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Abstract

A model with nonlinear Schrödinger (NLS) equation used for describing pulse propagations

in photopolymers is considered. We focus on a case in which change of refractive index

is proportional to the square of amplitude of the electric �eld and the spatial domain is

R2. After formal derivation of the NLS approximation from the wave-Maxwell equation,

we establish well-posedness and perform rigorous justi�cation analysis to show smallness of

error terms for appropriately small time intervals. We conclude by numerical simulation to

illustrate the results in one-dimensional case.

iii



Acknowledgements

I would like to express my gratitude to Dr. Dmitry Pelinovsky and Dr. Kalaichelvi Saravana-

muttu for the idea of the project. This work would not be possible without close guidance

and assistance of my supervisor Dr. Dmitry Pelinovsky whose insight and solid experience

helped to overcome many di�culties arising on the way to the �nal result.

I am indebted with my knowledge and experience to the professors in McMaster Uni-

versity whom I took courses from and worked with as a teaching assistant: Dr. Dmitry

Pelinovsky, Dr. Stanley Alama, Dr. Lia Bronsard, Dr. Eric Sawyer, Dr. Jean Pierre

Gabardo, Dr. Bartosz Protas, Dr. Nicholas Kevlahan and Dr. Maung Min-oo. Also, I owe

sincere thanks to Dr. Walter Craig for his useful remarks during my presentation in the

AIMS lab seminar.

Additionally, I am very thankful to the professors Dr. Sergey Leble, Dr. Oleg Nagornov,

Dr. Olga Rozanova, Dr. Stéphane Lanteri and Dr. Victorita Dolean whom I had opportunity

to learn from in the past and who also gave me support and valuable advices regarding

academic career.

I would like to take an opportunity to say thank you to my parents for encouraging me

in di�cult moments. Also, I acknowledge my uncle Herman for a signi�cant in�uence on my

whole life.

iv



To my parents

Lyubov and Victor

v



Contents

1 Introduction 2

1.1 Physical context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Asymptotic balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Elements of functional analysis 7

3 Local well-posedness theory 11

3.1 Local well-posedness of the wave-Maxwell system . . . . . . . . . . . 11

3.2 Local well-posedness of the NLS system . . . . . . . . . . . . . . . . 22

4 Rigorous justi�cation analysis 27

4.1 Near-identity transformations . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Local control of the residual terms . . . . . . . . . . . . . . . . . . . 30

4.2.1 First energy level . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.2 Second energy level . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.3 Third energy level . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.4 Proof of the Theorem 1.1 . . . . . . . . . . . . . . . . . . . . 45

5 Numerical results 47

5.1 One-dimensional model . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Numerical set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

APPENDIX 55

Global justi�cation for the linear system . . . . . . . . . . . . . . . . . . . 55



Chapter 1

Introduction

1.1 Physical context

Mathematical models for laser beams in photochemical materials used in literature [8, 16]

are based on the nonlinear Schrödinger (NLS) equation. These models are normally derived

from Maxwell equations using heuristic arguments and qualitative approximations (see e.g.

[9]). In the present work we derive the time-dependent NLS equation rigorously from a

toy model resembling the Maxwell equations. The toy model is written as a system of a

wave-Maxwell equation and an empirical relation for the change of the refractive index.

The following planar geometry problem is usually considered for modeling of laser beams

in photochemical materials. The material occupies halfspace z ≥ 0 and its face z = 0 is

exposed to the pulse entering the material. If the pulse is localized in the x-direction and

is uniform in the y-direction, then the electric �eld has polarization in the y-direction with

the amplitude E being y-independent, hence E (x, z, t) = (0, E (x, z, t) , 0) is the electric

�eld. The initial pulse is assumed to be spatially wide-spreaded, small in amplitude, and

monochromatic in time.

Neglecting polarization e�ects and uniform material losses, we write the wave-Maxwell

equation in the form

∂2xE + ∂2zE − n2∂2tE = 0, (1.1)

where n is referred to as the refractive index of the photochemical material.

Let us write the squared refractive index in the form n2 = 1 + m and assume that the

change of refractive index m is governed by the empirical relation

∂m

∂t
= E2. (1.2)

2
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We note that all physical constants are normalized to be 1 in the system (1.1)-(1.2).

The system (1.1)-(1.2) resembles a more complicated system of governing equations in

literature [8].

1.2 Asymptotic balance

Let us seek for the asymptotic solution to the system (1.1)-(1.2) by using the multi-scale

expansion [10, 14, 17]

E (x, z, t) = εpA (X,Z, T ) eiω0(z−t) + c.c., m (x, z, t) = εrm0 (X,Z, T ) , (1.3)

where c.c. stands for complex conjugated term, X := εx, Z := εqz, T := εst are slow variables

and p, q, s, r > 0 are exponents to be speci�ed.

We want to choose the exponents p, q, s and r such that A is governed by a kind of the

NLS equation.

The resulting NLS equation for A is supposed to have �rst-order partial derivatives of A in

Z, second derivative in X, and a nonlinear term proportional to m0A at the leading order of

ε (that is O
(
εp+2

)
due to the term ∂2xE). At the same time the equation (1.2) must enforce

the rate of change of m0 in T to be of order O (1) at the leading order of ε (that is O
(
ε2p
)

due to the term E2). These requirements lead to the choice

q = 2, r = 2, s = 2p− 2, (1.4)

which still leaves parameter p to be de�ned.

To show (1.4), we substitute (1.3) in (1.1) and (1.2) to obtain, respectively,

εp
[
ε2∂2XA+ 2iω0 (εq∂ZA+ εs∂TA) + εrω2

0m0A
]
eiω0(z−t) + c.c.+ higher-order terms = 0,

εr+s∂Tm0 = ε2p |A|2 +
(
ε2pA2e2iω0(z−t) + c.c.

)
+ higher-order terms.

3
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From the �rst equation, the balance occurs for q = 2, r = 2 and s ≥ 2. From the second

equation, the balance occurs for r + s = 2p, hence s = 2p − 2, and the balance (1.4) is

justi�ed.

The second term in the second equation induces the second harmonics which will be

further included in the equation for a residual term.

If s = 2, the system of equations can be truncated at the system

∂2XA+ 2iω0 (∂ZA+ ∂TA) + ω2
0m0A = 0, (1.5)

∂Tm0 = 2 |A|2 . (1.6)

If s > 2, the system of equations can be truncated at the spatial NLS equation

∂2XA+ 2iω0∂ZA+ ω2
0m0A = 0, (1.7)

complimented by the same equation (1.6). Because m0 depends on T by means of the

equation (1.6), A depends on T implicitly in the case of (1.7). The system (1.6)-(1.7) was

used in the previous works [8, 16] on photochemical materials.

Our task is to justify the system (1.5)-(1.6), where the time evolution of A is uniquely

determined. To avoid problems at the characteristics Z = T , we shall consider solutions of

the original system (1.1)-(1.2) in an unbounded domain (x, z) ∈ R2 for t > 0 supplemented

by the initial conditions. At the present time, our method does not allow us to justify the

system (1.6)-(1.7).

In the case s = 2, we choose the scaling X := εx, Z := ε2z, T := ε2t and represent the

exact solution to (1.1)-(1.2) as

E (x, z, t) = ε2
(
A (X,Z, T ) eiω0(z−t) + c.c.

)
+ U (x, z, t) , (1.8)

m (x, z, t) = ε2m0 (X,Z, T ) +N (x, z, t) , (1.9)

4
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where U (x, z, t), N (x, z, t) are residual terms to estimate.

Let us denote

(X)nω0
:= Xeinω0(z−t) + c.c.

for any complex envelope X of the n-th harmonic.

Feeding (1.8)-(1.9) into (1.1)-(1.2) and assuming validity of (1.5)-(1.6), we arrive at

∂2xU + ∂2zU −
(
1 + ε2m0 +N

)
∂2t U = −ε2

(
R

(U)
2

)
ω0

N − ε6
(
R

(U)
6

)
ω0

, (1.10)

∂tN = ε4
(
A2
)
2ω0

+ 2ε2 (A)ω0
U + U2, (1.11)

where

R
(U)
2 := ω2

0A+ 2iω0ε
2∂TA− ε4∂2TA, (1.12)

R
(U)
6 := ∂2ZA−

(
1 + ε2m0

)
∂2TA+ 2iω0m0∂TA. (1.13)

1.3 Main result

For the system (1.1)-(1.2), we impose the following initial conditions

E|t=0 =: E0 = ε2A0

(
εx, ε2z

)
eiω0z + c.c., (1.14)

∂tE|t=0 =: E1 = −iω0ε
2A0

(
εx, ε2z

)
eiω0z + ε4∂TA0

(
εx, ε2z

)
eiω0z + c.c., (1.15)

m|t=0 = 0, (1.16)

where A0 is the initial distribution of the beam for the Schrödinger equation and ∂TA0 is

expressed explicitly from (1.5). The initial conditions imply that at t = 0 the electrical

�eld is already penetrated in the photochemical material, whereas it does not yet induce

the change in the refractive index. Note also that the conditions (1.14)-(1.16) imply that

U |t=0 = ∂tU |t=0 = N |t=0 = 0 in the system (1.10)-(1.11) for the residual terms.

Our main result is the following justi�cation theorem.

5
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Theorem 1.1. Given initial data A0 ∈ H8
(
R2
)
, let A, m0 be local solutions to the system

(1.5)-(1.6) for T ∈ (0, T∞) where T∞ > 0 is the maximal existence time. There exist ε0 > 0

and T0 ∈ (0, T∞) such that for every ε ∈ (0, ε0) there is a unique solution E, m of the system

(1.1)-(1.2) for t ∈
[
0, T0/ε

2
]
sup

t∈[0,T0/ε2]

∥∥E − ε2 (A)ω0

∥∥
H3(R2)

= O
(
ε5/2

)
,

sup
t∈[0,T0/ε2]

∥∥m− ε2m0

∥∥
H2(R2)

= O
(
ε5/2

)
.

To prove the Theorem 1.1, we organize thesis as follows.

In the Chapter 2, we will set up tools of functional analysis needed for our work. After

the brief introduction of notation, the main lemmas that will be used throughout the work

are stated. The Chapter 3 describes the local well-posedness theory for the original system

(1.1)-(1.2) and its approximation (1.5)-(1.6). We obtain the spaces for the local solution in

which further analysis will be done, and formulate the theorem that allows continuation of

the local solutions. Additionally, we look into the smoothness requirements of the initial

data of the initial pulse. The goal of the Chapter 4 is to obtain su�cient estimates for

the residual terms U , N governed by the equations (1.10)-(1.11) and hence to justify the

approximation of solutions of the system (1.1)-(1.2) by solutions of the NLS system (1.5)-

(1.6). This is done by means of normal form transformation followed by a priori energy

estimates which yield control of the residual terms. The Chapter 5 illustrates numerically

the result of the Theorem 1.1 for x-independent initial conditions. In the Appendix, we

obtain global justi�cation for the linear counterpart of the problem by comparing solutions

of the original wave equation with solution to the linear Schrödinger equation.

6



Chapter 2

Elements of functional analysis

In this chapter we collect together some de�nitions and results from topics in functional

analysis. These results will be used in the rest of our work.

For a positive integer s, Hs
(
R2
)

:= W s,2
(
R2
)
denotes the Hilbert-Sobolev space, that

is, the space of all functions of two variables bounded with respect to the induced norm

‖f‖Hs :=

 ∑
0≤k+l≤s

ˆ

R2

∣∣∣∂kx∂lzf ∣∣∣2 dxdz
1/2

,

or equivalently,

‖f‖Hs =

 ∑
k+l=s

ˆ

R2

∣∣∣∂kx∂lzf ∣∣∣2 dxdz
1/2

+

ˆ
R2

|f |2 dxdz

1/2

.

We will use standard notation for the Lebesgue spaces Lp
(
R2
)
endowed with the norm

‖X‖Lp :=

ˆ
R2

|f(x, z)|p dxdz

1/p

, 1 ≤ p <∞.

In addition, we have

‖X‖L∞ := lim
p→∞

‖X‖Lp = ess sup
(x,z)∈R2

|f(x, z)| .

Now, let us assume that functions f in Hs
(
R2
)
depend on an additional variable t ∈ R+.

In what follows, we will often write f ∈ Hs implying f (·, ·, t) ∈ Hs
(
R2
)
.

7
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Lemma 2.1. Assume that f, ∂tf ∈ Lp
(
R2
)
. Then for any 1 ≤ p <∞, we have

∂t ‖f‖Lp ≤ ‖∂tf‖Lp . (2.1)

Proof. Clearly,

∂t ‖f‖pLp = p ‖f‖p−1Lp ∂t ‖f‖Lp . (2.2)

On the other hand, for 1 ≤ p < ∞, by the Lebesgue dominated convergence theorem

(valid since f ∈ Lp, ∂tf ∈ Lp), di�erentiation can be performed under the integral sign

which is then followed by application of the Hölder's inequality

∂t ‖f‖pLp = p

ˆ
R2

|f (x, z, t)|p−1 ∂tf (x, z, t) dxdz ≤ p
∥∥fp−1∥∥

Lp/(p−1) ‖∂tf‖Lp = p ‖f‖p−1Lp ‖∂tf‖Lp .

(2.3)

Comparison of (2.2) and (2.3) furnishes the result (2.1).

Corollary 2.1. Assume that f, ∂tf ∈ Lp
(
R2
)
for all t ∈ [0, t0] and some p ≥ 1. Then, we

have

‖f‖Lp ≤ t0 sup
t∈[0,t0]

‖∂tf‖Lp + (‖f‖Lp)|t=0 , t ∈ [0, t0] . (2.4)

Proof. For p <∞, this result follows directly from the Lemma 2.1.

For p =∞, the results follows from the fundamental theorem of calculus and the integral

Minkowski's inequality

‖f‖L∞ ≤
∥∥∥∥ˆ t

0
∂τfdτ

∥∥∥∥
L∞

+ (‖f‖L∞)|t=0

≤ t0 sup
t∈[0,t0]

‖∂tf‖L∞ + (‖f‖L∞)|t=0 , t ∈ [0, t0] .

Corollary 2.2. Let f, ∂tf ∈ Hs
(
R2
)
for all t ∈ [0, t0] and some s ≥ 0. Then we have

‖f‖Hs ≤ t0 sup
t∈[0,t0]

‖∂tf‖Hs + (‖f‖Hs)|t=0 , t ∈ [0, t0] . (2.5)

8
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Proof. By the Plancherel's theorem (see e.g. [12, 13]), we can employ the estimate (2.4) for

p = 2 on the Fourier transform side f (ξ) ∈ L2
(
R2
)

‖f‖Hs =

∥∥∥∥(1 + |ξ|2
)s/2

f̂

∥∥∥∥
L2

≤ t0 sup
t∈[0,t0]

∥∥∥∥(1 + |ξ|2
)s/2

∂tf̂

∥∥∥∥
L2

+

(∥∥∥∥(1 + |ξ|2
)s/2

f̂

∥∥∥∥
L2

)∣∣∣∣
t=0

≤ t0 sup
t∈[0,t0]

‖∂tf‖Hs + (‖f‖Hs)|t=0 .

In the rest of this section, we list useful results: Banach algebra property, Sobolev em-

bedding theorem, Gagliardo-Nirenberg inequality and Gronwall's inequality, and Banach

�xed-point theorem. For the proofs, see [1, 3, 10].

Proposition 2.1. (Banach algebra property) For any s > 1, Hs
(
R2
)
is a Banach algebra

with respect to multiplication, that is, if f, g ∈ Hs
(
R2
)
, then there is a constant Cs > 0

(depending only on index s) such that

‖fg‖Hs ≤ Cs ‖f‖Hs ‖g‖Hs . (2.6)

Proposition 2.2. (Sobolev embedding) Assume that f ∈ Hs
(
R2
)
for s ≥ 2. Then, the

function f is continuous on R2 decaying at in�nity, and there is a constant Cs > 0 such that

‖f‖L∞ ≤ Cs ‖f‖Hs . (2.7)

Proposition 2.3. (Gagliardo-Nirenberg inequality) Let f ∈ H1
(
R2
)
. Then, for any σ ≥ 0,

there exists a constant Cσ > 0 such that

‖f‖2(σ+1)

L2(σ+1) ≤ Cσ ‖∇f‖
2σ
L2 ‖f‖2L2 . (2.8)

9
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Proposition 2.4. (Gronwall's inequality) Assume g (t) ∈ C1 ([0, t0]) satis�es

dg (t)

dt
≤ ag (t) + b, t ∈ [0, t0] .

for some constants a, b > 0 and g (0) > 0. Then, we have

g (t) ≤ (g (0) + bt0) e
at, t ∈ [0, t0] . (2.9)

Proposition 2.5. (Banach �xed-point theorem) Let B be a closed non-empty set of the

Banach space X, and let K : B 7→ B be a contraction operator, that is, for any x, y ∈ B,

there exists 0 ≤ q < 1 such that ‖K (x)−K (y)‖X ≤ q ‖x− y‖X . Then there exists a

unique �xed point of K in B, in other words, there exists a unique solution x0 ∈ B such that

K (x0) = x0.

10



Chapter 3

Local well-posedness theory

3.1 Local well-posedness of the wave-Maxwell system

Before we proceed with the justi�cation analysis, let us consider the question of local well-

posedness of the system (1.1)-(1.2) and formulate a regularity criterion for the continuations

of local solutions.

Consider the wave-Maxwell system


∂2xE + ∂2zE − (1 +m) ∂2tE = 0,

∂tm = E2,

(x, z) ∈ R2, t ∈ R+, (3.1)

subject to the initial conditions m|t=0 = 0, E|t=0 = E0, and Et|t=0 = E1 for given E0,

E1 ∈ Hs
(
R2
)
with some s ≥ 0.

We can apply the theory of local well-posedness for quasi-linear symmetric hyperbolic

systems [5, 7, 15] once we bring (3.1) into a �rst-order system with a symmetric matrix.

To symmetrize the system, we set

v :=

(
∂tE,

∂xE

(1 +m)1/2
,

∂zE

(1 +m)1/2
, E, ∂xm, ∂zm, m

)T
. (3.2)

Then, the system (3.1) is equivalent to the symmetric quasi-linear �rst-order system

∂tv +A1 (v) ∂xv +A2 (v) ∂zv = f (v) , (3.3)

where A1, A2 are matrices having − 1

(1+v7)
1/2 at (1, 2)-(2, 1) and (1, 3)-(3, 1) entries, respec-

11
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tively, and zero elements elsewhere, whereas

f (v) :=

(
v2v5 + v3v6

2 (1 + v7)
3/2

, − v24v2
2 (1 + v7)

, − v24v3
2 (1 + v7)

, v1, 2 (1 + v7)
1/2 v2v4, 2 (1 + v7)

1/2 v3v4, v
2
4

)T

=

(
∂xE∂xm+ ∂zE∂zm

2 (1 +m)2
, − E2∂xE

2 (1 +m)3/2
, − E2∂zE

2 (1 +m)3/2
, ∂tE, 2E∂xE, 2E∂zE, E

2

)T
.

Note that A1, A2, f have no explicit dependence on x, z and t.

The initial data for (3.3) is given by

v|t=0 = v0 := (E1, ∂xE0, ∂zE0, E0, 0, 0, 0)T . (3.4)

By the Kato theory (see Theorems I-II in [5]), for any integer s ≥ 3, the Cauchy problem

(3.3)-(3.4) admits unique local solution v ∈ C
(
[0, t0] , H

s
(
R2
))
∩ C1

(
[0, t0] , H

s−1 (R2
))

for

some t0 > 0 providing v0 ∈ Hs
(
R2
)
. Moreover, the solution v depends on the initial data

v0 continuously (Theorem III in [5]). We transfer this result in the following statement.

Lemma 3.1. For any integer s ≥ 3, the unique local solution of the system (3.1) exists in

the space

E ∈ C
(
[0, t0] , H

s+1
(
R2
))
∩ C1

(
[0, t0] , H

s
(
R2
))
∩ C2

(
[0, t0] , H

s−1 (R2
))
, (3.5)

m ∈ C1
(
[0, t0] , H

s+1
(
R2
))
∩ C2

(
[0, t0] , H

s
(
R2
))
∩ C3

(
[0, t0] , H

s−1 (R2
))
. (3.6)

Moreover, the solution depends continuously on the initial data E0 ∈ Hs+1
(
R2
)
, E1 ∈

Hs
(
R2
)
.

Proof. From the �rst and the last four entries in (3.2), we infer that, for any integer s ≥ 3,

E ∈ C1
(
[0, t0] , H

s
(
R2
))
∩ C2

(
[0, t0] , H

s−1 (R2
))
, (3.7)

m ∈ C
(
[0, t0] , H

s+1
(
R2
))
∩ C1

(
[0, t0] , H

s
(
R2
))
. (3.8)

12
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We shall now use the second and third entries in (3.2), which tell us that

J :=

ˆ

R2

[∂sx
(

∂xE

(1 +m)1/2

)]2
+

[
∂sz

(
∂zE

(1 +m)1/2

)]2 dxdz <∞,

and J is a continuous function of t on[0, t0].

Without loss of generality, let us keep track of only x-derivatives.

By the Leibnitz di�erentiation rule, we have

[
∂sx

(
∂xE

(1 +m)1/2

)]2
=

 s∑
k=0

 s

k

 ∂k+1
x E∂s−kx (1 +m)−1/2


2

=

(1 +m)−1/2 ∂s+1
x E +

s−1∑
k=0

 s

k

 ∂k+1
x E∂s−kx (1 +m)−1/2


2

,

where

 s

k

 is a binomial coe�cient.

Denoting

λ :=

ˆ
R2

[
∂s+1
x E

]2
1 +m

dxdz

1/2

,

µ :=

ˆ
R2

s−1∑
k=0

 s

k

 ∂k+1
x E∂s−kx (1 +m)−1/2


2

dxdz


1/2

,

by the Cauchy-Schwarz inequality, we estimate

λ2 ≤ J − 2

ˆ

R2

∂s+1
x E

(1 +m)1/2

s−1∑
k=0

 s

k

 ∂k+1
x E∂s−kx (1 +m)−1/2 dxdz

−
ˆ

R2

s−1∑
k=0

 s

k

 ∂k+1
x E∂s−kx (1 +m)−1/2


2

dxdz

≤ J + 2λµ.

13
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But then

λ2 − 2µλ− J ≤ 0 ⇒ λ ≤ µ+
√
µ2 + J.

Let us show that µ <∞ for any t ∈ [0, t0].

By the triangle inequality for L2-norm, for some constant C > 0, we have

µ ≤ C

s−1∑
k=0

(ˆ
R2

(
∂k+1
x E

)2 [
∂s−kx (1 +m)−1/2

]2
dxdz

)1/2

≤ C

[
‖∂xE‖L∞

∥∥∥∂sx (1 +m)−1/2
∥∥∥
L2

+

s−1∑
k=1

∥∥∥∂k+1
x E

∥∥∥
L2

∥∥∥∂s−kx (1 +m)−1/2
∥∥∥
L∞

]
.

The right-hand side of the last inequality is bounded for any t ∈ [0, t0] due to �niteness

of ‖∂sxE‖L2 ,
∥∥∂s+1

x m
∥∥
L2 , ‖∂xE‖L∞ ,

∥∥∂s−1x m
∥∥
L∞

, ‖m‖L∞ by (3.7)-(3.8), the Proposition 2.2

and the Banach algebra property of L∞-norm.

From here, boundedness of λ follows for all t ∈ [0, t0] and yields

ˆ
R2

[
∂s+1
x E

]2
1 +m

dxdz

1/2

<∞.

Now, we notice since m|t=0 = 0 and ∂tm = E2 ≥ 0, we have m (x, z, t) ≥ 0 for all

(x, z) ∈ R2 and t ∈ [0, t0]. Therefore, we have

1

1 + ‖m‖L∞

ˆ

R2

([
∂s+1
x E

]2
+
[
∂s+1
z E

]2)
dxdz ≤

ˆ

R2

([
∂s+1
x E

]2
+
[
∂s+1
z E

]2
1 +m

)
dxdz <∞,

and thus conclude that, for all t ∈ [0, t0],

ˆ

R2

([
∂s+1
x E

]2
+
[
∂s+1
z E

]2)
dxdz <∞. (3.9)

It is also clear that the norm in (3.9) is a continuous function of t on [0, t0] so that the

assertion (3.5) holds.

To obtain (3.6), we use the bootstrapping argument for the second equation in the system

14
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(3.1) because the space Hs
(
R2
)
forms a Banach algebra for s > 1 by the Proposition 2.1.

The following characterization is useful to extend the local solution of the Lemma 3.1

in the sense that if a local solution exists, it persists on a larger time interval as long as

a certain condition is ful�lled. This result is similar to the blow-up criteria of solutions in

other equations [2, 11, 15].

Theorem 3.1. Local solution of the system (3.1) in the Lemma 3.1 does not blow up as

t→ t0 if

sup
t∈[0,t0]

(‖E‖L∞ + ‖∂tE‖L∞ + ‖∇E‖L∞) <∞. (3.10)

Proof. In order to verify the condition (3.10), we suppose

M1 := sup
t∈[0,t0]

‖E‖L∞ <∞, M2 := sup
t∈[0,t0]

‖∇E‖L∞ <∞, M3 := sup
t∈[0,t0]

‖∂tE‖L∞ <∞,

and show that, for all t ∈ [0, t0],

‖E‖H4 , ‖∂tE‖H3 ,
∥∥∂2tE∥∥H2 <∞.

To demonstrate this, we employ the energy method. For the sake of compactness, let us

use short notation Ex := ∂xE, Et := ∂tE, and so on for other derivatives of E and m.

Let us multiply the �rst equation of the system (3.1) by Et and integrate by parts

employing decay of EtEx and EtEz to zero as |x| , |z| → ∞ that is justi�ed for the local

solution of the Lemma 3.1 for s = 3 by the Proposition 2.2. Thus, we obtain

dH1

dt
=

1

2

ˆ

R2

E2E2
t dxdz ⇒ dH1

dt
≤M2

1H1, (3.11)

where we have used the second equation of the system (3.1) and introduced the �rst energy

functional

H1 :=
1

2

ˆ

R2

(
(1 +m)E2

t + E2
x + E2

z

)
dxdz. (3.12)

15
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By the Gronwall's inequality (2.9) and the fact that m (x, z, t) ≥ 0 for all (x, z) ∈ R2, we

obtain

‖Ex‖2L2 + ‖Ez‖2L2 + ‖Et‖2L2 ≤ 2H1 ≤ 2H1

∣∣∣∣
t=0

eM
2
1 t <∞, t ∈ [0, t0] .

From here, by the Lemma 2.1 for p = 2, we also control ‖E‖L2 as follows

d

dt
‖E‖L2 ≤ ‖Et‖L2 ⇒ ‖E‖L2 ≤ t0 sup

t∈[0,t0]
‖Et‖L2 + (‖E‖L2)|t=0 <∞, t ∈ [0, t0] ,

and thus conclude that E ∈ H1
(
R2
)
and Et ∈ L2

(
R2
)
for all t ∈ [0, t0].

Now, we perform the same procedure but di�erentiating the �rst equation of the system

(3.1) with respect to x, multiplying it by Ext and integrating over (x, z) ∈ R2. Repeating

the same with z- and t-variables, we sum the results to obtain

dH2

dt
=

1

2

ˆ

R2

(
E2
[
E2
xt + E2

zt − E2
tt

]
− Ett [Extmx + Eztmz]

)
dxdz, (3.13)

where the second energy functional was introduced

H2 :=
1

2

ˆ

R2

(
(1 +m)E2

tt + (2 +m)
[
E2
xt + E2

zt

]
+ E2

xx + E2
zz + 2E2

xz

)
dxdz, (3.14)

and we used the decay of ExtExx, ExtExz, EztEzz, EztExz, EttExt and EttEzt to zero as

|x| , |z| → ∞, which is justi�ed for the local solution of the Lemma 3.1 for s = 3 by the

Proposition 2.2.

We have

‖Exx‖2L2 + ‖Ezz‖2L2 + 2 ‖Exz‖2L2 + 2 ‖Ext‖2L2 + 2 ‖Ezt‖2L2 + ‖Ett‖2L2 ≤ 2H2.

We shall now control H2 from the equation (3.13). The terms in (3.13) with E2E2
xt,

E2E2
zt and E

2E2
tt are controlled by a multiple of M2

1H2.

Additionally, we need to bound ‖m‖L∞ and ‖∇m‖L∞ . By the Corollary 2.1 for p =∞,

16



MSc Thesis � D. Ponomarev McMaster � MathematicsMSc Thesis � D. Ponomarev McMaster � Mathematics

we have

‖m‖L∞ ≤ t0 sup
t∈[0,t0]

‖mt‖L∞ ≤ t0M
2
1 (3.15)

and

‖∇m‖L∞ ≤ t0 sup
t∈[0,t0]

‖∇mt‖L∞ ≤ 2t0M1M2, t ∈ [0, t0] , (3.16)

where we have used the initial condition m|t=0 = 0 and the second equation of the system

(3.1).

By the triangle inequality and the Cauchy-Schwarz inequality, we have

dH2

dt
≤M1 (M1 + 2t0M2)H2.

By the Gronwall's inequality (2.9), we conclude that

H2 ≤ H2

∣∣∣∣
t=0

eM1(M1+2t0M2)t <∞, t ∈ [0, t0] .

Thus, we deduce that E ∈ H2
(
R2
)
, Et ∈ H1

(
R2
)
and Ett ∈ L2

(
R2
)
for all t ∈ [0, t0].

Now, we continue in the same manner as before, operating on with the �rst equation of

the system (3.1) by Exxt∂
2
x + Ezzt∂

2
z + Ettt∂

2
t and integrating in (x, z) over R2 by parts to

reduce the expression to �rst-order derivatives of m only. In the end, we obtain we obtain a

functional that is not positive de�nite. Its boundedness does not yield a bound on the norms

of derivatives of E it includes. To remedy the situation, we add
´
R2

[
m2
x +m2

z

]
E2
ttdxdz to

the energy functional and hence obtain

dH3

dt
=

1

2

ˆ

R2

(
E2
[
E2
xxt + E2

zzt − 3E2
ttt

]
− 2mx [ExxtExtt + ExxxEttt]

− 2mz [EzztEztt + EzzzEttt]− 4EttE [EtttEt + ExxxEx + EzzzEz]

+ 8EE2
tt [Exmx + Ezmz] + 4EttEttt

[
m2
x +m2

z

])
dxdz, (3.17)

17
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where

H3 =
1

2

ˆ

R2

(
(1 +m)

[
E2
ttt + E2

xxt + E2
zzt

]
+ E2

xtt + E2
ztt +

1

2

(
E2
xxx + E2

zzz

)
+ E2

xxz + E2
xzz +

1

2
[Exxx − 2mxEtt]

2 +
1

2
[Ezzz − 2mzEtt]

2

)
dxdz. (3.18)

We have

‖Exxx‖2L2 + ‖Ezzz‖2L2 + 2 ‖Exxz‖2L2 + 2 ‖Exzz‖2L2 + 2 ‖Exxt‖2L2 + 2 ‖Ezzt‖2L2

+2 ‖Ettt‖2L2 + 2 ‖Extt‖2L2 + 2 ‖Eztt‖2L2 ≤ 4H3.

In deriving the balance equation (3.17), we have used the decay of ExxxExxt, ExxzExxt,

EzzzEzzt, ExzzEzzt, EtttExtt, EtttEztt, mxExxtEtt and mzEzztEtt to zero as |x| → ∞, |z| →

∞. This decay can be obtained by working with approximation sequences as follows.

Let us consider an approximation of the initial conditions E0, E1 by the sequences of

functions
{
E

(n)
0

}∞
n=1
∈ H5

(
R2
)
,
{
E

(n)
1

}∞
n=1
∈ H4

(
R2
)
, respectively. Then, by the Lemma

3.1 for s = 4, the corresponding sequence of local solutions will be

E(n) ∈ C
(
[0, t0] , H

5
(
R2
))
∩ C1

(
[0, t0] , H

4
(
R2
))
∩ C2

(
[0, t0] , H

3
(
R2
))
.

The decay assumptions are valid by the Proposition 2.2 for the approximate solution E(n).

Because the space H5
(
R2
)
is dense in H4

(
R2
)
and so is H4

(
R2
)
in H3

(
R2
)
, we have

∥∥∥E(n)
0 − E0

∥∥∥
H4
→ 0,

∥∥∥E(n)
1 − E1

∥∥∥
H3
→ 0 as n→∞,

and hence, by the continuous dependence of the solution on the initial data in the Lemma

3.1, we have ∥∥∥E(n) − E
∥∥∥
H4
→ 0,

∥∥∥E(n)
t − Et

∥∥∥
H3
→ 0 as n→∞,

that holds for all t ∈ [0, t0].

18



MSc Thesis � D. Ponomarev McMaster � MathematicsMSc Thesis � D. Ponomarev McMaster � Mathematics

This approximation argument furnishes the required decay of solutions at in�nity in the

justi�cation of the energy balance (3.17).

Using (3.16), we estimate the m-dependent terms in (3.17) as follows

ˆ

R2

mx [ExxtExtt + ExxxEttt] dxdz ≤ ‖∇m‖L∞ (‖Exxt‖L2 ‖Extt‖L2 + ‖Exxx‖L2 ‖Ettt‖L2)

≤ 8t0M1M2H3,

ˆ

R2

EttEtttm
2
xdxdz ≤ ‖∇m‖2L∞ ‖Ett‖L2 ‖Ettt‖L2 ≤ 8t20M

2
1M

2
2H

1/2
2 H

1/2
3 ,

ˆ

R2

EExE
2
ttmxdxdz ≤M1M2 ‖∇m‖L∞ ‖Ett‖

2
L2 ≤ 4t0M

2
1M

2
2H2,

and similarly for the z-derivatives terms.

The estimates of the m-independent terms in (3.17) are straightforward

ˆ

R2

E2
[
E2
xxt + E2

zzt − 3E2
ttt

]
dxdz ≤M2

1H3,

ˆ

R2

EEtt [ExxxEx + EzzzEz + EtttEt] dxdz ≤M1 (2M2 +M3)H1/2
2 H

1/2
3 .

Therefore,

dH3

dt
≤M1 (M1 + 16t0M2)H3 + 2M1

(
2M2 +M3 + 16t20M1M

2
2

)
H1/2

2 H
1/2
3 + 32t0M

2
1M

2
2H2.

By the inequality H1/2
2 H

1/2
3 ≤ 1

2 (H2 +H3), we have

dH3

dt
≤ FH3 +GH2,

19



MSc Thesis � D. Ponomarev McMaster � MathematicsMSc Thesis � D. Ponomarev McMaster � Mathematics

where

F := M1

(
M1 + 18t0M2 + t0M3 + 16t30M1M

2
2

)
,

G := M1

(
2M2 +M3 + 16t20M1M

2
2

)
+ 32t0M

2
1M

2
2 .

Then, by the Gronwall's inequality (2.9), for t ∈ [0, t0], we bound

H3 ≤

(
H3

∣∣∣∣
t=0

+Gt0 sup
t∈[0,t0]

H2

)
etF <∞.

Thus, we deduce that E ∈ H3
(
R2
)
, Et ∈ H2

(
R2
)
and Ett ∈ H1

(
R2
)
for all t ∈ [0, t0].

We proceed to obtain the �nal energy estimates. We act by

Exxxt∂
3
x + Ezzzt∂

3
z + Exttt∂x∂

2
t + Ezttt∂z∂

2
t + Etttt∂

3
t

on the �rst equation of the system (3.1) and integrate the result in (x, z) over R2. Following

the same steps as in the previous energy level computations, we can introduce the positive

de�nite energy functional

H4 :=
1

2

ˆ
R2

[
(1 +m)

(
E2
xxxt + E2

zzzt + E2
xttt + E2

zttt + E2
tttt

)
+

1

2

(
E2
xxxx + E2

zzzz

)
+ 2E2

xxzz + 2E2
xztt + E2

xxtt + E2
zztt + E2

xttt + E2
zttt +

1

2
(Exxxx − 2mxxEtt)

2

+
1

2
(Ezzzz − 2mzzEtt)

2

]
dxdz (3.19)

to obtain

dH4

dt
≤ 1

2

ˆ
R2

[
E2
(
E2
xxxt + E2

zzzt − 3E2
xttt − 3E2

zttt − 4E2
tttt

)
− 4Ett

(
E2
xExxxx + E2

zEzzzz + E2
tEtttt

)
− 4EEtt (ExxExxxx + EzzEzzzz + EttEtttt)− 4mxx (ExttExxxt + EtttExxxx)

− 4mzz (EzttEzzzt + EtttEzzzz)− 6mxExxttExxxt − 6mzEzzttEzzzt − 12EEtEtttEtttt

+ 4EtttEtt
(
m2
xx +m2

zz

)
+ 8E2

tt

(
mxx

(
E2
x + EExx

)
+mzz

(
E2
z + EEzz

))]
dxdz. (3.20)
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This computation is valid under assumption on decay to zero of ExxxtExxxx, ExxxtExxxz,

EzzztEzzzz, EzzztExzzz, EttttExttt, EttttEzttt, ExtttExxtt, ExtttExztt, EztttEzztt, EztttExztt,

mxxExxttEtt and mzzEzzttEtt as |x| → ∞, |z| → ∞, but this decay can be justi�ed by the

approximation argument for a sequence of local solutions of the Lemma 3.1 for s = 5 as done

in the previous energy level computations.

We have

‖Exxxx‖2L2 + ‖Ezzzz‖2L2 + 4 ‖Exxzz‖2L2 + 2 ‖Exxxt‖2L2 + 2 ‖Ezzzt‖2L2

+2 ‖Exxtt‖2L2 + 2 ‖Ezztt‖2L2 + 4 ‖Exztt‖2L2 ≤ 4H4. (3.21)

We use the Proposition 2.2 to bound

‖Exx‖L∞ ≤ C0 (‖∆Exx‖L2 + ‖Exx‖L2) ≤
√

2C0

(
H1/2

4 +H1/2
2

)
,

for some C0 > 0.

Using this estimate and the Corollary 2.1, from the second equation of the system (3.1),

we obtain, for t ∈ [0, t0],

‖mxx‖L∞ ≤ t0 sup
[0,t]
‖mtxx‖L∞ ≤ 2t0M

2
2 + 2

√
2C0t0M1

(
sup
[0,t]
H1/2

4 + sup
t∈[0,t0]

H1/2
2

)
.

The similar estimates hold for the z-derivatives terms. Lengthy and tedious calculations

result in

dH4

dt
≤ IH4 + J sup

[0,t]
H4 + L, (3.22)

where I, J , L are some coe�cients that depend on t0, M1, M2, M3, supt∈[0,t0]H2 and

supt∈[0,t0]H3.

The last inequality can be rewritten in integral form as

sup
[0,t]
H4 ≤ H4|t=0 + t0L+ (I + J)

ˆ t

0
sup
[0,τ ]
H4dτ.
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By the Gronwall's inequality, we bound

sup
t∈[0,t0]

H4 ≤ [H4|t=0 + t0L] et(I+J) <∞.

Now, since

‖Exxxz‖2L2 , ‖Exzzz‖2L2 ≤
1

2
‖Exxxx‖2L2 +

1

2
‖Exxzz‖2L2 ,

‖Exxzt‖2L2 , ‖Exzzt‖2L2 ≤
1

2
‖Exxxt‖2L2 +

1

2
‖Ezzzt‖2L2 ,

which is a result of straightforward estimates on the Fourier transform side, from (3.21), we

conclude that E ∈ H4
(
R2
)
, Et ∈ H3

(
R2
)
and Ett ∈ H2

(
R2
)
for all t ∈ [0, t0].

Remark 3.1. To eliminate �nite-time blow-up of the component m in H4-norm, we can use

the estimate of E and the Proposition 2.1 applied to the second equation of the system (3.1).

3.2 Local well-posedness of the NLS system

Let us now consider the question of the well-posedness of the system (1.5)-(1.6). For the

sake of brevity, we will work with the rescaled equations


∂2XA+ i (∂TA+ ∂ZA) +m0A = 0,

∂Tm0 = |A|2 ,
(X,Z) ∈ R2, T ∈ R+, (3.23)

subject to the initial data A|T=0 = A0 ∈ Hs
(
R2
)
, m0|T=0 = 0, for some integer s ≥ 2.

Theorem 3.2. For any integer s ≥ 2 and δ > 2 sup
T∈R+

‖A0‖Hs(R2), there exist a positive

constant T0 and a unique solution A ∈ C
(
[0, T0] , H

s
(
R2
))
∩ C1

(
[0, T0] , H

s−2 (R2
))

to the

system (3.23) such that A|T=0 = A0 and supT∈[0,T0] ‖A‖Hs(R2) ≤ δ.

Proof. Let us take Fourier transform in both spatial variables, and denote

m̂0A (ξ, η, T ) :=
1

2π

ˆ
R2

m0 (X,Z, T )A (X,Z, T ) ei(ξX+ηZ)dXdZ.
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The �rst equation then becomes

∂T Â = i
(
−ξ2 + η

)
Â+ im̂0A,

which leads to

Â (ξ, η, T ) = Â0 (ξ, η) ei(−ξ
2+η)T + i

ˆ T

0
ei(−ξ

2+η)(T−τ)m̂0A (ξ, η, τ) dτ. (3.24)

Introduce the Schrödinger kernel

ST (X) :=
1√
4πT

e−
iπ
4 e

iX2

4T .

Then, since

F−1
[
ei(−ξ

2+η)T
]

= ST (X) δ (T − Z) ,

the inverse Fourier transform of (3.24) results in the integral equation

A (X,Z, T ) = ST (X)?A0 (X,Z − T )+i

ˆ T

0
ST−τ (X)?[m0 (X,Z − T + τ, τ)A (X,Z − T + τ, τ)] dτ,

where ? stands for convolution in X-variable.

Making use of the second equation in (3.23) and m0|T=0 = 0, we can rewrite the last

line in the form of operator equation

A (X,Z, T ) = K [A (X,Z, T )] , (3.25)

where

K [A] := ST (X)?A0 (X,Z − T )+i

ˆ T

0
ST−τ (X)?

[
A (X,Z − T + τ, τ)

ˆ τ

0
|A (X,Z − T + τ̃ , τ̃)|2 dτ̃

]
dτ.

We will obtain local well-posedness of the system (3.23), once we are able to apply the

Proposition 2.5 to conclude the existence and uniqueness of solutions to the integral equation
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(3.25).

Let us show that the condition of the Banach �xed-point theorem is ful�lled in a closed

ball of radius δ in the space C
(
[0, T0] , H

s
(
R2
))

for some s ≥ 2, δ > 0 and T0 > 0:

B̄δ :=

{
f ∈ C

(
[0, T0] , H

s
(
R2
))

: sup
T∈[0,T0]

‖f‖Hs(R2) ≤ δ

}
. (3.26)

First of all, we need to show that map B̄δ is an invariant subspace of the operator K,

that is, for any A ∈ B̄δ ⊂ C
(
[0, T0] , H

s
(
R2
))

sup
T∈[0,T0]

‖K [A]‖Hs(R2) ≤ δ (3.27)

holds for suitable choice of δ > 0 and T0 > 0. Then, we need to show that K is a contractive

operator in the sense that there is q ∈ (0, 1) such that for any A(1), A(2) ∈ B̄δ

sup
T∈[0,T0]

∥∥∥K [A(1)
]
−K

[
A(2)

]∥∥∥
Hs(R2)

≤ q sup
T∈[0,T0]

∥∥∥A(1) −A(2)
∥∥∥
Hs(R2)

. (3.28)

To choose δ > 0 and T0 > 0 such that both conditions (3.27)-(3.28) are satis�ed, we

proceed with analysis on the Fourier transform side using (3.24) rather than (3.25).

We start by showing (3.27). Let A ∈ B̄δ, that is, supT∈[0,T0] ‖A‖Hs(R2) ≤ δ. Then,

applying the Plancherel's theorem and the Minkowski integral inequality to (3.24), we obtain

sup
T∈[0,T0]

‖K [A]‖Hs(R2) = sup
T∈[0,T0]

∥∥∥(1 + ξ2 + η2
)s/2

K̂ [A]
∥∥∥
L2(R2)

≤
∥∥∥(1 + ξ2 + η2

)s/2
Â0

∥∥∥
L2(R2)

+ sup
T∈[0,T0]

ˆ T

0

∥∥∥(1 + ξ2 + η2
)s/2

m̂0A
∥∥∥
L2(R2)

dτ

= ‖A0‖Hs(R2) + sup
T∈[0,T0]

ˆ T

0
‖m0A‖Hs(R2) dτ.
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Employing the Proposition 2.1 and the Corollary 2.2, we arrive at

sup
T∈[0,T0]

‖K [A]‖Hs(R2) ≤ ‖A0‖Hs(R2) + C2
sT

2
0 sup
T∈[0,T0]

‖A‖3Hs(R2)

≤ ‖A0‖Hs(R2) + C2
sT

2
0 δ

3,

for some constant Cs > 0. Choosing δ ≥ 2 ‖A0‖Hs(R2) and T0 ≤ 1√
2Csδ

, the both terms

become less or equal to δ/2 which furnishes (3.27).

Now, we proceed with showing (3.28). We write

m0

(
A(1)

)
= m0

(
A(2)

)
−
(
m0

(
A(2)

)
−m0

(
A(1)

))

and using the triangle inequality, the Banach algebra property of Hs
(
R2
)
and the same

arguments as above, we obtain

sup
T∈[0,T0]

∥∥∥K [A(1)
]
−K

[
A(2)

]∥∥∥
Hs(R2)

≤ sup
T∈[0,T0]

ˆ T

0

∥∥∥m0

(
A(1)

)
A(1) −m0

(
A(2)

)
A(2)

∥∥∥
Hs
dτ

≤ C2
sT

2
0 sup
T∈[0,T0]

[∥∥∥A(2)
∥∥∥
Hs

∥∥∥A(1) −A(2)
∥∥∥
Hs

+
∥∥∥A(1)

∥∥∥
Hs

(∥∥∥A(1)
∥∥∥
Hs

+
∥∥∥A(2)

∥∥∥
Hs

)∥∥∥A(1) −A(2)
∥∥∥
Hs

]
≤ 3C2

sT
2
0 δ

2 sup
T∈[0,T0]

∥∥∥A(1) −A(2)
∥∥∥
Hs(R2)

.

From here, the contraction requirement results in restriction T0 <
1√
3Csδ

.

Combining this with the previous condition, we conclude that the choice

δ > 2 ‖A0‖Hs(R2) , T0 ≤
1√

3Csδ

leads to the existence of unique solution A of the equation (3.23) in the ball (3.26).

Then, expressing ∂TA from the �rst equation of the system, the bootstrapping argument

gives A ∈ C1
(
[0, T0] , H

s−2 (R2
))
.

Remark 3.2. Tracing the proof, it is straightforward to see that the same result holds in the
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presence of inhomogeneous terms in the �rst equation of (3.23) providing these terms belong

to the space C
(
[0, T0] , H

s
(
R2
))
.
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Chapter 4

Rigorous justi�cation analysis

4.1 Near-identity transformations

Smallness of remainder terms U (x, z, t) and N (x, z, t) in the decompositions (1.8)-(1.9)

hinges on smallness of the right-hand side terms in the system of residual equations (1.10)-

(1.11). The right-hand side terms can be made smaller by perfoming appropriate near-

identity transformation.

Let us start with the source term ε6
(
R

(U)
6

)
ω0

in the �rst equation (1.10) and introduce

U1 (x, z, t) := U (x, z, t)− ε4 (F (X,Z, T ))ω0
, (4.1)

where F (X,Z, T ) will be chosen later.

Eliminating U (x, z, t) from (1.10), we obtain

∂2xU1 + ∂2zU1 −
(
1 + ε2m0 +N

)
∂2t U1 = −ε2

(
R̃

(U)
2

)
ω0

N − ε6
(
R̃

(U)
6

)
ω0

− ε8
(
R̃

(U)
8

)
ω0

,

where

R̃
(U)
2 := R

(U)
2 + ε2

(
ω2
0F + 2iω0ε

2∂TF − ε4∂2TF
)
,

R̃
(U)
6 := ∂2XF + 2iω0 (∂ZF + ∂TF ) + ω2

0m0F −
(
∂2TA− ∂2ZA− 2iω0m0∂TA

)
,

R̃
(U)
8 := ∂2ZF − ∂2TF −m0∂

2
TA+ 2iω0m0∂TF − ε2m0∂

2
TF.

From here one can see that the O
(
ε6
)
source term can be eliminated (i.e. R̃

(U)
6 = 0)
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providing that F (X,Z, T ) solves the linear inhomogeneous Schrödinger equation

∂2XF + 2iω0 (∂ZF + ∂TF ) + ω2
0m0F = ∂2TA− ∂2ZA− 2iω0m0∂TA.

Hence, the equation for U1 (x, z, t) has a O
(
ε8
)
source term. Generally, such transfor-

mation can be repeated k times to have a source term of order O
(
ε6+2k

)
.

Now, we proceed with the second equation (1.11) treating it separately. To remove the

O
(
ε4
)
source term, we introduce

N1 := N − ε4
(
A2

2iω0

)
2ω0

(4.2)

and obtain the equation with the O
(
ε6
)
source term

∂tN1 = −ε6
(
A∂TA

iω0

)
2ω0

+ 2ε2 (A)ω0
U + U2.

In a similar fashion, this transformation can be repeated n times to get the O
(
ε4+2n

)
source

term.

We can also improve the second term in (1.11) by performing another type of the near-

identity transformation

N2 := N − 2ε2
(
A

iω0

)
ω0

U, (4.3)

in which case we obtain

∂tN2 = ε4
(
A2
)
2ω0
− 2ε2

(
A

iω0

)
ω0

∂tU − 2ε4
(
∂TA

iω0

)
ω0

U + U2.

Such transformation move the linear term in U to the O
(
ε4
)
order, whereas the O

(
ε2
)

term depends now on ∂tU which norm is expected to be smaller. Note that repetition of this

transformation generally is not e�ective because smallness of a norm of ∂2t U in comparison

with norm of ∂tU is not anticipated.

The last two near-identity transformations (4.2)-(4.3) can be combined in a straight-
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forward way, however putting together near-identity transformations (4.1), (4.2) and (4.3)

should be done more carefully due to intertwining structure of the equations.

For justi�cation analysis, we will need the double transformation (4.2) for the source term

in the N equation, the transformation (4.3) of the linear term, and the single transformation

(4.1) for the source term in the U equation. Due to dependence on N , the transforma-

tion in the U equation should be modi�ed by including third-harmonic term which in turn

changes the equation for N . The resulting near-identity transformation is implemented by

introducing

V := U − ε4 (B)ω0
− ε4 (D)3ω0

, (4.4)

M := N − ε4N0 + 2ε2
(
A

iω0

)
ω0

V + ε4
(
A2

2iω0

)
2ω0

+ ε6R
(M)
6 , (4.5)

where

R
(M)
6 :=

2
(
AB̄ − ĀB

)
iω0

−
(
A∂TA

2ω2
0

− AB + ĀD

iω0

)
2ω0

+

(
AD

2iω0

)
4ω0

.

Here, bar denotes complex conjugation, and B (X,Z, T ), D (X,Z, T ), N0 (X,Z, T ) solve the

following linear inhomogeneous equations

∂2XB + 2iω0 (∂ZB + ∂TB) + ω2
0m0B = ∂2TA− ∂2ZA− 2iω0m0∂TA−

iω0

2
A2Ā, (4.6)

∂2XD + 2iω0 (∂ZD + ∂TD) + ω2
0m0D = − iω0

2
A3, (4.7)

∂TN0 = 2
(
AB̄ + ĀB

)
. (4.8)

As a result of these transformations, the system of residual equations (1.10)-(1.11) transforms

to the system

∂2xV + ∂2zV −
(
1 + ε2m0 +N

)
∂2t V = −ε2ω2

0 (A)ω0
M + 2iω0ε

4 |A|2 V − ε8R(V )
8 , (4.9)

∂tM = ε8R
(M)
8 + 2ε4R

(M)
4 V + 2ε2

(
A

iω0

)
ω0

∂tV + V 2, (4.10)
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where

R
(M)
4 :=

(
∂TA

iω0
+B

)
ω0

+ (D)3ω0
,

R
(M)
8 := −

∂T
(
ĀB −AB̄

)
2iω0

+

(
BD̄ − ∂T (A∂TA)

2ω2
0

+
∂T
(
AB + ĀD

)
iω0

)
2ω0

+

(
BC +

∂T (AD)

2iω0

)
4ω0

,

R
(V )
8 :=

(
iω0

2

[
2 |A|2B +A2B̄ + 7ĀD + 4m0∂TB

]
+
|A|2 ∂TA

2
+A2∂T Ā−m0∂

2
TA+ ∂2

ZB − ∂2
TB

)
ω0

−
(
iω0

2

[
|A|2D +A2B − 12m0∂TD

]
+
A2∂TA

2
− ∂2

ZD + ∂2
TD

)
3ω0

+ 3
(
iω0A

2D
)
5ω0

.

This system of equations is a starting point in our justi�cation analysis.

4.2 Local control of the residual terms

We now proceed with the estimates of the residual terms U (x, z, t), N (x, z, t) in the decom-

positions (1.8)-(1.9) given su�ciently smooth initial data. The amplitudes A and m0 change

on the temporal scale of T = ε2t on [0, T0]. Therefore, the validity of approximation needs

to be justi�ed for all t ∈
[
0, T0/ε

2
]
.

We would like to prove that there are α0, β0 > 0 such that

sup
t∈[0,T0/ε2]

‖U (·, ·, t)‖L2 = O
(
εβ0
)
, (4.11)

sup
t∈[0,T0/ε2]

‖N (·, ·, t)‖L2 = O (εα0) . (4.12)

At the same time, the leading order approximation in the decompositions (1.8)-(1.9) is

estimated to be

sup
t∈[0,T0/ε2]

∥∥ε2 (A)ω0

∥∥
L2 ≤ 2ε2 sup

T∈[0,T0]

(ˆ
R2

∣∣A (εx, ε2z, T )∣∣2 dxdz)1/2

= O
(
ε1/2

)
,

sup
t∈[0,T0/ε2]

∥∥ε2m0

∥∥
L2 = ε2 sup

T∈[0,T0]

(ˆ
R2

∣∣m0

(
εx, ε2z, T

)∣∣2 dxdz)1/2

= O
(
ε1/2

)
.

Therefore, the error terms in the decompositions (1.8)-(1.9) are smaller than the leading
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order terms in L2-norm if α0, β0 >
1
2 .

Note that we are loosing ε3/2 in norm of ε2 (A)ω0
due to integration because A depends

on the slow variables X = εx, Z = ε2z. The same is true when computing L2-norms of the

other terms R
(V )
8 , R

(M)
8 , R

(M)
4 which absolute value depend only on slow variables X, Z.

As before, we will use index notation for partial derivatives and let C denote a generic

positive constant. Also, we will employ subscript notation such as ‖·‖L2
X,Z

, ∇(X,Z) and

∆(X,Z) when necessary to emphasize that a norm or derivatives are computed with respect

to slow variables.

Using the near-identity transformations (4.4) and (4.5), under assumptions B, D, N0 ∈

L2
(
R2
)
, A ∈ L∞

(
R2
)
∩ L2

(
R2
)
, R

(M)
6 ∈ L2

(
R2
)
, we can see that

sup
t∈[0,T0/ε2]

‖U (·, ·, t)‖L2 ≤ sup
t∈[0,T0/ε2]

‖V (·, ·, t)‖L2 + Cε5/2,

sup
t∈[0,T0/ε2]

‖N (·, ·, t)‖L2 ≤ sup
t∈[0,T0/ε2]

‖M (·, ·, t)‖L2 + Cε2 sup
t∈[0,T0/ε2]

‖V (·, ·, t)‖L2 + Cε5/2.

Hence, to have (4.11)-(4.12) with α0, β0 >
1
2 , we need

sup
t∈[0,T0/ε2]

‖V (·, ·, t)‖L2 = O
(
εβ
)
, (4.13)

sup
t∈[0,T0/ε2]

‖M (·, ·, t)‖L2 = O (εα) , (4.14)

with

α, β >
1

2
. (4.15)

4.2.1 First energy level

WhileM (x, z, t) can be controlled directly from the equation (4.10), the estimate of V (x, z, t)

relies on the energy approach used in the Section 3.1. Multiplication of the equation (4.9)
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by Vt (x, z, t) and further integration by parts in (x, z) over R2 lead to

dH1

dt
=

ˆ
R2

(
ε4 |A|2 V 2

t +
1

2
NtV

2
t + ε2ω2

0 (A)ω0
MVt − 2iω0ε

4 |A|2 V Vt + ε8R
(V )
8 Vt

)
dxdz,

(4.16)

where we introduced the �rst energy functional

H1 :=
1

2

ˆ
R2

[(
1 + ε2m0 +N

)
V 2
t + V 2

x + V 2
z

]
dxdz. (4.17)

This yields the estimate

dH1

dt
≤ 2ε4 ‖A‖2L∞ H1 + ‖Nt‖L∞ H1 + 2

√
2ε2ω2

0 ‖A‖L∞ ‖M‖L2 H1/2
1

+ 2
√

2ε4ω0 ‖A‖2L∞ ‖V ‖L2 H1/2
1 +

√
2ε13/2

∥∥∥R(V )
8

∥∥∥
L2
X,Z

H1/2
1 . (4.18)

Let Q1 := H1/2
1 and assume that we can prove

sup
t∈[0,T0/ε2]

Q1 = O
(
εδ1
)
, (4.19)

for some δ1 > 0.

Then, since V |t=0, the Corollary 2.1 implies, for t ∈
[
0, T0/ε

2
]
,

‖V ‖L2 ≤
T0
ε2

sup
t∈[0,T0/ε2]

‖Vt‖L2 ≤
√

2T0
ε2

sup
t∈[0,T0/ε2]

Q1,

and hence supt∈[0,T/ε2] ‖V ‖L2 = O
(
εδ1−2

)
, that is, β = δ1 − 2 in (4.13).

Similarly, by the Proposition 2.3 with σ = 1, we estimate the nonlinear term in (4.10)

‖V ‖2L4 ≤ Cσ ‖V ‖L2 ‖∇V ‖L2 .
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Since M |t=0 = 0, the Corollary 2.1 implies

‖M‖L2 ≤ T0
ε2

sup
t∈[0,T0/ε2]

‖Mt‖L2 ≤ ε9/2T0 sup
t∈[0,T0/ε2]

∥∥∥R(M)
8

∥∥∥
L2
X,Z

+ 2
√

2T0

(
T0 sup

t∈[0,T0/ε2]

∥∥∥R(M)
4

∥∥∥
L∞

+
2

ω0
sup

T∈[0,T0]
‖A‖L∞

)
sup

t∈[0,T0/ε2]
Q1

+ 2CσT
2
0 ε
−4

(
sup

t∈[0,T0/ε2]
Q1

)2

,

and thus supt∈[0,T/ε2] ‖M‖L2 = O
(
ε9/2 + εδ1 + ε2δ1−4

)
, that is, in (4.14),

α = min

{
9

2
, δ1, 2δ1 − 4

}
. (4.20)

To control the energy, we need to bound ‖Nt‖L∞ . This can be done under additional

assumptions that will be veri�ed after.

First of all, from (1.11), we estimate

‖Nt‖L∞ ≤ 2ε4 ‖A‖2L∞ + 4ε2 ‖A‖L∞ ‖U‖L∞ + ‖U‖2L∞ , (4.21)

where ‖U‖L∞ is controlled using (4.4)

‖U‖L∞ ≤ 2ε4 ‖B‖L∞ + 2ε4 ‖D‖L∞ + ‖V ‖L∞ . (4.22)

By the Proposition 2.2, we can bound

‖V ‖L∞ ≤ C ‖V ‖H2 , (4.23)

if we assume the L2-norm of second derivatives of V is controlled by some quantity Q2 to

be introduced later, that is

‖Vxx‖L2 , ‖Vzz‖L2 ≤
√

2Q2, sup
t∈[0,T0/ε2]

Q2 = O
(
εδ2
)
, (4.24)
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for some δ2 > 0, then, we have, for some C0 > 0,

‖V ‖L∞ ≤ C0

[
Q2 + T0ε

−2 sup
t∈[0,T0/ε2]

Q1

]
. (4.25)

As we will see, supt∈[0,T/ε2] ‖V ‖L∞ is always bigger than O
(
ε4
)
, so we certainly have

‖U‖L∞ ≤ ‖V ‖L∞ . Using the last estimate, from (4.21), we can thus obtain

‖Nt‖L∞ ≤ 2ε4 ‖A‖2L∞ + 4C0ε
2 ‖A‖L∞ Q2 + C2

0Q
2
2 (4.26)

+ ε−4C2
0T

2
0

(
sup

t∈[0,T0/ε2]
Q1

)2

+ 2C0T0 sup
t∈[0,T0/ε2]

Q1

(
ε−2C0Q2 + 2 ‖A‖L∞

)
.

These bounds applied to (4.18) yield

dQ1

dt
≤ I1Q1 + J1,

where

I1 := 4ε4

(
sup

T∈[0,T0]
‖A‖L∞

)2

+ 2ε2 sup
T∈[0,T0]

‖A‖L∞ sup
t∈[0,T0/ε2]

Q2 +
C2
0

2

(
sup

t∈[0,T0/ε2]
Q2

)2

+ ε−2C2
0T0 sup

t∈[0,T0/ε2]
Q2 sup

t∈[0,T0/ε2]
Q1 +

C2
0T

2
0

2
ε−4

(
sup

t∈[0,T0/ε2]
Q1

)2

+ 2C0T0 sup
T∈[0,T0]

‖A‖L∞ sup
t∈[0,T0/ε2]

Q1,

J1 :=
√

2ε13/2

(
1

2
sup

t∈[0,T0/ε2]

∥∥∥R(V )
8

∥∥∥
L2
X,Z

+ ω2
0T0 sup

t∈[0,T0/ε2]
‖A‖L∞ sup

t∈[0,T0/ε2]

∥∥∥R(M)
8

∥∥∥
L2
X,Z

)

+ 2ε2ω0T0

(4 +
√

2
)(

sup
T∈[0,T0]

‖A‖L∞

)2

+ 2T0 sup
t∈[0,T0/ε2]

∥∥∥R(M)
4

∥∥∥
L∞

 sup
t∈[0,T0/ε2]

Q1

+ 2
√

2ε−2ω2
0T

2
0Cσ sup

T∈[0,T0]
‖A‖L∞

(
sup

t∈[0,T0/ε2]
Q1

)2

.
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By the Proposition 2.4, we have, for t ∈
[
0, T0/ε

2
]
,

Q1 ≤ T0ε−2J1eI1T0ε
−2
. (4.27)

To prevent divergence of the exponential factor eI1T0ε
−2

as ε→ 0, we impose the condition

min {δ2, 2δ2 − 2, δ2 + δ1 − 4, 2δ1 − 6, δ1 − 2} ≥ 0. (4.28)

Also, we require δ1 > 4 so the quadratic term
(

supt∈[0,T0/ε2]Q1

)2
in T0ε

−2J1 is negligibly

small. On the other hand, the O
(
ε13/2

)
free term in J1 restricts smallness of supt∈[0,T0/ε2]Q1.

Indeed, by (4.27), we have

sup
t∈[0,T0/ε2]

Q1 ≤ eI1T0ε
−2

[
√

2ε9/2T0

(
1

2
sup

t∈[0,T0/ε2]

∥∥∥R(V )
8

∥∥∥
L2
X,Z

+ ω2
0T0 sup

t∈[0,T0/ε2]
‖A‖L∞ sup

t∈[0,T0/ε2]

∥∥∥R(M)
8

∥∥∥
L2
X,Z

)

+ 2ω0T
2
0

(√2 + 4
)(

sup
t∈[0,T0/ε2]

‖A‖L∞

)2

+ 2T0 sup
t∈[0,T0/ε2]

∥∥∥R(M)
4

∥∥∥
L∞

 sup
t∈[0,T0/ε2]

Q1

 ,
which bounds supt∈[0,T0/ε2]Q1 = O

(
ε9/2

)
providing T0 is small enough such that

2ω0T
2
0 e

I1T0ε−2

(√2 + 4
)(

sup
t∈[0,T0/ε2]

‖A‖L∞

)2

+ 2T0 sup
t∈[0,T0/ε2]

∥∥∥R(M)
4

∥∥∥
L∞

 < 1.

Therefore, the conditions (4.20), (4.28) imply that

α = δ1 =
9

2
, β = δ1 − 2 =

5

2
, (4.29)

and we additionally require

δ2 ≥ 1. (4.30)

We will ensure that this constraint on δ2 is satis�ed by continuing next with estimates
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on the second derivatives of V .

4.2.2 Second energy level

Acting on the equation (4.9) with operator Vxt∂x + Vzt∂z + Vtt∂t and integrating in (x, z)

over R2, we introduce the second energy functional that shall be controlled

H2 :=
1

2

ˆ

R2

((
1 + ε2m0 +N

)
V 2
tt +

(
2 + ε2m0 +N

) [
V 2
xt + V 2

zt

]
+ V 2

xx + V 2
zz + 2V 2

xz

)
dxdz.

(4.31)

Long but straightforward computations show that the rate of change of the second energy

functional is given by

dH2

dt
=

9∑
n=1

Kn, (4.32)

where

K1 := ε4
ˆ
R2

|A|2
(
V 2
tt + V 2

tx + V 2
tz

)
dxdz,

K2 := −ε3
ˆ
R2

Vtt

(
Vtx∂Xm0 + εVtz∂Zm0 + 2ε |A|2 Vtt

)
dxdz,

K3 :=
1

2

ˆ
R2

Nt

(
V 2
tx + V 2

tz − V 2
tt

)
dxdz,

K4 :=

ˆ
R2

N [VttxVtx + VttzVtz + Vtt (Vtxx + Vtzz)] dxdz,

K5 := ε2ω2
0

ˆ
R2

(A)ω0
(MxVtx +MzVtz +MtVtt) dxdz,

K6 := ε2ω2
0

ˆ
R2

M
[
ε (AX)ω0

Vtx +
(
(iω0A)ω0

+ ε2 (AZ)ω0

)
Vtz +

(
− (iω0A)ω0

+ ε2 (AT )ω0

)
Vtt
]
dxdz,

K7 := −2iε5ω0

ˆ
R2

V
(
Vtx∂X |A|2 + εVtz∂Z |A|2 + εVtt∂T |A|2

)
dxdz,

K8 := −2iε4ω0

ˆ
R2

|A|2 (VtxVx + VtzVz + VttVt) dxdz,

K9 := ε8
ˆ
R2

(
εVtx∂XR

(V )
8 + Vtz∂zR

(V )
8 + Vtt∂tR

(V )
8

)
dxdz.
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Let Q2 := H1/2
2 , and we want to ensure that

sup
t∈[T0/ε2]

Q2 = O
(
εδ2
)
, (4.33)

for some δ2 ≥ 1 according to (4.30).

We estimate the terms in (4.32) as follows

|K1| ≤ 2ε4 ‖A‖2L∞ H2,

|K2| ≤ 4ε3
(∥∥∇(X,Z)m0

∥∥
L∞

+ ε ‖A‖2L∞
)
H2,

|K3| ≤ ‖Nt‖L∞ H2,

|K4| ≤ ‖N‖L∞ (‖Vttx‖L2 + ‖Vttz‖L2 + ‖Vxxt‖L2 + ‖Vzzt‖L2)H1/2
2 ,

|K5| ≤ 2
√

2ε2ω2
0 ‖A‖L∞ (2 ‖∇M‖L2 + ‖Mt‖L2)H1/2

2 ,

|K6| ≤ 2
√

2ε2ω2
0 ‖M‖L2

(
ε ‖AX‖L∞ + ε2 ‖AZ‖L∞ + ε2 ‖AT ‖L∞ + 2ω0 ‖A‖L∞

)
H1/2

2 ,

|K7| ≤ 4ε5ω0 ‖A‖L∞ ‖V ‖L2 (‖AX‖L∞ + ε ‖AZ‖L∞ + ε ‖AT ‖L∞)H1/2
2 ,

|K8| ≤ 12ε4ω0 ‖A‖2L∞ H
1/2
1 H

1/2
2 ,

|K9| ≤
√

2ε13/2
(
ε
∥∥∥∂XR(V )

8

∥∥∥
L2
X,Z

+
∥∥∥∂zR(V )

8

∥∥∥
L2
X,Z

+
∥∥∥∂tR(V )

8

∥∥∥
L2
X,Z

)
H1/2

2 .

To proceed further, we shall use the bounds

sup
T∈[0,T0]

∥∥∇(X,Z)m0

∥∥
L∞

≤ T0 sup
T∈[0,T0]

∥∥∇(X,Z)∂Tm0

∥∥
L∞

≤ 4T0 sup
T∈[0,T0]

‖A‖L∞ sup
T∈[0,T0]

∥∥∇(X,Z)A
∥∥
L∞

,

sup
t∈[0,T0/ε2]

‖∇M‖L2 ≤ 2
√

2T0

[
T0 sup

t∈[0,T0/ε2]

∥∥∥∇R(M)
4

∥∥∥
L∞

+ C0T0ε
−4 sup

t∈[0,T0/ε2]
Q1

+ C0ε
−2 sup

t∈[0,T0/ε2]
Q2

]
sup

t∈[0,T0/ε2]
Q1

+
4
√

2T0
ω0

sup
T∈[0,T0]

∥∥∇(X,Z)A
∥∥
L∞

sup
t∈[0,T0/ε2]

Q2, (4.34)
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where we dropped terms which are of higher order of smallness under assumptions ∇R(M)
8 ∈

L2
(
R2
)
, R

(M)
4 ∈ L∞

(
R2
)
, ∇A ∈ L∞

(
R2
)
.

In order to control ‖N‖L∞ , we can use (4.26) and the Proposition 2.1

‖N‖L∞ ≤ ε
−2T0 sup

t∈[0,T0/ε2]
‖Nt‖L∞ .

Additionally, to estimate the K4 term, we need to bound the third derivatives Vttx, Vttz,

Vxxt, Vzzt, which L
2-norms are controlled in terms of the energy H3 that will be introduced

further, that is

‖Vttx‖L2 , ‖Vttz‖L2 , ‖Vxxt‖L2 , ‖Vzzt‖L2 ≤
√

2H1/2
3 , sup

t∈[0,T0/ε2]
H1/2

3 = O
(
εδ3
)
, (4.35)

for some δ3 > 0.

Then,

|K4| ≤ 2T0

2ε2

(
sup

T∈[0,T0]
‖A‖L∞

)2

+ 4C0 sup
T∈[0,T0]

‖A‖L∞ sup
t∈[0,T0/ε2]

Q2

+ ε−2C2
0

(
sup

t∈[0,T0/ε2]
Q2

)2

+ ε−6C0T
2
0

(
sup

t∈[0,T0/ε2]
Q1

)2

+ 2C2
0T0ε

−4 sup
t∈[0,T0/ε2]

Q1 sup
t∈[0,T0/ε2]

Q2

+ 4C0T0ε
−2 sup

t∈[0,T0/ε2]
Q1 sup

T∈[0,T0]
‖A‖L∞

]
H1/2

3 Q2.

Details for otherK-terms in (4.32) can be elaborated using the bounds above. Neglecting

source terms in K9 in comparison with other terms, we obtain

dQ2

dt
≤ I2Q2 + J2, (4.36)

where

I2 := 4ε3T0 sup
T∈[0,T0]

‖A‖L∞ sup
T∈[0,T0]

‖∇A‖L∞ + 2ε2C0 sup
T∈[0,T0]

‖A‖L∞ sup
t∈[0,T0/ε2]

Q2
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+
C2
0

2

(
sup

t∈[0,T0/ε2]
Q2

)2

+
ε−4C2

0T
2
0

2

(
sup

t∈[0,T0/ε2]
Q1

)2

+ 2ε−2C0T0 sup
T∈[0,T0]

‖A‖L∞ sup
t∈[0,T0/ε2]

Q1

+ ε−4C2
0T0 sup

t∈[0,T0/ε2]
Q1 sup

t∈[0,T0/ε2]
Q2,

J2 := T0 sup
t∈[0,T0/ε2]

H1/2
3

2ε2

(
sup

T∈[0,T0]
‖A‖L∞

)2

+ 4C0 sup
T∈[0,T0]

‖A‖L∞ sup
t∈[0,T0/ε2]

Q2

+ ε−2C2
0

(
sup

t∈[0,T0/ε2]
Q2

)2

+ ε−6C0T
2
0

(
sup

t∈[0,T0/ε2]
Q1

)2

+ 2ε−4C2
0T0 sup

t∈[0,T0/ε2]
Q1 sup

t∈[0,T0/ε2]
Q2

+ 4ε−2C0T0 sup
T∈[0,T0]

‖A‖L∞ sup
t∈[0,T0/ε2]

Q1

]

+ 4ω2
0T0 sup

T∈[0,T0]
‖A‖L∞

[
2 sup
T∈[0,T0]

‖A‖L∞ sup
t∈[0,T0/ε2]

Q1

+
√

2C0 sup
t∈[0,T0/ε2]

Q1 sup
t∈[0,T0/ε2]

Q2 + ε−2
T0√

2
(2C0 + Cσω0)

(
sup

t∈[0,T0/ε2]
Q1

)2

+
2

ω0
ε2 sup
T∈[0,T0]

‖A‖L∞ sup
t∈[0,T0/ε2]

Q2

]
.

The Proposition 2.4 applied to (4.36) gives

Q2 ≤ T0ε−2J2eI2T0ε
−2
.

To bound the exponential factor, we require I2ε
−2 to be �nite, that is

min {δ2, 2δ2 − 2, 2δ1 − 6, δ1 + δ2 − 6, δ1 − 4} ≥ 0, (4.37)

which is further reduced to the condition

δ2 ≥ 6− δ1. (4.38)
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Then, we obtain supt∈[0,T0/ε2]Q2 = O
(
ε5/2

)
, that is,

δ2 =
5

2
. (4.39)

To bound terms in J2ε
−2, we require

min {δ1 + δ2 − 2, 2δ1 − 4, δ1 − 2} ≥ δ2, (4.40)

min {δ3, δ2 + δ3 − 2, 2δ1 + δ3 − 8, δ1 + δ2 + δ3 − 6, δ1 + δ3 − 4} ≥ δ2, (4.41)

2δ2 + δ3 − 4 > δ2, (4.42)

and T0 to be su�ciently small such that

4ω0T
2
0 e

I2T0ε−2

2

(
sup

T∈[0,T0]
‖A‖L∞

)2

+
√

2ε−2C0ω0 sup
T∈[0,T0]

‖A‖L∞ sup
t∈[0,T0/ε2]

Q1

 < 1.

Taking into account (4.29) and (4.40)-(4.42), we �nd a constraint on δ3

δ3 ≥ δ2. (4.43)

Now, we proceed on the next energy level to verify (4.43) and �nalize justi�cation esti-

mates.

4.2.3 Third energy level

To get the next energy level estimates, we consider the operator Vxxt∂
2
x + Vzzt∂

2
z + Vttt∂

2
t

acting on (4.9), which is followed by integration in (x, z) over R2.

Following the same steps as before, we introduce the third energy functional

H3 :=
1

2

ˆ

R2

((
1 + ε2m0 +N

) (
V 2
xxt + V 2

zzt + V 2
ttt

)
+

1

2

(
V 2
xxx + V 2

zzz

)
+ V 2

xxz + V 2
xzz
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+
1

2
[Vxxx − 2NxVtt]

2 +
1

2
[Vzzz − 2NzVtt]

2

)
dxdz (4.44)

such that (4.9) yields

dH3

dt
=

15∑
n=1

Ln, (4.45)

where

L1 := ε4
ˆ
R2

|A|2
(
V 2
xxt + V 2

zzt − V 2
ttt

)
dxdz,

L2 :=
1

2

ˆ
R2

Nt

(
V 2
xxt + V 2

zzt − 3V 2
ttt

)
dxdz,

L3 := −ε4
ˆ
R2

Vtt

(
Vxxt∂

2
Xm0 + ε2Vzzt∂

2
Zm0 + ε2Vttt∂T |A|2

)
dxdz,

L4 := −2ε3
ˆ
R2

(VxxtVxtt∂Xm0 + εVzztVztt∂Zm0) dxdz,

L5 := −
ˆ
R2

[
Nx

(
2VxxtVxtt + VxxxVttt − V 2

xtt

)
+Nz

(
2VzztVztt + VzzzVttt − V 2

ztt

)]
dxdz,

L6 :=

ˆ
R2

[
Vtt (NxtVxxx +NztVzzz) + V 2

tt (Ntt + 2NxNxt + 2NzNzt)
]
dxdz,

L7 := 2

ˆ
R2

VttVttt
(
N2
x +N2

z

)
dxdz,

L8 := ε2ω2
0

ˆ
R2

(A)ω0
(MxxVxxt +MzzVzzt +MttVttt) dxdz,

L9 := 2ε3
ˆ
R2

(
iω3

0A
)
ω0

(MzVzzz −MtVttt) dxdz,

L10 := 2ε2ω2
0

ˆ
R2

(
(AX)ω0

MxVxxt + ε (AZ)ω0
MzVzzt + ε (AT )ω0

MtVttt
)
dxdz,

L11 := ε4ω2
0

ˆ
R2

M
(
(AXX)ω0

Vxxt + ε2 (AZZ)ω0
Vzzt + ε2 (ATT )ω0

Vttt
)
dxdz,

L12 := −2iε6ω0

ˆ
R2

V
(
Vxxt∂

2
X |A|

2 + ε2Vzzt∂
2
Z |A|

2 + ε2Vttt∂
2
T |A|

2
)
dxdz,

L13 := −4iε5ω0

ˆ
R2

(
VxVxxt∂X |A|2 + εVzVzzt∂Z |A|2 + εVtVttt∂T |A|2

)
dxdz,

L14 := −2iε4ω0

ˆ
R2

|A|2 (VxxVxxt + VzzVzzt + VttVttt) dxdz,

L15 := ε8
ˆ
R2

(
ε2Vxxt∂

2
XR

(V )
8 + Vzzt∂

2
zR

(V )
8 + Vttt∂

2
tR

(V )
8

)
dxdz.
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We shall estimate these terms in the following manner

|L1| ≤ 2ε4 ‖A‖2L∞ H3,

|L2| ≤ ‖Nt‖L∞ H3,

|L3| ≤ 2ε4
(∥∥∂2Xm0

∥∥
L∞

+ ε2
∥∥∂2Zm0

∥∥
L∞

+ 2ε2 ‖A‖L∞ ‖AT ‖L∞
)
H3,

|L4| ≤ 4ε3 (‖∂Xm0‖L∞ + ε ‖∂Zm0‖L∞)H3,

|L5| ≤ 12 ‖∇N‖L∞ H3,

|L6| ≤ 4 ‖∇Nt‖L∞ H
1/2
2 H

1/2
3 + 2 (‖Ntt‖L∞ + 8 ‖∇N‖L∞ ‖∇Nt‖L∞)H2,

|L7| ≤ 16 ‖∇N‖2L∞ H
1/2
2 H

1/2
3 ,

|L8| ≤ 2
√

2ε2ω2
0 ‖A‖L∞ (‖∆M‖L2 + ‖Mtt‖L2)H1/2

3 ,

|L9| ≤ 4
√

2ε3ω3
0 ‖A‖L∞ (‖∇M‖L2 + ‖Mt‖L2)H1/2

3 ,

|L10| ≤ 4
√

2ε2ω2
0 [(‖AX‖L∞ + ε ‖AZ‖L∞) ‖∇M‖L2 + ε ‖AT ‖L∞ ‖Mt‖L2 ]H1/2

3 ,

|L11| ≤ 2
√

2ε4ω2
0

(
‖AXX‖L∞ + ε2 ‖AZZ‖L∞ + ε2 ‖ATT ‖L∞

)
H1/2

3 ,

|L12| ≤ 4
√

2ε6ω0 ‖V ‖L2

(
‖A‖L∞

[
‖AXX‖L∞ + ε2 ‖AZZ‖L∞ + ε2 ‖ATT ‖L∞

]
+ ‖AX‖2L∞ + ε2 ‖AZ‖2L∞ + ε2 ‖AT ‖2L∞

)
H1/2

3 ,

|L13| ≤ 32ε5ω0 ‖A‖L∞ (‖AX‖L∞ + ε ‖AZ‖L∞ + ε ‖AT ‖L∞)H1/2
1 H

1/2
3 ,

|L14| ≤ 12ε4ω0 ‖A‖2L∞ H
1/2
2 H

1/2
3 ,

|L15| ≤
√

2ε13/2
(
ε2
∥∥∥∂2XR(V )

8

∥∥∥
L2

+
∥∥∥∂2zR(V )

8

∥∥∥
L2

+
∥∥∥∂2tR(V )

8

∥∥∥
L2

)
H1/2

3 .

At this energy level there will be no restriction on upper bound of time-interval, therefore

we do not necessarily need to keep track of particular expressions of all the L-terms estimates,

instead we will be looking at their order of smallness only.

To control the right-hand side of (4.45), we need (4.34). Also, we use the Corollary 2.1

and the Propositions 2.2 and 2.3 to obtain the following estimates

sup
t∈[0,T0/ε2]

‖∇N‖L∞ ≤ 2T0ε
−2 sup

t∈[0,T0/ε2]

[
ε4 ‖A‖2L∞ + 2ε2 ‖A‖L∞ ‖U‖L∞ + ‖∇U‖2L∞ + ‖U‖L∞ ‖∇U‖L∞

]
,
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sup
t∈[0,T0/ε2]

‖∆M‖L2 ≤ T0ε
−2 sup

t∈[0,T0/ε2]

[
ε13/2

∥∥∥∆R
(M)
8

∥∥∥
L2

X,Z

+ 2ε4
∥∥∥∆R

(M)
4

∥∥∥
L∞
‖V ‖L2

+ 2ε4
∥∥∥R(M)

4

∥∥∥
L∞
‖∆V ‖L2 + 4ε2ω0 ‖A‖L∞ ‖Vt‖L2 + 4

ε2

ω0
‖A‖L∞ ‖∆Vt‖L2

+ 2 ‖V ‖L∞ ‖∆V ‖L2 + 2Cσ ‖∇V ‖L2 ‖∆V ‖L2

]
,

sup
t∈[0,T0/ε2]

‖Mtt‖L2 ≤ ε13/2 sup
t∈[0,T0/ε2]

∥∥∥∆R
(M)
8

∥∥∥
L2

X,Z

+ 2ε4 sup
t∈[0,T0/ε2]

∥∥∥R(M)
4

∥∥∥
L∞

sup
t∈[0,T0/ε2]

‖∂tV ‖L2

+ 2ε4 sup
t∈[0,T0/ε2]

∥∥∥∂tR(M)
4

∥∥∥
L∞

sup
t∈[0,T0/ε2]

‖V ‖L2 + 4ε2 sup
T∈[0,T0]

‖A‖L∞ sup
t∈[0,T0/ε2]

‖Vt‖L2

+ 4
ε2

ω0
sup

t∈[0,T0/ε2]
‖A‖L∞ sup

t∈[0,T0/ε2]
‖Vtt‖L2 + 2 sup

t∈[0,T0/ε2]
‖V ‖L∞ sup

t∈[0,T0/ε2]
‖Vt‖L2 ,

sup
t∈[0,T0/ε2]

‖∇Nt‖L∞ ≤ 4ε4ω0

(
sup

T∈[0,T0]

‖A‖L∞

)2

+ 4ε2ω0 sup
T∈[0,T0]

‖A‖L∞ sup
t∈[0,T0/ε2]

‖U‖L∞

+ 4ε2 sup
T∈[0,T0]

‖A‖L∞ sup
t∈[0,T0/ε2]

‖∇U‖L∞ + 2 sup
t∈[0,T0/ε2]

‖∇U‖L∞ sup
t∈[0,T0/ε2]

‖U‖L∞ ,

sup
t∈[0,T0/ε2]

‖Ntt‖L∞ ≤ 4ε4ω0

(
sup

T∈[0,T0]

‖A‖L∞

)2

+ 4ε2ω0 sup
T∈[0,T0]

‖A‖L∞ sup
t∈[0,T0/ε2]

‖U‖L∞

+ 4ε2 sup
T∈[0,T0]

‖A‖L∞ sup
t∈[0,T0/ε2]

‖∇U‖L∞ + 2 sup
t∈[0,T0/ε2]

‖∇U‖L∞ sup
t∈[0,T0/ε2]

‖U‖L∞ ,

sup
T∈[0,T0]

∥∥∆(X,Z)m0

∥∥
L∞ ≤ 4T0

[(
sup

T∈[0,T0]

‖∇A‖L∞

)2

+ sup
T∈[0,T0]

‖A‖L∞ sup
T∈[0,T0]

‖∆A‖L∞

]
,

where smaller terms are neglected under assumption ∆A, ∇A, ∂TA ∈ L∞
(
R2
)
.

Taking into account (4.29), (4.39)-(4.43), we can drop a priori smaller terms and hence

obtain

dH3

dt
≤ 24T0 sup

T∈[0,T0]
‖A‖L∞

[
ε2 sup
T∈[0,T0]

‖A‖L∞ + 2 sup
t∈[0,T0/ε2]

Q2

]
H3

+ 8ω0T0 sup
T∈[0,T0]

‖A‖L∞

[
ε−2C0ω0T0 sup

t∈[0,T0/ε2]
Q1 sup

t∈[0,T0/ε2]
Q2

+ C0ω0

(
sup

t∈[0,T0/ε2]
Q2

)2

+ 4ε2 sup
T∈[0,T0]

‖∇A‖L∞ sup
t∈[0,T0/ε2]

Q2

H1/2
3
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+ 8ε2ω0 sup
T∈[0,T0]

‖A‖L∞

(
sup

t∈[0,T0/ε2]
Q2

)2(
ε2 sup
T∈[0,T0]

‖A‖L∞

+ C0 sup
t∈[0,T0/ε2]

Q2

)
. (4.46)

We set Q3 := H1/2
3 and neglect the free term assuming

min {4 + 2δ2, 2 + 3δ2} > 2δ3 + δ2. (4.47)

Then,

dQ3

dt
≤ I3Q3 + J3, (4.48)

where

I3 := 12T0 sup
T∈[0,T0]

‖A‖L∞

[
ε2 sup
T∈[0,T0]

‖A‖L∞ + 2 sup
t∈[0,T0/ε2]

Q2

]
,

J3 := 4ω0T0 sup
T∈[0,T0]

‖A‖L∞

[
ε−2C0ω0T0 sup

t∈[0,T0/ε2]
Q1 sup

t∈[0,T0/ε2]
Q2

+ C0ω0

(
sup

t∈[0,T0/ε2]
Q2

)2

+ 4ε2 sup
T∈[0,T0]

‖∇A‖L∞ sup
t∈[0,T0/ε2]

Q2

 .
By the Proposition 2.4,

sup
t∈[0,T0/ε2]

Q3 ≤ 4ε−2ω2
0T

2
0 e

I3T0ε−2
sup

T∈[0,T0]
‖A‖L∞

[
ε−2C0T0 sup

t∈[0,T0/ε2]
Q1 sup

t∈[0,T0/ε2]
Q2

+ C0

(
sup

t∈[0,T0/ε2]
Q2

)2

+ 4ε2 sup
T∈[0,T0]

‖∇A‖L∞ sup
t∈[0,T0/ε2]

Q2

 ,
Taking into account (4.29), (4.39)-(4.43), from here, we deduce that

δ3 ≤ min {δ1 + δ2 − 4, 2δ2 − 2, δ2} .
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Because δ1 = 9
2 and δ2 = 5

2 , we obtain

δ3 =
5

2
, (4.49)

which is compatible with the condition δ3 <
13
4 implied by (4.47).

Hence the third energy level is controlled and we close all the assumptions.

4.2.4 Proof of the Theorem 1.1

According to (4.29),(4.39), (4.49), we have the following estimates

sup
t∈[0,T0/ε2]

‖V ‖L2 = O
(
ε5/2

)
, sup

t∈[0,T0/ε2]
‖∇V ‖L2 = O

(
ε9/2

)
, (4.50)

sup
t∈[0,T0/ε2]

‖∆V ‖L2 = O
(
ε5/2

)
, sup

t∈[0,T0/ε2]
‖∇∆V ‖L2 = O

(
ε5/2

)
, (4.51)

sup
t∈[0,T0/ε2]

‖M‖L2 = O
(
ε9/2

)
, sup
t∈[0,T0/ε2]

‖∇M‖L2 = sup
t∈[0,T0/ε2]

‖∆M‖L2 = O
(
ε5/2

)
. (4.52)

Due to (4.11)-(4.12), this leads to the main �nal estimates in our justi�cation analysis

sup
t∈[0,T0/ε2]

∥∥E − ε2 (A)ω0

∥∥
H3(R2)

= O
(
ε5/2

)
, (4.53)

sup
t∈[0,T0/ε2]

∥∥m− ε2m0

∥∥
H2(R2)

= O
(
ε5/2

)
. (4.54)

Note that controllability of the right-hand sides of inequalities (4.27), (4.36), (4.48) is

also due to zero initial conditions

H1

∣∣∣
t=0

= H2

∣∣∣
t=0

= H3

∣∣∣
t=0

= 0,

which hold because of exact match of initial data for approximated and true solutions.

Also, in the estimates throughout this section (in particular, those involving R
(V )
8 , R

(M)
8 ,

R
(M)
6 , R

(M)
4 ) we assumed smoothness of A (X,Z, T ), B (X,Z, T ), D (X,Z, T ). This, how-
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ever, follows from the Theorem 3.2 and Remark 3.2 providing the initial data A0 (X,Z) is

su�ciently smooth. Indeed, the most stringent requirements come from the estimates per-

formed on the third energy level where we imposed conditions ∂2XA, ∂
2
ZA, ∂

2
TA ∈ L∞

(
R2
)

for all T ∈ [0, T0] and ∂
2
XR

(V )
8 , ∂2ZR

(V )
8 , ∂2TR

(V )
8 ∈ L2

(
R2
)
for all t ∈

[
0, T0/ε

2
]
. Expressing

T -derivatives from the equations (3.23), (4.6)-(4.7) and di�erentiating one more time with

respect to T , we have to require A0 ∈ H6
(
R2
)
from the L∞-restriction, and A0 ∈ H8

(
R2
)

from the ∂2TR
(V )
8 ∈ L2

(
R2
)
condition.

We have already obtained a bound for supt∈[0,T0/ε2] ‖U‖L∞ when performing estimates

on the �rst energy level. Similarly, applying the Proposition 2.2 to the derivatives of (4.4)

and using (4.50)-(4.51), we control

sup
t∈[0,T0/ε2]

‖U‖L∞ = sup
t∈[0,T0/ε2]

‖∇U‖L∞ = sup
t∈[0,T0/ε2]

‖Ut‖L∞ = O
(
ε5/2

)
. (4.55)

This allows to apply the Theorem 3.1 to extend validity of local solution E up to time t0 =

T0/ε
2, and the estimates (4.53)-(4.54) furnish the justi�cation of the NLS approximation.

The proof of the Theorem 1.1 is now complete.
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Chapter 5

Numerical results

5.1 One-dimensional model

In this chapter, we illustrate our main results by numerical simulations. To simplify the setup

for numerical work, we assume that all solutions are x-independent. This corresponds to

the modulated pulse propagating in the z-direction which is uniform in the (x, y)-directions.

Equations for the x-independent residual terms (1.10)-(1.11) become

∂2zU −
(
1 + ε2m0 +N

)
∂2t U = −ε2

(
R

(U)
2

)
ω0

N − ε6
(
R

(U)
6

)
ω0

, (5.1)

∂tN = ε4
(
A2
)
2ω0

+ 2ε2 (A)ω0
U + U2, (5.2)

subject to the zero initial conditions U |t=0 = 0, ∂tU |t=0 = 0, N |t=0 = 0.

Note that R
(U)
2 and R

(U)
6 are the same as de�ned in (1.12)-(1.13), whereas A (Z, T ) and

m0 (Z, T ) solve the system (1.5)-(1.6) which becomes

∂ZA+ ∂TA =
iω0

2
m0A, (5.3)

∂Tm0 = 2 |A|2 , (5.4)

subject to the initial conditions A (Z, 0) = A0 (Z), m0 (Z, 0) = 0.

The system (5.3)-(5.4) can be solved analytically by the method of characteristics.

Let Z = z (s) = s + z0, T = t (s) = s and denote A (s; z0) := A (s+ z0, s),M (s; z0) :=

m0 (s+ z0, s).
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Integrating the second equation, we have

m0 (Z, T ) = 2

ˆ T

0
|A (Z, τ)|2 dτ,

and hence

M (s; z0) = 2

ˆ s

0
|A (s+ z0, τ)|2 dτ = 2

ˆ s

0
|A (τ ; z0 − τ + s)|2 dτ.

The �rst equation, then, becomes

d

ds
logA (s; z0) = iω0

ˆ s

0
|A (τ ; z0 − τ + s)|2 dτ.

Using polar decomposition A (s; z0) = R (s; z0) exp (iθ (s; z0)), we obtain

R (s; z0) = R (0; z0) ,

and

θ (s; z0) = θ (0; z0) + ω0

ˆ s

0

(ˆ λ

0
|A0 (z0 + λ− τ)|2 dτ

)
dλ.

Finally, eliminating parameters z0 = Z − T , s = T , we conclude

A (Z, T ) = A0 (Z − T ) exp

[
iω0

ˆ T

0

(ˆ Z−T+λ

Z−T
|A0 (s)|2 ds

)
dλ

]
, (5.5)

m0 (Z, T ) = 2

ˆ Z

Z−T
|A0 (s)|2 ds. (5.6)

5.2 Numerical set-up

We choose initial pro�le A0 (Z) = sech (Z). Then, according to (5.5)-(5.6),

A (Z, T ) = sech (Z − T ) exp

[
iω0

(
log

(
coshZ

cosh (Z − T )

)
− T tanh (Z − T )

)]
, (5.7)
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m0 (Z, T ) = 2 (tanhZ − tanh (Z − T )) . (5.8)

With the following notation

a := 1 + ε2m0,

b := ε2
[
eiω0(z−t) (ω2

0A+ 2iω0ε
2∂TA− ε4∂2TA

)
+ c.c.

]
,

c := ε6
[
eiω0(z−t) (∂2ZA− (1 + ε2m0

)
∂2TA+ 2iω0m0∂TA

)
+ c.c.

]
,

d := 2ε2
(
Aeiω0(z−t) + c.c.

)
,

e := ε4
(
A2e2iω0(z−t) + c.c.

)
.

the equations to be solved are

∂2t U =
1

a+N
∂2zU +

bN + c

a+N
, (5.9)

∂tN = U2 + dU + e. (5.10)

Discretizing the computational domain, we denote the value of X at the spatial point i

and the j-th time step by X
(j)
i .

We employ the two-step explicit Adams-Bashforth method for the equation (5.10) yield-

ing

N
(j+1)
i = N

(j)
i +

3

2
∆t

[(
U

(j)
i

)2
+ d

(j)
i U

(j)
i + e

(j)
i

]
−1

2
∆t

[(
U

(j−1)
i

)2
+ d

(j−1)
i U

(j−1)
i + e

(j−1)
i

]
,

that is followed by application of the Crank-Nicholson type of scheme to solve the equation

(5.9)

U
(j+1)
i − 2U

(j)
i + U

(j−1)
i

(∆t)2
=

1

2
(
a
(j+1)
i +N

(j+1)
i

) (U (j+1)
i+1 − 2U

(j+1)
i + U

(j+1)
i−1

(∆z)2
+ b

(j+1)
i N

(j+1)
i + c

(j+1)
i

)

+
1

2
(
a
(j−1)
i +N

(j−1)
i

) (U (j−1)
i+1 − 2U

(j−1)
i + U

(j−1)
i−1

(∆z)2
+ b

(j−1)
i N

(j−1)
i + c

(j−1)
i

)
.

Both methods have the second-order accuracy in both space and time. Initial conditions
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for U and N are approximated respectively using central di�erences scheme and Heun's

predictor-corrector method:

U
(0)
i = U

(1)
i = 0,

N
(0)
i = 0, N

(1)
i =

∆t

2

(
e
(0)
i + e

(1)
i

)
.

If the initial pulse starts at the center of the computational domain, by taking size of the

domain large enough for the time of interest, we can assume zero boundary conditions for

U at the ends of the interval in z.

5.3 Simulation results

The numerical simulation was performed for ε = 0.3.

The Figures (1)-(12) present pro�les of U and N versus z for various instances of t. We

can observe the pulse grows in amplitude and broadens in width.

The Figures (13)-(16) show changes of the H3- and L∞-norms of the error terms U and

N . The size of the error terms oscillates and slowly grows.

Repeating the simulation for di�erent small values of the parameter ε, we obtain the

data given in the Table 5.1. This allows us to estimate exponents in the power laws for the

norms of the solution

sup
t∈[0,1]

‖U‖H3(R) = O
(
εα̂
)
, sup

t∈[0,1]
‖N‖H2(R) = O

(
εβ̂
)
,

sup
t∈[0,1]

‖U‖L∞(R) = O
(
εγ̂
)
, sup

t∈[0,1]
‖N‖L∞(R) = O

(
εδ̂
)
.

We can conclude from the Table 5.1 that α̂ ≈ 5, β̂ ≈ 3, γ̂ ≈ 6, δ̂ ≈ 4. This is in agreement

with the results (4.53)-(4.54).

We note that the formal expansions (1.8) and (1.9) would suggest γ̂ = δ̂ = 4, and the

latter bound agrees with the numerical value δ̂ ≈ 4. The former bound is bigger than

the actual numerical value γ̂ ≈ 6 which may be due to some cancellations of error in our
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numerical simulations.

ε 0.40 0.30 0.20 0.15

‖U‖H3(R) 6.86 · 10−2 1.67 · 10−2 9.50 · 10−5 2.26 · 10−5

α̂ 4.9113 4.9972

‖N‖H2(R) 41.09 · 10−2 17.09 · 10−2 3.25 · 10−2 1.37 · 10−2

β̂ 3.0494 3.0028

‖U‖L∞(R) 12.9 · 10−3 2.40 · 10−3 26.08 · 10−6 4.66 · 10−6

γ̂ 5.8459 5.9879

‖N‖L∞(R) 5.13 · 10−2 1.61 · 10−2 27.00 · 10−4 8.63 · 10−4

δ̂ 4.0283 3.9648

Table 5.1: Supremum of the solution norms over the time interval
[
0, 1/ε2

]
.
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APPENDIX

Global justi�cation for the linear system

Here, we demonstrate that the spatial Schrödinger equation used in the previous publications

[8, 16] can be justi�ed globally in the linear case, that is, when the squared refractive index

n2 = 1 is constant.

Due to the linearity of the problem, we can use separation of variables. In particular, we

factor out time-dependence multiplier e−iω0t and, hence, work with the Helmholtz equation

∂2xE + ∂2zE + ω2
0E = 0, x ∈ R, z ∈ R+, (A.1)

subject to the given boundary condition E|z=0 =: E0 (x) = A0 (εx) with small parameter

ε > 0.

The leading order approximation by the multiple-scale method reads

Ems (x, z) = eiω0zA (X,Z) , (A.2)

where X := εx, Z := ε2z, and A (X,Z) is governed by the linear Schrödinger equation

∂2XA+ 2iω0∂ZA = 0, X ∈ R, Z ∈ R+ (A.3)

with the boundary condition A|Z=0 = A0 (X) .

To estimate the validity of such approximation, we will take advantage of the fact that

both the Helmholtz and the Schrödinger equations are exactly solvable with the Fourier

transform. Once the solutions are found, it remains to compare them in the whole range of

z.
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Theorem A.1. For any s > 1/2, let A0 ∈ Hs (R), ε > 0. Then, if E solves (A.1), and Ems

is as de�ned by (A.2)-(A.3), the following estimate holds

sup
z∈[0,Z0/ε2]

‖E − Ems‖L∞(R) = O
(
ε
2(2s−1)
2s+7

)
. (A.4)

Moreover, under additional assumptions on the Fourier transform of the boundary data,

Ã0 ∈ L∞ (R), Ã′0 ∈ L1 (R), we have

sup
z∈R+

‖E − Ems‖L∞(R) = O
(
ε
2(2s−1)
6s+5

)
. (A.5)

Proof. Using Fourier transform in the slow variable X, we write the solution to (A.3) in the

form

A (X,Z) =

ˆ
R
Ã0 (k) exp

[
−ikX − i k

2

2ω0
Z

]
dk,

where

Ã0 (k) :=
1

2π

ˆ
R
A0 (X) eikXdX.

Similarly, taking into account radiation (when ξ < ω0) and an exponential decay (when

ξ > ω0) conditions as z →∞, the solution to the equation (A.1) is obtained in the form

E (x, z) =

ˆ
R
Ê0 (ξ) exp

[
−iξx+ i

√
ω2
0 − ξ2z

]
dξ,

where

Ê0 (ξ) :=
1

2π

ˆ
R
E0 (x) eiξxdx = ε−1Ã0

(
ε−1ξ

)
.

By the duality x↔ ξ, X ↔ k, we have k = ξ/ε.

Using (A.2), we introduce the error term (E − Ems) that shall be controlled in L∞-norm

E − Ems =

ˆ
R
Ê0 (ξ) e−iξx

(
exp

[
−iω0z + i

√
ω2
0 − ξ2z

]
− exp

[
−i ξ

2z

2ω0

])
dξ.

We proceed in two steps. First, we control ‖E − Ems‖L∞ for extended range 0 ≤ z ≤ Z0
ε2+µ
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for µ > 0, whereas the case µ = 0 will correspond to the local justi�cation result (A.4). Then,

for λ > 0, we control ‖E − Ems‖L∞ for z ≥ Z0

ε2+λ
as well. Choosing the exponents µ and

λ such that the both ranges overlap, that is µ ≥ λ, we will deduce the global justi�cation

result (A.5).

In the estimates below, C denotes a positive generic constant which value can change

from line to line.

Let us �x some δ ∈ (0, 1), µ > 0 and estimate

sup
0≤z≤ Z0

ε2+µ

‖E − Ems‖L∞(R) ≤ sup
0≤z≤ Z0

ε2+µ

ˆ
R

∣∣∣Ê0 (ξ)
∣∣∣ · ∣∣∣∣exp

(
−iω0z + i

√
ω2
0 − ξ2z

)

− exp

(
−i ξ

2z

2ω0

)∣∣∣∣ dξ = sup
0≤z≤ Z0

ε2+µ

[ˆ
|ξ|≤ε1−δ

+

ˆ
|ξ|≥ε1−δ

]
=: J1 + J2. (A.6)

Setting

θ (ξ) :=
√
ω2
0 − ξ2 − ω0 +

ξ2

2ω0
,

we bound the �rst term in (A.6), for any s > 1/2,

J1 ≤ sup
0≤z≤ Z0

ε2+µ

ˆ
|ξ|≤ε1−δ

∣∣∣Ê0 (ξ)
∣∣∣ · ∣∣∣eiθ(ξ)z − 1

∣∣∣ dξ . 1

(2ω0)
3 sup
0≤z≤ Z0

ε2+µ

ε4(1−δ)z

ˆ
|ξ|≤ε1−δ

∣∣∣Ê0 (ξ)
∣∣∣ dξ

=
Z0

(2ω0)
3 ε

2(1−2δ)−µ
ˆ
|k|≤ε−δ

∣∣∣Ã0 (k)
∣∣∣ dk ≤ Cε2(1−2δ)−µ(ˆ

|k|≤ε−δ

∣∣∣Ã0 (k)
∣∣∣2 (1 + k2

)s
dk

)1/2

≤ Cε2−4δ−µ ‖A0‖Hs ,

where we used the Cauchy-Schwarz inequality, Plancherel theorem and the bound for small

values of ξ ∣∣∣eiθ(ξ)z − 1
∣∣∣ = 2

∣∣∣∣sin(θ (ξ) z

2

)∣∣∣∣ ≤ |θ (ξ) z| . ξ4

(2ω0)
3 z.

Hence, J1 is small if µ < 2 (1− 2δ) and since µ > 0, we must have δ < 1
2 . Also, clearly,

µ < 2.
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Now, we proceed with the second term in (A.6). We use regularity of A0 to obtain desired

smallness,

J2 ≤ 2

ˆ
|ξ|≥ε1−δ

∣∣∣Ê0 (ξ)
∣∣∣ dξ = 2

ˆ
|k|≥ε−δ

∣∣∣Ã0 (k)
∣∣∣ dk

≤ C ‖A0‖Hs

(ˆ
|k|≥ε−δ

dk

(1 + k2)s

)1/2

≤ C ‖A0‖Hs ε
(2s−1)δ/2,

for any s > 1
2 .

Therefore,

sup
0≤z≤ Z0

ε2+µ

‖E − Ems‖L∞(R) = O (εα) , (A.7)

with α = min {2− 4δ − µ, (2s− 1) δ/2}, and hence, to maximize the smallness power α, we

choose δ = 2(2−µ)
2s+7 yielding

α =
(2− µ) (2s− 1)

2s+ 7
. (A.8)

In particular, for µ = 0, we obtain the local justi�cation result (A.4).

Note that there was no restriction on the z-interval in J2. The restriction comes when

integrating in ξ near the origin. To improve this, we take advantage of the oscillatory factor

e−iξx to obtain bound for larger values of z

sup
z≥ Z0

ε2+λ

‖E − Ems‖L∞(R) ≤ sup
z≥ Z0

ε2+λ

sup
x∈R

[∣∣∣∣∣
ˆ
|k|≤ε−δ

Ã0 (k) exp

(
−iεkx− iω0z + i

√
ω2
0 − ε2k2z

)
dk

∣∣∣∣∣
+

∣∣∣∣∣
ˆ
|k|≤ε−δ

Ã0 (k) exp

(
−iεkx− iε

2k2z

2ω0

)
dk

∣∣∣∣∣
]
, λ > 0.

Setting

φ (k) := −kx
εz
− ω0

ε2
+

√
ω2
0

ε4
− k2

ε2
,

we have |φ′′ (k)| = ω2
0

(ω2
0−ε2k2)

3/2 ≥ C > 0 for |k| ≤ ε−δ since δ < 1. This allows to apply the
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van der Corput lemma (see, for instance, [6]) to estimate the �rst integral as

sup
z≥ Z0

ε2+λ

∣∣∣∣∣
ˆ
|k|≤ε−δ

Ã0 (k) exp
(
φ (k) ε2z

)
dk

∣∣∣∣∣ ≤ Cελ/2
(∥∥∥Ã0

∥∥∥
L∞(R)

+
∥∥∥Ã′0∥∥∥

L1(R)

)
.

Clearly, in the same fashion we can bound the second integral, so we �nally have

sup
z≥ Z0

ε2+λ

‖E − Ems‖L∞(R) = O
(
ελ/2

)
.

Summing up the results, we obtain

sup
z∈R+

‖E − Ems‖L∞(R) = O
(
εβ
)
,

where

β := min

{
α,

λ

2

}
= min

{
(2− µ) (2s− 1)

2s+ 7
,
λ

2

}
.

We require λ ≤ µ to have overlap between intervals 0 ≤ z ≤ Z0
ε2+µ

and z ≥ Z0

ε2+λ
. Taking

µ = 4(2s−1)
6s+5 , we obtain β = 2(2s−1)

6s+5 which provides the optimal error bound in the performed

analysis completing the proof of the estimate (A.5).
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