when n ≥ 5. Levine [Lev70] gives another interpretation: the members

are equivalence classes of diffeomophisms of Dn−1 which fix the boundary, modulo

concordance rel ∂Dn−1.

Construction 3.2.18 ([Lev70, §7]). Let n, k ∈ N, σ ∈ Γn+1, τ ∈ Γk+1, α ∈
πn(SOk), β ∈ πk(SOn).

Let hσ represent σ as a diffeomorphism of Sn, which in particular fixes a hemi-
sphere D ⊂ Sn, and let hτ represent τ as a diffeomorphism of Dk which is id on an
nhd N of the boundary Sk−1.

Let f : (Sn, D) → (SOk, e) and g : (Dk, Sk−1) → (SOn, e) represent α and β re-
spectively.

Define two diffeomorphisms of Sn ×Dk

d1(x, y) = (hσ(x), f(x)(y))

d2(x, y) = (g(y)(x), hτ (y))
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Let d = d−1
1 d−1

2 d1d2. By construction, there is an interior disk D0 ⊂ Sn×Dk such
that d = id outside of D0.

Finally define δ(σ, α; τ, β) ∈ Γn+k+1 to be the sphere represented by d|D0.

These spheres also admit a representation through a “plumbing” construction. Let

X1 be theDk+1 bundle over Σσ corresponding to S(α) andX2 be theDn+1 bundle over

Στ corresponding to S(β). Each of these bundles has a subbundle diffeomorphic to

Dn+1×Dk+1 so formXδ as a quotient space ofX1

⋃̇
X2 by identifying these subbundles.

Then δ(σ, α; τ, β) is represented by ∂Xδ.

When σ = τ = 0, this is the same as Milnor’s construction from [Mil59].

Theorem 3.2.19 ([Lev70, Theorem 8.1]). Let M be a closed, smooth (n + k + 1)-
manifold and suppose that Σσ is embedded in M with normal bundle associated to
α ∈ πn(SOk). Then, for any τ ∈ Γk+1, β ∈ πk(SOn), we have:

δ(σ, α; τ, β) ∈ I(M)

Moreover, Levine shows that if T is a tubular nhd of Σσ in M and if M#Σδ is

formed at a disk in the interior of T , then M#Σδ is diffeomorphic to M via a diffeo-

morphism that is id outside of M − T .

In order to show that the Σδ spheres are not standard, Levine [Lev70, §10] com-

puted their µ values.

Definition 3.2.20. For r, s ≥ 1 let

µr,s =
arasBrBs(2

2r − 1)(22s − 1)

16ar+srs(22r+2s−1 − 1)
(mod 1)

where Br is the r-th Bernoulli number, ar = 1 if r is even, 2 if r is odd.

In particular, µ1,1 = 1
112

.

For α ∈ πn(SOk), its stable suspension into πn(SO) ∼= Z determines a unique

non-negative integer denoted |α|. If n ≥ 2k + 1 then |α| = 0.
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Proposition 3.2.21. [Lev70, Proposition 5] If δ = δ(σ, α; τ, β), then

µ(δ) = µr,s|α||β|

Example 3.2.22 ([Lev70, Example 2]). Assume n = 4r − 1, k = 4s − 1, and let
λ ∈ Hn+1(Mn+k+1;Z) be represented by an embedded sphere.

Then the order of I(M) is a multiple of the denominator of

εr,sµr,s(pr(M) · λ)

ar(2r − 1)!

where εr,s = 2 if r = s = 1, 2 or r = 3, s = 4, and εr,s = 1 otherwise.

Corollary 3.2.23. If s < 2r < 4s, there exists a k-sphere bundle M over Sn+1 such
that the order of I(M) is a multiple of the denominator of εr,sεs,rµr,s

3.2.4 Products of Spheres

The problem of computing the inertia group, as well as the related problem of classi-

fying smooth structures, is notoriously difficult. One case where there exist complete

results is the case of products of spheres.

Theorem 3.2.24 ([Sch71, Theorem A]). Let p+ q ≥ 5. Then I(Sp × Sq) = 0.

Moreover, Kawakubo solved the problem of computing I(Sp×Σq) where Σq ∈ Θq.

[Kaw69a, Theorem C] gives the inertia group of Sp×Σq+1 in terms of a pairing, which

he calls K1 : πp(SOq+1)× Γq+1 → Θp+q+1

Definition 3.2.25. Let 0 < p < q, h ∈ πp(SOq+1), r ∈ Γq+1, and let F : Sp × Sq →
Sp × Sq be defined by F (x, y) = (x, rh(x)r−1(y)).

Let K1(h, r) := Dp+1 × Sq ∪F Sp ×Dq+1.

Theorem 3.2.26 ([Kaw69a, Theorem C]). Let p 6= q, p+ q ≥ 5.
Then I(Sp × Σq+1) = K1

(
πp(SOq+1),Σq+1

)
.
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3.2.5 π-manifolds

The study of I(M) for π-manifolds is closely related to the image p(M) ⊂ Πn (or

p′(M) ⊂ Πn/ Im J), as studied by Kosinski [Kos67].

Definition 3.2.27. Let I ′(M) = I(M)/(I(M) ∩ bPn+1).
Let ρ(M) = |p′(M)|.

I ′(M) acts on p′(M): for α ∈ p′(M) and Σ ∈ I(M), define Σ · α = α + p′(Σ).

Lemma 3.2.28 ([Kos67, Lemma 1.3]). I ′(M) acts without fixed points on p′(M).
Thus the order of I ′(M) is not larger than ρ(M). In particular, if ρ(M) = 1 then
I(M) ⊂ bPn+1.

Theorem 3.2.29 ([Kos67, Theorem 3.1]). Let M be a 2n-dimensional π-manifolds,
n > 3, n 6= 7. Then ρ(M) = 1 in each of the following cases:

1. M is (n− 1)-connected

2. M is (n− 2)-connected, and n ≡ 3, 5, 6, 7 (mod 8)

3. M is (n− 3)-connected, and n ≡ 6, 7 (mod 8)

4. M is (n− 4)-connected, and n ≡ 7 (mod 8)

In particular, I(M) = 0 in each of these cases because bP2n+1 = 0 according to

Section 2.2.

Kosinski [Kos67, §4] considers a particular case of the pairing

πm(SOn+1)× πn(SOm+1)→ θn+m+1

given in [Mil59]. Let γ, γ′ ∈ πn−1(SOn), and let M(γ, γ′) be a handlebody of dimen-

sion 2n with {e, e′} a basis of Hn(M), where the normal bundles of these classes have
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characteristic maps α(e) = γ and α(e′) = γ′, and such that M(γ, γ′) has intersection

matrix

M =

[
e · e 1

(−1)n e′ · e′

]
Let Σ(γ, γ′) = ∂M(γ, γ′). Then Σ(γ, γ′) is a homotopy (n − 1)-sphere iff det(M) =

±1.

Definition 3.2.30 ([Kos67, Theorem 6.1]). Let Σn−1 ⊂ Θ2n−1 be the set of homotopy
spheres that can be constructed using the above method.

Theorem 3.2.31 ([Kos67, Theorem 6.1]). Let M be a (2n− 1)-dimensional (n− 2)-
connected π-manifold, n ≥ 3. Then

I(M) ⊂ Σn−1 if n 6≡ 0 (mod 4) and I(M) ⊂ bP2n if n ≡ 0 (mod 4)

3.2.6 Highly Connected 7-Manifolds

This section is based on [Wil75, Wilkens]. Here he considers (m − 1)-connected

(2m + 1)-manifolds where m = 3, 7, like in [Wil72]. Of particular interest to this

thesis is the case m = 3 (i.e. n = 2m+ 1 = 7).

Lemma 3.2.32 ([Wil75, §2]). If M is an (m−1)-connected (2m+1)-manifold where
m = 3, 7, then M is m-parallelizable and the only obstruction to stable parallelizability
is a class

β̂ ∈ Hm+1(M)

Proof. πm−1(SO) ∼= 0 for m = 3, 7, so there is no obstruction in Hm(M ; πm−1(SO))

to trivializing the tangent bundle over the m-skeleton.
In the next dimension, πm(SO) ∼= Z and so the obstruction β̂ to trivializing the

tangent bundle over the (m+ 1)-skeleton really lives in Hm+1(M).
Finally, the only other possible obstruction would be in H2m+1(M ; π2m(SO)),

which is 0 since π2m(SO) = 0.

Lemma 3.2.33 ([Ker59, Lemma 1.1]).

p1(M) = 2β̂ (if m = 3) p2(M) = 6β̂ (if m = 7)
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Recall the torsion product of two groups G ∗ H: roughly speaking, ∗ detects

the common torsion between G and H [Mun84, p331].

Theorem 3.2.34 ([Wil75, Theorem 1]). LetM be a closed (m−1)-connected (2m+1)-
manifold (m = 3 or 7).

If β̂ is of finite order, then I(M) ∼= 0.
If Hm+1(M)∗Θ2m+1

∼= 0 and r is the largest integer dividing β̂ then I(M) consists
exactly of those elements of bP2m+2 divisible by r/4.

In particular, when m = 3 the second condition says that H4(M) has no elements

of order 2 or 7. In Wilkens’ classification paper [Wil72] he shows that for any finitely

generated abelian group G and even element β̂ ∈ G, these exists a manifold M7

with H4(M) ∼= G and with tangential invariant β̂. Furthermore, [Wil72, Theorem

3] shows that the manifolds M7 with H4(M) torsion free are classified up to almost-

diffeomorphism by (H4, β̂). It follows that M admits exactly |Θ7/I(M)| smooth

structures

Corollary 3.2.35 ([Wil75, p.538] ). Every subgroup of Θ7 appears as the inertia
group of some manifold M7. This remains true if M is required to have H4(M) ∼= Z.

Furthermore, if r is any divisor of 28 and r ≥ 2, then there exists a manifold M
with H4(M) ∼= Z and admits exactly r smooth structures.

In [Wil75, §6], Wilkens shows that “I(M1#M2) = I(M1) + I(M2)” is not true in

general.

Proposition 3.2.36 ([Wil75, §6]). There exists 2-connected 7-manifolds P1, P2, P3

such that.

1. I(P1) = I(P2) = I(P3) = I(P2#P3) = 0

2. I(P1#P2) ∼= Z/7, I(P1#P3) ∼= Z/4

3. I(P1#P2#P3) = Θ7
∼= Z/28

(There is an analogous result in dimension 15, but with bP16 instead of Θ15.)
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3.3 7-Manifolds with certain S1 actions

(The proofs of this section are due to Ian Hambleton and the author.)

Question 3.3.1. LetM7 be a smooth, oriented manifold which admits a smooth semi-
free S1 action. Suppose further that the fixed point set F ⊂ M has codimension 2.
What can be said about I(M)?

Using the fact that F has codimension 2, it is possible to translate the problem

into another context, namely that of M bounding a D2 bundle over a 6-manifold W

with boundary F . ([Hsi64, Hsiang] demonstrates this for the case of a circle action

on Sn, but the argument is similar.)

Let ν(F ) be an open tubular nhd of F in M , so that the action of S1 is free on

M \ν(F ). ν(F ) can be chosen so that in that neighbourhood the action is by rotation

in the fibres, and so the quotient ν̃(F ) is diffeomorphic to F × [0, 1). It follows that

the quotient of M by the S1 action is a 6-manifold W , with ∂W ∼= F . Furthermore,

M \ ν(F ) → W \ ν̃(F ) is a circle bundle, and every S1 bundle is associated to a D2

bundle, so there is a D2 bundle ξ over W with total space U8 such that

∂U = ∂E(ξ|W\F ) ∪ E(ξ|F ) ∼= (M \ ν(F )) ∪ ν(F ) = M

Conversely, let U8 be the total space of a D2 bundle ξ over the 6-manifold W

with boundary F 5. There is a natural S1 action on U8 given by rotating the fi-

bres, whose fixed point set is the 0-section. This action preserves the boundary

∂U = ∂E(ξ|W\F )∪E(ξ|F ), so we can consider the restricted action. The fixed points

of the restricted action will be the 0-section of E(ξ|F ), or in other words F , and

therefore has codimension 2.

Notation. For the remainder of the section, fix the following notation:
W 6 is a smooth, oriented manifold with non-empty boundary F 5.
ξ is a disk bundle over W with projection π, ξ0 its restriction to F .
U8 is the total space of ξ, D the total space of ξ0.
Finally, M7 = ∂U . (Note that M = S(ξ) ∪D)



51

Lemma 3.3.2. Let W be parallelizable, e(ξ) even and e2(ξ) = 0.
Then U is a spin manifold with p1(τU) = 0.

Proof. The characteristic classes of τU are computed using the equation

τU = π∗(τW )⊕ π∗(ξ)

Since e(ξ) is even, ω2(ξ) ≡ e(ξ) ≡ 0 (mod 2) [MS74, §9.2], so by the Whitney
product formula and the triviality of τW it follows that ω2(τU) = 0.

For any oriented 2k-plane bundle η, pk(η) = e2(η) [MS74, §15.8], and so p1(ξ) =

e2(ξ) = 0. Again it follows that p1(τU) = 0.

Lemma 3.3.3. If H1(F ;Z/2) = 0 = H1(W ;Z/2), then H1(M ;Z/2) = 0.

Proof. (In this proof, all coefficients will be Z/2.)
Consider the following diagram:

0 // H1(W ) //

��

H1(S(ξ))

j∗

��

// H0(W )
∪e(ξ) //

i∗

��

H2(W ) //

i∗

��

. . .

0 // H1(F ) // H1(∂S(ξ)) // H0(F )
∪e(ξ0) // H2(F ) // . . .

where the horizontal rows are the Gysin sequences of S(ξ) and S(ξ0) = ∂S(ξ) respec-
tively, i∗ is the map induced from i : F → W , and j∗ is induced from j : ∂S(ξ)→ S(ξ).

The claim is that j∗ is injective. This follows from the observations that i∗ is in-
jective on H0 and that H1(W ) = 0, plus a little diagram chasing.

Now look at the Mayer-Vietoris sequence

0 // H1(M) // H1(S(ξ))⊕H1(D) h // H1(S(ξ0)) // . . .

Since H1(D) = H1(F ) = 0, the homomorphism h is really j∗, which is injective.
Hence H1(M) = 0.

Lemma 3.3.4. Let X1, X2 be spin 8-manifolds with ∂X1 = −∂X2 = N , and let
Z = X1 ∪N X2. Suppose further that p1(τX1) = 0 = p1(τX2) and H1(N ;Z/2) = 0.

Then Z is spin and p2
1(τZ) = 0.
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Proof. The spin structures on X1 and X2 induce spin structures on N . In order for
Z to inherit a spin structure, these spin structure on N must be equal. According
to Milnor [Mil65, Lemma 1] the spin structure on N is unique iff H1(N ;Z/2) = 0,
which was assumed. Thus Z is spin.

To compute p2
1(τZ), consider this portion of the Mayer-Vieotris sequence:

H3(N) δ // H4(Z) // H4(X1)⊕H4(X2)

By assumption the restriction of p1 to each Xi is 0, so by exactness ∃α ∈ H3(N)

such that δ(α) = p1(τZ). Consider a careful description of the map δ:

H3(X1, N)

k∗1
��

H3(N)

δ
��

δ1oo δ2 // H3(X2, N)

k∗2
��

H4(Z,X2)
j∗2 // H4(Z) H4(Z,X1)

j∗1oo

where the δi’s and ji’s are from long exact sequences of pairs, and k∗i are the inverses
of excision isomorphisms. Thus we can write

p1(τZ) ∪ p1(τZ) = δ(α) ∪ δ(α) = (j∗2k
∗
1δ1(α)) ∪ (j∗1k

∗
2δ2(α))

which must be 0 by commutativity of the following diagram:

H4(Z,X1)×H4(Z,X2) ∪ //

j∗1×j∗2
��

H8(Z,X1 ∪X2) = 0

��
H4(Z)×H4(Z) ∪ // H8(Z)

Thus p2
1(τZ) = 0.

Now the above results will be used to help prove the main result:

Theorem 3.3.5. Using the notation of this section, assume W 6 is parallelizable,
H1(W ;Z/2) = 0 = H1(F ;Z/2), e(ξ) is even and e2(ξ) = 0.

Then I(M) = 0.
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Proof. Let Σ7 ∈ I(M), with orientation-preserving diffeomorphism φ : M#Σ → M

(note that φ is also an orientation-reversing diffeomorphism from M#Σ to −M).
There is a preferred generator of Θ7 given by Σ0 = ∂E8, where E8 is the paralleliz-

able 8-manifold constructed by Milnor [Mil07, p65] to have σ(E8) = 8. If [Σ] = k[Σ0]

then Σ bounds V 8 := \kE8, the k-fold boundary sum.
Construct the manifold Z as follows: First, form the boundary sum U\V . Its

boundary is M#Σ so it can be attached to −U using φ to form an oriented closed
manifold. Let Z = (U\V ) ∪φ (−U). Then by Novikov additivity its signature is

σ(Z) = σ(U\V )− σ(U) = σ(U) + σ(V )− σ(U) = σ(V ) = kσ(E8) = 8k

On the other hand, Lemma 3.3.2 shows that U is spin and p1(τU) = 0. Since E8

is parallelizable so is V , and a Mayer-Vietoris argument shows

H i(U\V ) ∼= H i(U)⊕H i(V )

It follows that ω2(U\V ) = 0 and p1(U\V ) = 0, since the restriction of these classes
to each of the summands are 0. Lemma 3.3.3 shows H1(M ;Z/2) = 0, and so
Lemma 3.3.4 applies to give ω2(τZ) = 0 and p2

1(τZ) = 0.
Z is closed and ω2(τZ) = 0, so Z ∈ Ωspin

8
∼= Z⊕Z. Generators are known [Mil63b]:

the quaternionic projective plane HP 2 and the manifold from [MK60, Theorem 2]
which we denote G8. Since p2

1(τHP 2) 6= 0 [Szc64, Corollary 2.3] and p2
1(τZ) = 0, it

must be the case that Z is cobordant to the connected sum of a number of copies
of G8, and hence σ(G8) divides σ(Z) = 8k. [MK60, p.457] shows σ(G8) = 224, so
224 = 32 · 7 divides 8k. Thus 28 divides k, so in fact Σ = kΣ0 is diffeomorphic to S7.

Therefore I(M) = 0.

Translating back to the context of circle-actions, we have:

Corollary 3.3.6. Let M7 have a semi-free S1 action with fixed-point set F 5 satis-
fying H1(F ;Z/2) ∼= 0. Suppose further that the quotient space W is parallelizable,
H1(W ;Z/2) ∼= 0 and that resulting bundle ξ : M \ ν(F ) → W \ ν̃(F ) has e(ξ) ≡ 0

(mod 2) and e2(ξ) = 0. Then I(M) = 0.
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Remark 3.3.7. Most results from the literature about the inertia group of 7-manifolds
are about 2-connected ones. No assumptions have been made here about the connect-
edness of the manifolds.

Example 3.3.8. 1. S1 has trivial tangent bundle, and so W = S1 × D5 is a
parallelizable 6-manifold with a boundary F = S1 × S4 (in particular π1(W ) 6=
0). The product bundle W × D2 has Euler class 0, and so ∂(W × D2) ∼=
∂(S1 × D7) = S1 × S6 has trivial inertia group. (This was already proven in
[Sch71, Schultz] as a special case of the main theorem "I(Sn × Sm) = 0 for
n+m ≥ 5".)

2. Let Nk be any parallelizable manifold of dimension k ≤ 5, without boundary.
Then N×D6−k is a parallelizable 6-manifold with boundary, andM7 = N×S7−k

has trivial inertia group.

To construct more interesting examples, we use Wall’s classification of closed

simply-connected 6-manifolds (Appendix B) to make a suitable W 6 with boundary,

and then choose an even element of H2(W ) whose cup-square is 0 for the Euler class

of a disk bundle.

According to the classification theorem (Theorem B.0.3), to produce a closed,

simply-connected spin manifold with torsion-free homology it is enough to specify:

finitely-generated free-abelian groups H = H2(W ), G = H3(W ), a trilinear form

µ : H ×H ×H → Z, an even element ω̄2 ∈ H, and a homomorphism p1 : H → Z, all
of whom satisfying certain relations.

For Theorem 3.3.5 we need a parallelizable manifold W ′ with non-empty bound-

ary. If W is a closed, smooth, simply-connected manifold with p1(W ) = 0 and

ω2(W ) = 0, and D is the interior of an embedded 6-disk, then W ′ = W \D will be

parallelizable. Thus we will specify p1 = 0, and ω̄2 any even element of H. We also

need H1(W ′;Z/2) = 0 = H1(∂W ′;Z/2), but this is guaranteed by π1(W ) = 0 and

∂W ′ ∼= S5. We may choose H and G to be any finitely-generated free abelian groups.

For Wall’s classification it remains to specify the trilinear pairing µ, and for our

theorem we need an even element e ∈ H2(W ′) whose cup-square is 0. Specifying
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µ is equivalent to specifying the cup-product on H2(W ): we set α ∪ β = 0 for all

α, β ∈ H2(W ). Then the invariants will satisfy the relations of Theorem B.0.3, and

any element e ∈ H2(W ′) will satisfy e2 = 0. Then if we choose any even element of

H2(W ′;Z) for the Euler class of a disk bundle ξ with total space U8, the manifold

M7 = ∂U will have I(M) = 0. In summary:

Example 3.3.9. Specify the closed, smooth, simply-connected manifold W 6 using the
following data (according to Wall’s classification):

1. H2(W ) = Zk, H3(W ) = Zr, for any k, r ≥ 0

2. ∪ : H2(W )×H2(W )→ H4(W ) is trivial

3. p1(W ) = 0, and ω̄2(W ) any even element of H2(W )

Let D ⊂ W be the interior of an embedded 6-disk and let W ′ = W \ D. Let e ∈
H2(W ′) ∼= H2(W ) be even, let U8 be the total space of the disk bundle over W ′ with
Euler class e, and let M7 = ∂U . Then I(M) = 0.

The author expects that one can construct examples with non-trivial cup-product

if more care is taken when defining µ.

Question 3.3.10. Suppose more generally that Mn bounds a parallelizable manifold
Un+1. Is it possible to conclude that I(M) = 0? If not, what about I(M) ∩ bPn+1?

3.4 Homotopy Inertia Group and Surgery

Recall the homotopy inertia group Ih(M) ⊂ I(M), which is the set of all homotopy

spheres Σ with a diffeomorphism φ : M ∼=+ M#Σ which is homotopic to the standard

homeomorphism hΣ.

Theorem 3.4.1. Let Mn be a smooth manifold and f : Sk × Dn−k → M be an em-
bedding with k < min{bn

2
c, n− 3}. Then Ih(M) ⊂ I(χ(M, f)).
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Proof. Let Σ ∈ Ih(M), φ : M → M#Σ a diffeomorphism homotopic to hΣ. Assume
wlog that the attaching disk for Σ is disjoint from the image of f .

A homotopy-inertial diffeomorphism χ(M, f) ∼=+ χ(M, f)#Σ will given based
on φ. By lemma A.1.1 (Appendix A), if φ : M ∼=+ N then there is an induced
diffeomorphism

χ(φ) : χ(M, f)→ χ(N, φf)

Here N = M#Σ, so χ(M, f) ∼=+ χ(M#Σ, φf).
Corollary A.3.2 (also Appendix A) gives us a natural diffeomorphism α : χ(M#Σ, pf)→
χ(M, f)#Σ (where p is the pushout projection M̃ →M#Σ). To finish the proof, the
gap must be filled with a diffeomorphism

hφ : χ(M#Σ, φf)→ χ(M#Σ, pf)

It suffices to show that φf is isotopic to pf .
φ ∼ hΣ by assumption, so φf ∼ hΣf = pf (p and hΣ are both essentially identity

away from the attaching region of Σ, which was assumed to be disjoint from Im f).
Restricting both sides to Sk × 0 gives two homotopic embeddings in less than the
middle dimension, so the homotopy induces an embedding

F : (Sk × 0)× I → (M#Σ)× I

which is a concordance between φf and pf . Since the embeddings have codimension
≥ 3, they are isotopic by [Hud70, Theorem 2.1]. Then the isotopy lifts to the rest
of the disk bundle Sk × Dn−k, so φf is isotopic to pf and so there is the desired
diffeomorphism hφ.

Thus the composite

χ(φ)# : χ(M, f)
χ(φ) // χ(M#Σ, φf)

hφ // χ(M#Σ, pf) α // χ(M, f)#Σ

is the desired diffeomorphism. Hence Ih(M) ⊂ I(χ(M, f))

Remark 3.4.2. The author suspects that the conclusion of the theorem can be im-
proved to “Ih(M) ⊂ Ih(χ(M, f))”, but has yet to produce a proof.
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This result can be combined with Milnor’s elementary surgery theory [Mil61,

Theorem 2].

Corollary 3.4.3. Let M be a compact π-manifold of dimension n. Then M is cobor-
dant to a bn

2
− 1c-connected manifold M ′ such that Ih(M) ⊂ I(M ′).

Corollary 3.4.4. Let M be a compact π-manifold of dimension 7. Then M is cobor-
dant to a 2-connected 7-manifold M ′ such that Ih(M) ⊂ I(M ′).

There is a special case when k = 0 and M has two connected components M1 and

M2. S0 = {1,−1} is the only disconnected sphere, and if f embeds the components

of S0×Dn into different components of M , then χ(M, f) = M1#M2. Then we saw a

result of Frame (Proposition 3.2.10) says that if n ≥ 5 then Ih(M) ⊂ Ih(χ(M, f)).



Appendix A

Pushouts in the Smooth Category

A.1 General Pushouts

Let C be a category, A,B,C objects in C, and f : A → B, g : A → C morphisms.

Define the pushout of f and g to be a commutative diagram A,B,C,D

B

A

C

D

f

g

k

l

D′
h

k′

l′

with the special property that if D′ is any other object in C and k′ : B → D′,

l′ : C → D′ are morphisms such that k′f = l′g, then there is a unique morphism

h : D → D′ that “factors” the other two maps (that is k′ = hk and l′ = hl). If

k′f = l′g, k′ and l′ will often be called “compatible.”

If h : D → E is any morphism, then the compatibility of hk and hl ensures

a unique morphism h′ : D → E such that h′k = hk and h′l = hl. But h has this

property, so by uniqueness h = h′. In other words, to check that two morphisms

58
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h, h′ : D → E are equal, it suffices to verify h′k = hk and h′l = hl. In particular, in

order to deduce that h : D → D is equal to idD it is enough to check hk = k and

hl = l.

If the pushout exists it is unique up to natural isomorphism, since if D′ were

another pushout of B f← A
g→ C then there would be a map h′ : D′ → D such

that k = h′k′ and l = h′l′. Then h′h has the property that k = h′k′ = h′hk and also

l = h′hl, hence h′h = idD; similarly hh′ = idD′ , so h is an isomorphism with inverse h′.

If the defining property is phrased slightly different, it says that to construct

a morphism h : D → D′, then it suffices to choose any compatible maps k′ : B →
D′, l′ : C → D′ to get a unique C-morphism for free. This is especially useful if C is

the category of smooth manifolds and smooth functions. This principle will be used

many times, as it almost magically produces natural isomorphisms between objects

that are naturally isomorphic by intuition. For example, the following very useful

general fact shows how equivalences piece together:

Lemma A.1.1. Suppose we have two pushouts, and isomophisms h1, h2, h3 as in the
diagram

B′

A′

C ′

D′

f ′

g′

k′

l′

A

B

C

D

f

g

k

l

h1

h2

h3

Suppose further that f ′h3 = h1f and g′h3 = h2g. Then there is a natural isomorphism
D → D′.

Proof. k′h1 and l′h2 are compatible since k′h1f = k′f ′h3 = l′g′h3 = l′h2g, so there is a
unique morphism h : D → D′ such that k′h1 = hk and l′h2 = hl. Similarly, we get an
h′ : D′ → D such that kh−1

1 = h′k′ and lh−1
2 = h′l′. Then h′hk = h′k′h1 = kh−1

1 h1 = k
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and h′hl = h′l′h2 = lh−1
2 h2 = l, and so h′h = idD; similarly hh′ = idD′ . Thus h is an

isomorphism and h′ = h−1.

Now it is shown that if the object C can be used in two different pushout diagrams,

and if after taking the first pushout the other pushout is possible, then the order in

which the pushouts are performed does not change the result.

Lemma A.1.2. Consider the following diagram, composed of pushout squares:

B

A

C

D1

f

g

k1

l1

A′

B′

D2

f ′

g′

k2

l2

D4

D3

k3

l3

k4

l4

β

β′

α α′

Then D3 and D4 are naturally isomorphic.

Proof. First of all, the pushout squares give the following relations:

k1f = l1g ; l2g
′ = k2f

′ ; l4f = k4l2g ; l3f
′ = k3l1g

′

The third relation says there is a unique β : D1 → D4 such that βk1 = l4 and
βl1 = k4l2.

The fourth relation says there is a unique β′ : D2 → D3 such that β′l2 = k3l1 and
β′k2 = l3.

Since k4k2f
′ = k4l2g

′ = βl1g
′, there is a unique α : D3 → D4 such that αl3 = k4k2

and αk3 = β.
Since k3k1f = β′l2g, there is a unique α′ : D4 → D3 such that α′l4 = k3k1 and



61

α′k4 = β′.
Now, to show that α′α = idD3 it suffices to show α′αk3 = k3 and α′αl3 = l3.

α′αl3 = α′k4k2 = β′k2 = l3, but α′αk3 = α′β, for which there are no relations.
However, α′βl1 = α′k4l2 = β′l2 = k3l1 and α′βk1 = α′l4 = k3k1, so α′β = k3. Hence
α′α = idD3 . Similarly αα′ = idD4 , so α is a C-isomorphism with inverse α′.

In the category of Sets the pushout always exists: the pushout of f and g is the

quotient of the disjoint union B
∐
C under the relation f(a) ∼ g(a) (for all a ∈ A).

Indeed, this description is captured by a decomposition of the pushout diagram in

terms of constructions called “co-product” and “co-equalizer,” manifested in Set as the

disjoint union and a quotient by the image of two functions (see Mac Lane [ML98]):

B

A

C

DB
∐
C

f

g

k = pi

l = pj

if

jg

i

j

p

More precisely, if i and j are the natural inclusions into the disjoint union, then

the pushout D is the quotient of B
∐
C by the equivalence relation

∆ ∪ {(if(a), jg(a)) | a ∈ A}

k = pi and l = pj are sometimes called the “projection maps,” and are always injec-

tive since the images of i and j are disjoint.

Now suppose A,B,C have topologies and f, g are continuous. Then there is a
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natural topology on B
∐
C given by “U is open iff i−1(U) and j−1(U) are open in

B and C respectively,” so that i and j are continuous and moreover open. If any

other set were added to this topology then one of i or j would not be continuous

anymore, so it is the largest topology making them both continuous, i.e. the weak

topology induced by the two Set-functions. The quotient set can then inherits the

weak topology induced by p; a set U ⊂ D is open iff p−1(U) is open, making p an open

continuous function. Then clearly k and l are continuous and open, as compositions

of continuous open maps; since they are injective it follows that they are homeomor-

phisms onto their images in D. This topology on D is actually also the weak topology

induced by k and l: U ⊂ D is open iff k−1(U) and l−1(U) are open. Thus pushouts

always exists in the category of Topological spaces and continuous functions.

The goal is to extend this idea to smooth manifolds, but topological manifolds

present problems of their own: if A,B,C are topological manifolds (second-countable,

locally Euclidean, Hausdorff) in general the pushout will not be a manifold. Second-

countability is preserved under pushout, but it is easy to break Hausdorff and Locally

Euclidean even when B = C = R. If A = 0 and f, g, are inclusions, then D will be

a space that has a central point with 4 rays emanating from it where there is no

Euclidean reference frame (but is still Hausdorff). On the other hand if A = R \ 0

and f, g are still inclusions, then D is the so-called “line with two origins” where

the two origins cannot be separated by disjoint open sets (although it is locally Eu-

clidean). But in certain cases it is possible: if, for instance, there is a manifold N

and homeomorphisms f : N → ∂B, g : N → ∂C, then the pushout of f and g will

be a topological manifold. If A,B,C are endowed with orientations, and f and g are

both orientation preserving, then D receives a canonical orientation making k and l

orientation preserving.
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A.2 Smooth Pushouts

If the objects are smooth, then even more care must be taken. In many cases the

topological manifold can be “smoothed” but it isn’t natural (e.g. exotic spheres),

and in fact Kervarie [Ker60] showed there exist topological manifolds with no smooth

structure, and do not even have the same homotopy type as a smooth manifold. The

following lemma can be used to conclude that a Topological pushout is in fact a

Smooth pushout:

Lemma A.2.1. Let Xn be a topological manifold. Let M1,M2 be smooth open n-
manifolds and let g1 : M1 → X and g2 : M2 → X be boundary preserving continuous
functions such that

1. Each gi is a Topological embedding.

2. ∪gi(Mi) = X

3. ∀i, j ∈ {1, 2} g−1
i gj : g−1

j gi(Mi)→ g−1
i gj(Mj) is smooth.

Then there is a unique smooth structure on X making g1 and g2 Smooth embeddings.
Moreover, if X ′ is any smooth manifold and there are two smooth maps h1 : M1 →

X ′ and h2 : M2 → X ′ such that

h1(x1) = h2(x2) ⇐⇒ g1(x1) = g2(x2)

then there is a unique (smooth) h : X → X ′ such that h1 = hg1 and h2 = hg2.

Proof. The proof will use the definition of “smooth structure” given in Definition 1.1.19.
Let D1,D2 be the smooth structures on M1 and M2. A smooth structure D

on X is naturally defined by taking all partial functions f : X → R such that
∃f1 ∈ M1, f2 ∈ M2 with f |gi(Mi) = fig

−1
i (these functions are defined on gi(Mi),

an open subset by assumption). It must be verified that this is a smooth structure.
Let p ∈ X. By assumption 2, p ∈ gi(Mi) for i = 1 or 2. Let’s say 1. Since M1 is a

smooth manifold, there is a chart (U, φ) at g−1
1 (p) with the property “f1 ∈ D1 iff f1φ

−1

is smooth,” so take the chart (g1(U), φg−1
1 ) at p. Then if f is a real valued function
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defined on an open subset of g1(U), it must be checked that f ∈ D iff f(φg−1
1 )−1 is

smooth. If f ∈ D, then f |gi(Mi) = fig
−1
i for each i (and for some fi ∈ Di). If i = 1

then f(φg−1
1 )−1 = f1g

−1
1 (φg−1

1 )−1 = f1g
−1
1 g1φ

−1 = f1φ
−1, which is smooth. If i = 2

then f2g
−1
2 g1φ

−1, which is smooth by assumption 3. Conversely, if it is know that
fg1φ

−1 is smooth, then fg1 ∈ D1, so since f = (fg1)g−1
1 it is shown that f ∈ D.

Thus (g1(U), φg−1
1 ) is an appropriate chart at p. If instead p was in g2(M2), then the

argument is the same since g−1
1 g2 = (g−1

2 g1)−1 is also smooth.
Now to check condition 2 of a smooth structure. Let f be a real-valued function

defined on W ⊂ X, {Uλ} a collection of open subsets of W , U = ∪Uλ. It must be
verified that f |U ∈ D iff ∀λ f |Uλ ∈ D. Rewrite the definition of D for f |U and f |Uλ :

f |U ∈ D ⇐⇒ ∀i ∃fi,U : g−1
i (U)→ R (∈ Di) st (f |U)|gi(Mi) = f |U∩gi(Mi) = fi,Ug

−1
i

f |Uλ ∈ D ⇐⇒ ∀i ∃fi,λ : g−1
i (Uλ)→ R (∈ Di) st = f |Uλ∩gi(Mi) = fi,λg

−1
i

Then it follows from the fact that fi,λ = fi,U |Uλ and that condition 2 holds in Di.
Given this smooth structure D, the gi’s are smooth almost by definition. Let f ∈

D: then for each i there is an fi ∈ Di such that f |gi(Mi) = fig
−1
i . Then fg1 = f1 ∈ D1

so g1 is smooth, and fg2 = f2 ∈ D2 so g2 is smooth.
Now the “moreover” part is proved before uniqueness. Let h1 : M1 → X ′ and

h2 : M2 → X ′ such that h1(x1) = h2(x2) ⇐⇒ g1(x1) = g2(x2). Then there is
only one possible Set-map h : X → X ′ such that h1 = hg1 and h2 = hg2, defined
piecewise: for x ∈ X, if x = gi(xi) let h(x) = hi(xi). If x = g1(x1) = g2(x2) then
by assumption h1(x1) = h2(x2) so h(x) is well defined. To verify that it is smooth,
take a function f ′ ∈ D′ (the smooth structure on X ′) and check that f ′h ∈ D. Notice
that f ′h|hi(Mi) = f ′hig

−1
i . Since each hi is smooth f ′hi ∈ Di, and so by definition

f ′h|hi(Mi) ∈ D for each i, thus f ′h|h1(M1)∪h2(M2) = f ′h ∈ D.
Now uniqueness: let D′ be another smooth structure on X such that the gi’s are

all smooth. Then by the above argument a smooth map from X to X ′ can be defined
in pieces: on M1 take g1 and on M2 take g2. Then g1(x1) = g2(x2) iff g1(x1) = g2(x2),
so they define a unique smooth map h : X → X ′ such that g1 = hg1 and g2 = hg2. As
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functions on sets, this means h = idX , so idX : (X,D) → (X,D′) is smooth: that is,
D′ ⊂ D. Let f ∈ D \ D′. It follows that there is some point p ∈ X so that according
to the chart (U ′, φ′) at p given by D′, fφ′−1 is not smooth. But in the chart (U, φ) at p
given by D, fφ−1 is smooth (since f ∈ D). Since each reference map is an embedding
wrt that smooth structure, the composition f(φ′−1φ′) idX φ

−1 = (fφ′−1)(φ′ idX φ
−1)

is smooth from Rn to Rn. This is a contradiction since (fφ′−1) is not smooth. Hence
D = D′

Remark A.2.2. 1. The smooth structure D on X induces a smooth structure on
the boundary via ∂D := {f |∂X | f ∈ D}. The remarkable point is that this
smooth structure is equal to the smooth structure induced by g1|∂M1 and g2|∂M2

pushing forward ∂D1 and ∂D2.

2. Suppose M1, M2, and X are given orientations. Then if the “transition func-
tions” g−1

i gj are orientation preserving, they induce a unique orientation of X
making g1 and g2 orientation preserving.

A Topological pushout hardly ever produces a Topological manifold, and even

more infrequently does it naturally produce a Smooth manifold. As such, construc-

tions in the field of Differential Topology must be very delicate, as there is much

more structure than intuition would suggest. Many standard constructions are care-

ful enough that they in fact produce Smooth pushout diagrams. Some of these are

investigated in the next section.

A.3 Operating on Manifolds, Revisited

The standard manifold operations manifest themselves as pushout diagrams. This

fact is used in the main portion of the thesis, and is proven in this section.

A.3.1 Attaching Manifolds

In this section, standard manifold operations are interpreted as pushout diagrams:

attaching manifolds along a submanifold, and surgery.
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Theorem A.3.1. The operation of attaching oriented manifolds along a submanifold
produces a smooth pushout diagram, with a canonical orientation.

Furthermore, if N has non-empty boundary (necessarily embedded transversely
into ∂M1 and ∂M2), then ∂M(f1, f2) is the pushout of f1|D∂ and f2|D∂ .

Proof. The attaching process in definition A.3.1 as a topological pushout, with pro-
jections k and l. To prove the Theorem, it must be verified that k and l meet the
conditions of Lemma A.2.1. As a set pushout k and l cover X, and as discussed
in the paragraph on Topological pushout, k and l are homeomorphisms onto their
images. It remains to check condition 3, that k−1l (defined on l(M̃2) ∩ k(M̃1)) is a
diffeomorphism. This is immediate since k−1l = f1f

−1
2 .

A similar proof applies to the operation of attaching along submanifolds of the

boundary.

Expressing this operation as a pushout formalizes some standard proofs. For

example:

Corollary A.3.2. Let M1,M2,M3 be smooth m-manifolds, N an n-dimensional
smooth manifold with (m − n)-disk bundle D, N ′ an n′-dimensional smooth mani-
fold with (m′ − n′)-disk bundle D′. Let f1 : D → M1, g1 : D → M2 and f2 : D′ →
M2, g2 : D′ →M3 be embeddings such that g1(D)∩f2(D′) = ∅. Then there is a natural
diffeomorphism

α : (M1#NM2)#N ′M3
∼=+ M1#N(M2#N ′M3)

Proof. First, some abbreviations. For the disk bundle D, let E be the open disk
bundle and let E0 be E without the zero-section N (similarly for D′). Let M̃1 =

M1 \ f1(N), M̃3 = M3 \ g2(N ′), and let M̃2 = M2 \ (g1(N)∪̇f2(N ′)). Then there is the
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following diagram of smooth pushouts:

E0 E ′0

M̃1 M̃2 M̃3

M1#NM2 \ l1g1(N ′) M2#N ′M3 \ k2f2(N)

(M1#NM2)#N ′M3 M1#N(M2#N ′M3)

f1 g1 f2 g2

k1 l1 k2 l2

k3 l3l4k4
β

α

The result follows immediately from Lemma A.1.2.

As it stands, this result is incomplete since there is the extra assumption that

the imbeddings in M2 have disjoint images, so that successive pushouts could be

taken. The next result will show that this assumption can be relaxed a bit (and fully

in some cases) without losing generality. More specifically, what if the embeddings

can be isotoped away from each? Does isotoping the embeddings change the smooth

structure of the pushout in any way? Let N,D,M1,M2, f1, f2, etc be as above. Let Φ1

and Φ2 be ambient isotopies of M1 and M2. In particular, for every i, t the function

Φt
ifi : D → Mi is an embedding and Φ0

i = idMi
. Using these isotopies, one can

construct a smoothly varying family of smooth manifolds starting withM(f1, f2) and

ending with M(Φ1
1f1,Φ

1
2f2).

The basic building blocks will be M1 × I and M2 × I. Since Φi : Mi × I →Mi is

smooth, so is the function Φ̄i : Mi × I → Mi × I sending (x, t) to (Φi(x, t), t). Since

Φi is an isotopy, Φ̄i will be an embedding. Furthermore, D × I has a natural disk

bundle structure over N × I, and Fi : D × I → Mi × I sending (x, t) to (Φt
ifi(x), t)
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is an embedding. LetM(Φ1,Φ2) be the resulting smooth pushout:

M̃1 × I

E0 × I

M̃2 × I

M(Φ1,Φ2)

F1

F2

K

L

Proposition A.3.3. In the situation described in the preceding paragraph,

1. M(Φ1,Φ2) has boundary diffeomorphic to M(f1, f2) ∪M(Φ1
1f1,Φ

1
2f2)

2. For each t ∈ [0, 1] there is a natural homotopy equivalence ιt : M(Φt
1f1,Φ

t
2f2)→

M(Φ1,Φ2).

3. There is a natural diffeomorphism h : M(Φ1,Φ2) → M(f1, f2) × I given in
terms of the two isotopies.

Proof. 1. This is given by Theorem A.3.1.

2. According to Lemma A.1.1 it suffices to give homotopy equivalences h1 : M̃1 →
M̃1 × I, h2 : M̃2 → M̃2 × I and h3 : E0 → E0 × I such that h1f1 = F1h3

and h2f2 = F2h3. For each of the domain spaces, simply send x to (x, t); these
are homotopy equivalences. Then for any x ∈ E0, we see F1h3(x) = F1(x, t) =

(f1(x), t) = h1f1(x), and similarly F2h3(x) = h2f2(x). Then Lemma A.1.1 gives
us ιt.

3. We will use the same method as part 2, except using diffeomorphisms instead
of homotopy equivalences. For this we will need to know that M(f1, f2)× I is
naturally diffeomorphic to the pushout of M̃1×I and M̃2×I with the embeddings
f1 × idI and f2 × idI .
Supposing we know that, we can write the diffeomorphims:
Define h1 : M̃1× I → (M1 \Φ1

1f1(N))× I by sending (y, t) to (Φt
1(y), t) (clearly

a diffeomorphism), and similarly for h2; let h3 = idE0×I . Now we simply verify
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that F1h3(x, t) = F1(x, t) = (Φt
1f1(x), t) = h1(f1 × idI)(x, t), and similarly that

F2h3 = h2(f2 × idI). Hence there is an isomorphism in the smooth category by
Lemma A.1.1, i.e. a diffeomorphism.

Corollary A.3.4. If (Φ1,Φ2) is a pair of isotopies on M1 and M2, then for all t there
is a natural diffeomorphism Φt

# : M(f1, f2)→M(Φt
1f1,Φ

t
2f2). Let Φ# = Φ1

#.
If these Φ’s are homotopies, then replace “diffeomorphism” with “homotopy equiva-
lence.”

Proof. Take Φt
# to be the composition of the following embeddings/diffeomorphisms:

M(f1, f2)→M(f1, f2)× t h
−1

→ M(Φ1,Φ2)
ι−1
t→ M(Φt

1f1,Φ
t
2f2)

(Hence the associativity lemma can be generalized to embeddings that can be

isotoped away from each other.)

This construction contains a bit more information. Observe that if the Φi’s were

only assumed to be homotopies, then the topological pushout is still valid even if

it is not guaranteed to be smooth anymore (or even a manifold). Nevertheless part

2 still holds, part 3 will always hold with a homotopy equivalence, and if the Φ1
i ’s

are families of homeomorphisms then part 3 will give a homeomorphism. Regardless,

if Φ1
i are both embeddings then we get a natural homotopy equivalence between

M(f1, f2) and M(Φ1
1f1,Φ

1
2f2). If Φt

1 is identity for all t, then careful examination of

the maps involved shows that the homotopy equivalence is pieced together using id

on M1 \ f1(N). The phrase that is usually used is “The spaces are equivalent through

an isomorphism which is identity outside of the attaching region in M1.”

A.3.2 Surgery

Thom’s “spherical modifications” can also be interpreted as pushouts. Given an em-

bedding f : Sk × Dn−k → Mn, the restriction to Sk × En−k
0 gives an embedding into
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M̃ := M \ f(Sk × 0). There is also an embedding

s : Sk × En−k
0 → Dk+1 × Sn−k−1

sending (u, θv) to (θu, v) for u ∈ Sk, v ∈ Sn−k−1, and 0 < θ < 1. Consider the

Topological pushout, often denoted χ(M, f) := M#Sk×Dn−k(Dk+1 × Sn−k−1)

M̃

Sk × En−k
0

Dk+1 × Sn−k−1

χ(M, f)

f

s

p

l

Theorem A.3.5. The above diagram is a Smooth pushout diagram.

Proof. Follows from Lemma A.2.1.



Appendix B

Wall’s Classification of

Simply-Connected 6-manifolds

The classification of simply-connected 6-manifolds was done mostly by Wall [Wal66].

Theorem B.0.1 ([Wal66, Theorem 1]). Let M be a closed, smooth, simply-connected
6-manifold. Then

M ∼= M1#M2

where H3(M1) is finite and M2
∼= #kS3 × S3.

Define the sentence (H) =“The homology of M is torsion-free and ω2(M) = 0.”

Theorem B.0.2 ([Wal66, Theorem 2]). Let M satisfy (H) and H3(M) = 0. Then M
can be obtained from S6 by doing surgery on disjoint embeddings gi : S3 ×D3 → S6.

In other words, any 6-manifold M satisfying (H) and H3(M) = 0 is the boundary

of a 7-dimensional handlebody.

For the purposes of classification, if a manifold satisfies (H) then by [Wal66,

Theorem 1] wlog H3(M) = 0. Thus if M is simply connected the remaining homol-

ogy groups will be in dimensions 0, 2, 4 and 6.

By Poincaré duality and the Universal Coefficient Theorem, H2(M) determines

71
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H4(M), H4(M) and H2(M). In particular, H4(M) = Hom(H4(M),Z). Thus if

H = H2(M) ∼= H4(M) and Ĥ = H4(M) ∼= Hom(H,Z), then the cap product in-

duces a bilinear form

∪ : H ×H → Ĥ

or equivalently a trilinear form

µ : H ×H ×H → Z

It follows that µ is symmetric, and µ and H determine the entire homology and

cohomology structure [Wal66, §3].

The Wu class 1+v2 determines the Stiefel-Whitney classes: ω2 = v2, ω4 = v2
2 = ω2

2,

and all others vanish. The only integral characteristic classes are p1 ∈ H4(M) ∼= Ĥ,

and the Euler class which is determined by the homology [Wal66, §3].

Theorem B.0.3 ([Wal66, Theorem 3]). The invariants of a closed, smooth, simply-
connected 6-manifold with torsion-free homology can be described as:

1. Two free-abelian groups H = H2(W ), G = H3(W )

2. A symmetric trilinear map µ : H ×H ×H → Z (induced by cup product)

3. A homomorphism p1 : H → Z

4. An element ω2 ∈ H ⊗ Z/2, the reduction of some ω̄2 ∈ H.

These invariants satisfy the relations:

1. For x, y,∈ H, µ(x, y, x+ y + ω̄2) ≡ 0 (mod 2)

2. For x ∈ H, p1(x) ≡ µ(x, ω̄2, ω̄2) (mod 4) and p1(x) ≡ µ(x, x, x) (mod 3)

Moreover, these invariants give a diffeomorphism classification of closed, smooth,
simply-connected 6-manifolds satisfying (H).
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