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Abstract

A model with nonlinear Schrodinger (NLS) equation used for describing pulse propagations
in photopolymers is considered. We focus on a case in which change of refractive index
is proportional to the square of amplitude of the electric field and the spatial domain is
R2. After formal derivation of the NLS approximation from the wave-Maxwell equation,
we establish well-posedness and perform rigorous justification analysis to show smallness of
error terms for appropriately small time intervals. We conclude by numerical simulation to

illustrate the results in one-dimensional case.
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Chapter 1

Introduction

1.1 Physical context

Mathematical models for laser beams in photochemical materials used in literature |8, 16]
are based on the nonlinear Schrodinger (NLS) equation. These models are normally derived
from Maxwell equations using heuristic arguments and qualitative approximations (see e.g.
[9]). In the present work we derive the time-dependent NLS equation rigorously from a
toy model resembling the Maxwell equations. The toy model is written as a system of a
wave-Maxwell equation and an empirical relation for the change of the refractive index.

The following planar geometry problem is usually considered for modeling of laser beams
in photochemical materials. The material occupies halfspace z > 0 and its face z = 0 is
exposed to the pulse entering the material. If the pulse is localized in the z-direction and
is uniform in the y-direction, then the electric field has polarization in the y-direction with
the amplitude E being y-independent, hence E (z,z,t) = (0, E (z,2,t),0) is the electric
field. The initial pulse is assumed to be spatially wide-spreaded, small in amplitude, and
monochromatic in time.

Neglecting polarization effects and uniform material losses, we write the wave-Maxwell

equation in the form

O2E 4+ 0°E — n?0?E = 0, (1.1)

where n is referred to as the refractive index of the photochemical material.
Let us write the squared refractive index in the form n? = 1 + m and assume that the

change of refractive index m is governed by the empirical relation

om



MSc Thesis — D. Ponomarev McMaster — Mathematics

We note that all physical constants are normalized to be 1 in the system (1.1)-(1.2).
The system (1.1)-(1.2) resembles a more complicated system of governing equations in

literature [8].

1.2 Asymptotic balance

Let us seek for the asymptotic solution to the system (1.1)-(1.2) by using the multi-scale

expansion [10, 14, 17]
E(x,2,t) = A (X, Z,T) e 4 ce., m(x,z,t)=mo(X,Z,T), (1.3)

where c.c. stands for complex conjugated term, X := ex, Z := €9z, T := €t are slow variables
and p, q, s, r > 0 are exponents to be specified.

We want to choose the exponents p, ¢, s and r such that A is governed by a kind of the
NLS equation.
The resulting NLS equation for A is supposed to have first-order partial derivatives of A in
Z, second derivative in X, and a nonlinear term proportional to mgA at the leading order of
€ (that is O (e#*2) due to the term 92E). At the same time the equation (1.2) must enforce
the rate of change of mg in T' to be of order O (1) at the leading order of € (that is O (¢*?)

due to the term E?). These requirements lead to the choice
gq=2, r=2, s=2p—2, (1.4)

which still leaves parameter p to be defined.

To show (1.4), we substitute (1.3) in (1.1) and (1.2) to obtain, respectively,
eP [62(9%(14 + 2iwg (e907A + €00 A) + engmoA] ewo(z=t) L oo 4 higher-order terms = 0,

3 0rmo = P |A)? + (627’/1262“’0(2%) + c.c.) + higher-order terms.
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From the first equation, the balance occurs for ¢ = 2, r = 2 and s > 2. From the second
equation, the balance occurs for » + s = 2p, hence s = 2p — 2, and the balance (1.4) is
justified.

The second term in the second equation induces the second harmonics which will be
further included in the equation for a residual term.

If s = 2, the system of equations can be truncated at the system
0% A+ 2iwg (07 A+ OrA) + wimoA = 0, (1.5)

drmo =2 |A|*. (1.6)

If s > 2, the system of equations can be truncated at the spatial NLS equation
0% A+ 2iwgdz A + wimpA = 0, (1.7)

complimented by the same equation (1.6). Because mgy depends on T" by means of the
equation (1.6), A depends on T implicitly in the case of (1.7). The system (1.6)-(1.7) was
used in the previous works [8, 16] on photochemical materials.

Our task is to justify the system (1.5)-(1.6), where the time evolution of A is uniquely
determined. To avoid problems at the characteristics Z = T', we shall consider solutions of
the original system (1.1)-(1.2) in an unbounded domain (z,z) € R? for ¢t > 0 supplemented
by the initial conditions. At the present time, our method does not allow us to justify the
system (1.6)-(1.7).

In the case s = 2, we choose the scaling X := ex, Z := €2z, T := €t and represent the

exact solution to (1.1)-(1.2) as
E(z,2,t) = € (A (X, Z,T) et 4 c.c.) +U (z,2,t), (1.8)

m(z,z,t) = €mo (X, Z,T) + N (z,2,1), (1.9)
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where U (z, z,t), N (x, z,t) are residual terms to estimate.
Let us denote

(X), . = XemoE 4 e

nwo

for any complex envelope X of the n-th harmonic.

Feeding (1.8)-(1.9) into (1.1)-(1.2) and assuming validity of (1.5)-(1.6), we arrive at

02U + 02U — (1 + €2mq + N) 92U = —¢2 (Rg”) N—¢ (RgU)) , (1.10)
wo wo
ON = (A%),, +2¢°(A),, U+U?, (1.11)
where
RgU) 1= Wi A + 2iwge?0r A — 0% A, (1.12)
RY) := 024 — (14 &mp) 02 A + 2iwymodr A. (1.13)

1.3 Main result

For the system (1.1)-(1.2), we impose the following initial conditions

E|,_q =: By = €A (ex, ?z) "% + c.c., (1.14)
OE|,_, =B = —iwpe? A (ex, 622) ™% 4 4ar Ay (ex, 622) % 4 e, (1.15)
ml_g =0, (1.16)

where Ag is the initial distribution of the beam for the Schrédinger equation and drAy is
expressed explicitly from (1.5). The initial conditions imply that at ¢ = 0 the electrical
field is already penetrated in the photochemical material, whereas it does not yet induce
the change in the refractive index. Note also that the conditions (1.14)-(1.16) imply that
Ul = 0U|,_g = Nl|;—o = 0 in the system (1.10)-(1.11) for the residual terms.

Our main result is the following justification theorem.
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Theorem 1.1. Given initial data Ay € H® (RQ), let A, mqg be local solutions to the system
(1.5)-(1.6) for T € (0,T) where Tso > 0 is the mazimal existence time. There exist eg > 0

and Ty € (0,Tw) such that for every e € (0,¢€q) there is a unique solution E, m of the system

(1.1)-(1.2) for t € [0,Ty/€%]

o = 5/2
t6[§,1%0p/62] HE € (A>WOHH3(]R2) =0 (6 ) )

il moley = 0 (7).

To prove the Theorem 1.1, we organize thesis as follows.

In the Chapter 2, we will set up tools of functional analysis needed for our work. After
the brief introduction of notation, the main lemmas that will be used throughout the work
are stated. The Chapter 3 describes the local well-posedness theory for the original system
(1.1)-(1.2) and its approximation (1.5)-(1.6). We obtain the spaces for the local solution in
which further analysis will be done, and formulate the theorem that allows continuation of
the local solutions. Additionally, we look into the smoothness requirements of the initial
data of the initial pulse. The goal of the Chapter 4 is to obtain sufficient estimates for
the residual terms U, N governed by the equations (1.10)-(1.11) and hence to justify the
approximation of solutions of the system (1.1)-(1.2) by solutions of the NLS system (1.5)-
(1.6). This is done by means of normal form transformation followed by a priori energy
estimates which yield control of the residual terms. The Chapter 5 illustrates numerically
the result of the Theorem 1.1 for x-independent initial conditions. In the Appendix, we
obtain global justification for the linear counterpart of the problem by comparing solutions

of the original wave equation with solution to the linear Schrédinger equation.



Chapter 2

Elements of functional analysis

In this chapter we collect together some definitions and results from topics in functional
analysis. These results will be used in the rest of our work.
For a positive integer s, H® (]RQ) = W2 (Rz) denotes the Hilbert-Sobolev space, that

is, the space of all functions of two variables bounded with respect to the induced norm

1/2
2
Pl= | > [ [ebots| dnaz)
OSk’-HSsRQ
or equivalently,
1/2 1/2
2
= | 3 [ [osots] dnaz |+ | [ 15 doa

k+l:SR2 Rz

We will use standard notation for the Lebesgue spaces LP (RZ) endowed with the norm
1/p

11 = / o o)Pdedz| . 1<p<o.
R?

In addition, we have

| X[ oo == lim [|X[|, = ess sup|f(z,z)|.
L P00 L (z,2)€R2

Now, let us assume that functions f in H® (Rz) depend on an additional variable t € R,..

In what follows, we will often write f € H® implying f (-,-,t) € H® (RQ).
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Lemma 2.1. Assume that f, O,f € LP (RQ). Then for any 1 < p < 0o, we have

O [l o < N0l o - (2.1)

Proof. Clearly,
O NfIB, =I5 Oell £l o - (2.2)

On the other hand, for 1 < p < oo, by the Lebesgue dominated convergence theorem
(valid since f € LP, O,f € LP), differentiation can be performed under the integral sign

which is then followed by application of the Hélder’s inequality

Oy = [ 1F (2,2 0F " 0uf (o200 dod < |17 s 100 e = 2 LA 100 -
(2.3)
Comparison of (2.2) and (2.3) furnishes the result (2.1). O

Corollary 2.1. Assume that f, O,f € LP (R?) for all t € [0,t9] and some p > 1. Then, we

have

£l < to sup (|0cf[l e + (1fllze)limo > ¢ € [0,%0] - (2.4)
te(0,to]

Proof. For p < oo, this result follows directly from the Lemma 2.1.
For p = oo, the results follows from the fundamental theorem of calculus and the integral

Minkowski’s inequality

t
e < |[onsar| + 1l

to sup [|0¢fll o0 + (Ifllpee)li=g, ¢ € [0,20]
tel0,to]

IN

Corollary 2.2. Let f, 0,f € H* (R?) for all t € [0,%0] and some s > 0. Then we have

1l < to sup [|0cf s + ([flgro)limg . £ € [0, 20] - (25)
te[0,to]
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Proof. By the Plancherel’s theorem (see e.g. [12, 13]), we can employ the estimate (2.4) for
p =2 on the Fourier transform side f (£) € L* (R?)

Il = || (1+16R) " 7

L2

s/2 . s/2 .
< 1o sup | (1+1¢P) atf‘ + (H(H\&?) f )
tE[O,tO} L2 L2 t=0
< to sup [|0uf |l gs + (1F 1)l -

te[0,to]
O

In the rest of this section, we list useful results: Banach algebra property, Sobolev em-
bedding theorem, Gagliardo-Nirenberg inequality and Gronwall’s inequality, and Banach

fixed-point theorem. For the proofs, see [1, 3, 10].

Proposition 2.1. (Banach algebra property) For any s > 1, H® (Rz) is a Banach algebra
with respect to multiplication, that is, if f, g € H® (RQ) , then there is a constant Cs > 0

(depending only on index s) such that

179l s < Cs [1F gz 191l gz - (2.6)

Proposition 2.2. (Sobolev embedding) Assume that f € H® (]RQ) for s > 2. Then, the

function f is continuous on R? decaying at infinity, and there is a constant Cs > 0 such that

[fll e < Cs |l fllgs - (2.7)

Proposition 2.3. (Gagliardo-Nirenberg inequality) Let f € H! (]RQ). Then, for any o > 0,

there exists a constant Cy > 0 such that

2(0c+1 o
IF12E, < Co IV IR 1112 - (2.8)
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Proposition 2.4. (Gronwall’s inequality) Assume g (t) € C ([0,to]) satisfies

dg (t
Zi) <ag(t)+b, te(0,t).

for some constants a, b > 0 and g (0) > 0. Then, we have

g (t) < (g(0) +btg) e™, te€]0,t]. (2.9)

Proposition 2.5. (Banach fized-point theorem) Let B be a closed non-empty set of the
Banach space X, and let K : B — B be a contraction operator, that is, for any x, y € B,
there exists 0 < q < 1 such that ||K () — K (y)|lx < qllz—yllx.- Then there exists a
unique fized point of K in B, in other words, there exists a unique solution xg € B such that

K ($0) = X0.

10



Chapter 3

Local well-posedness theory

3.1 Local well-posedness of the wave-Maxwell system

Before we proceed with the justification analysis, let us consider the question of local well-
posedness of the system (1.1)-(1.2) and formulate a regularity criterion for the continuations
of local solutions.

Consider the wave-Maxwell system

O2E + 0?°E — (1 +m) 9?E = 0,
(z,2) €R* t € Ry, (3.1)

6tm == E2,

subject to the initial conditions m|,_, = 0, E|,_, = Eo, and F|,_, = E; for given Ej,
FE, € H? (RQ) with some s > 0.

We can apply the theory of local well-posedness for quasi-linear symmetric hyperbolic
systems [5, 7, 15] once we bring (3.1) into a first-order system with a symmetric matrix.

To symmetrize the system, we set

V = 8tE, 8$E1 59 aZEl 59
1+m)Y? 1 +m)Y

T
E, 9,m, 0,m, m) . (3.2)
Then, the system (3.1) is equivalent to the symmetric quasi-linear first-order system
Ov+ A1 (V) 0xv+ Ay (v)0,v =1£(v), (3.3)

where Ay, Ay are matrices having — 7z at (1,2)-(2,1) and (1,3)-(3,1) entries, respec-

1
(14v7)

11
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tively, and zero elements elsewhere, whereas

T
a5 + V3V ViU vivs 1/2 1/2 2
f(v) = , — , — , 01, 2(1+w vouy, 2 (1 + v V34, U
v <2(1+v7)3/2 2 o) 21y M T e e v,
T
0, E0 0.E0 E?0,E E%0.F
= [ SEGmAOROm - . 0E, 2E0,E, 2E0.E, E* | .
2(1+m) 2(1+m)*? 21 +m)¥

Note that Ay, Ao, f have no explicit dependence on x, z and t.

The initial data for (3.3) is given by
V‘t:O = Vg = (El, a;EE(), 6ZE0, E(), 07 0, O)T . (3.4)

By the Kato theory (see Theorems I-11 in [5]), for any integer s > 3, the Cauchy problem
(3.3)-(3.4) admits unique local solution v € C ([0, to] , H* (R?)) N C* ([0,to] , H*~! (R?)) for
some tg > 0 providing v € H? (]RQ). Moreover, the solution v depends on the initial data

v continuously (Theorem III in [5]). We transfer this result in the following statement.

Lemma 3.1. For any integer s > 3, the unique local solution of the system (8.1) exists in

the space
E € C([0,t], H" (R?)) n C* ([0,t0), H® (R?)) N C* ([0, t0), H* (R?)),  (3.5)

m € C* ([0, 2], H*T (R?)) N C* ([0,t0] , H® (R?)) N C* ([0, 0], H* " (R?)).  (3.6)

Moreover, the solution depends continuously on the initial data Ey € H®H! (RQ), Ey €

H* (R?).

Proof. From the first and the last four entries in (3.2), we infer that, for any integer s > 3,
E € C'([0,t0], H® (R?*)) N C* ([0, t0] , H* ' (R?)), (3.7)

m € C ([0,t0] , H™ (R?)) N C* ([0,t0], H* (R?)). (3.8)

12
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We shall now use the second and third entries in (3.2), which tell us that

2 2
[ o.E ( o.E I
- [ax<(1+m)l/2> +!az<(1+m)l/2>] s < o,

R2
and J is a continuous function of ¢ on|0, to].

Without loss of generality, let us keep track of only z-derivatives.

By the Leibnitz differentiation rule, we have

- 2
2
0.E [ s -
05 — — Z 3§+1Ea;—k (1+m) 1/2
(I1+m) i—o \ &
- 2
s—1 s
= |Q+m) PotE+Y] OB (1 +m)" 2|,
k=0 \ k
S
where is a binomial coefficient.
k
Denoting
1/2
[0 B
A= / dxdz ,
1+
RQ
2 1/2
s—1 s
. / 3 FHES (1 +m) V2| dedz| |
R2 k':O k
by the Cauchy-Schwarz inequality, we estimate
2 BHE | s k+1 k —-1/2
No< ,1—2/901/2 OB (14 m)™/* dadz
. QI+m)"" =\ k
2
s—1 s
—/ > R (14+m) 2| dadz
R2 |*=0 k
< J+2\u.

13
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But then
M _2u\A—J <0 = A<p+Vu2+J.

Let us show that u < oo for any ¢ € [0, to).

By the triangle inequality for L?-norm, for some constant C' > 0, we have

uo< C:Z_::: (/}RQ <8§+1E)2 {a;fk (1 —i—TTL)_l/Qrdde)l/Q
< c laxElLoo\a;(Hm)‘”Q\Lﬁi\@ﬁ“EHp‘ai_k(“m)_muml'

The right-hand side of the last inequality is bounded for any ¢ € [0, tg] due to finiteness
of |05 E|| 12, |05 || 125 102 Bl oo, |05 |, » Im| oo by (3.7)-(3.8), the Proposition 2.2
and the Banach algebra property of L°°-norm.

From here, boundedness of \ follows for all ¢ € [0,¢o] and yields

1/2

03B’

RQ

Now, we notice since m|,_, = 0 and 9ym = E? > 0, we have m (z,z,t) > 0 for all

(z,2) € R? and t € [0,t9]. Therefore, we have

L+ [lm] L+m
R? R2

s+1 ]2 s+1 7712
! /([a;“E]2+ [8§+1E]2> dxdzg/<[ax B+ [0 E] )dxdz<oo,

and thus conclude that, for all ¢ € [0, ¢o],
/ ([ E]” + [0 E]) dadz < oo, (3.9)
R2

It is also clear that the norm in (3.9) is a continuous function of ¢ on [0, %] so that the
assertion (3.5) holds.

To obtain (3.6), we use the bootstrapping argument for the second equation in the system

14
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(3.1) because the space H® (RQ) forms a Banach algebra for s > 1 by the Proposition 2.1. O

The following characterization is useful to extend the local solution of the Lemma 3.1
in the sense that if a local solution exists, it persists on a larger time interval as long as
a certain condition is fulfilled. This result is similar to the blow-up criteria of solutions in

other equations |2, 11, 15].

Theorem 3.1. Local solution of the system (5.1) in the Lemma 3.1 does not blow up as
t — 1o Zf

sup ([ Ell e + 10:E]| oo + [[VE] ) < 00 (3.10)
te[0,to]

Proof. In order to verify the condition (3.10), we suppose

M := sup ||E|;« < o0, M; := sup ||VE|;« < o0, Ms := sup ||O:E|~ < o0,
te[0,to] t€[0,to] t€[0,to]

and show that, for all ¢ € [0, t¢],
1B g4 > 0B gy, |07 ||y < o0

To demonstrate this, we employ the energy method. For the sake of compactness, let us
use short notation E, := 0, F, E; := 0;F, and so on for other derivatives of E and m.

Let us multiply the first equation of the system (3.1) by E; and integrate by parts
employing decay of E F, and EiE, to zero as |z|,|z| — oo that is justified for the local

solution of the Lemma 3.1 for s = 3 by the Proposition 2.2. Thus, we obtain

R — — < .
o 2/E Efdrdz = T MiHy, (3.11)
R2

where we have used the second equation of the system (3.1) and introduced the first energy

functional

1
Hoim g [ (U4 m) B2 + B2 4 E2) dudz, (3.12)
R2
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By the Gronwall’s inequality (2.9) and the fact that m (z, z,t) > 0 for all (z, z) € R?, we
obtain

IEo|32 + |E=|22 + | Bel32 < 2Hy < 2Hy| Mt < oo, te€[0,t].
=0

From here, by the Lemma 2.1 for p = 2, we also control ||E||,. as follows

d
g 1Ellzz < Bl = [IB]L2 <to sup [[Eillp2 + ([Ellz2)],= <00, ¢ € [0,%0],
t€[0,to]

and thus conclude that E € H' (R?) and E; € L? (R?) for all ¢ € [0,to].
Now, we perform the same procedure but differentiating the first equation of the system
(3.1) with respect to x, multiplying it by E,; and integrating over (z,z) € R?. Repeating

the same with z- and ¢-variables, we sum the results to obtain

dHy 1
222 / (E? [E%, + E2, — E2] — Ey [Ewma + Exm.)) dadz, (3.13)
R2

where the second energy functional was introduced

1
Ho = 2/ (L +m) E; + (2+m) [E2 + E2] + B2, + E2, + 2E2.) dudz, (3.14)
RQ

and we used the decay of Ey Fyy, EyiFoy, BuE,,., EuE,., EywFEy and EyFE,; to zero as
|z|,|z| — oo, which is justified for the local solution of the Lemma 3.1 for s = 3 by the
Proposition 2.2.

We have

1Ezali2 + | BallTe + 2 | Bozllz + 2|1 Batll iz + 21| Etlle + | Eull7e < 2Ha.

We shall now control Hs from the equation (3.13). The terms in (3.13) with E?E?2,,

E?E?, and E%*E3 are controlled by a multiple of M?Ho.

Additionally, we need to bound ||m||;«~ and ||Vm| ;. By the Corollary 2.1 for p = oo,
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we have
[m| e <to sup [myl|pe < toM7 (3.15)
te(0,t0]
and
VM|~ <to tes[l(;lif) ] IV poo < 2toM1 Mo, t € [0,%0], (3.16)
o

where we have used the initial condition m|,_, = 0 and the second equation of the system
(3.1).
By the triangle inequality and the Cauchy-Schwarz inequality, we have

dH
7dt2 < My (My + 2tgMs) Ho.

By the Gronwall’s inequality (2.9), we conclude that

Ho < Hp| MBOTHMIE o0 4 € [0, 1]
t=0

Thus, we deduce that E € H? (Rz), E, e H! (RQ) and Ey € L? (RQ) for all t € [0, to].

Now, we continue in the same manner as before, operating on with the first equation of
the system (3.1) by E,p0? + E.,;0? + Ey;0} and integrating in (x, z) over R? by parts to
reduce the expression to first-order derivatives of m only. In the end, we obtain we obtain a
functional that is not positive definite. Its boundedness does not yield a bound on the norms

of derivatives of E it includes. To remedy the situation, we add [ [m% + mg] EZdxzdz to

R2
the energy functional and hence obtain
dH 1
dTS = 3 / <E2 [E2,, + E2,, — 3E},| — 2my [Eyot Byt + Epao Byl
R2

- 2mz [Ezzthtt + EzzzEttt] - 4EttE [EtttEt + Emerx + EzzzEz]

+ 8EE} [Eymg + E.my] + 4By Eyy [m2 + m?) > dxdz, (3.17)

17
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where
1 1
Hy = 2/ ((1 +m) [Efy + Eop + B2y + Efy + B2y + B (EBiew + E2..)
]RQ
) ) 1 5 1 2
+ E:p:pz + Ea:zz + 5 [Eafaﬂx - 2ma:Ett] + 5 [EZZZ - QmZEtt] drdz. (318)
We have

HEzmH2L2 + ||Ezz2||%2 +2 ||EMZ||iZ +2 ||EacZZH2L? +2 HEth%? +2 HEzth%?

+2 ||EtttH%2 +2 HEa:ttH%z +2 ||Eztt”i2 < AH3.

In deriving the balance equation (3.17), we have used the decay of EyppFErat, EvpsErat,
E.o2Bonty Brez Bty EniErr, Byt B, My Ergr By and m B, Ey to zero as x| — oo, |2] —
0o. This decay can be obtained by working with approximation sequences as follows.

Let us consider an approximation of the initial conditions Ey, Fq by the sequences of
functions {Eén)}:il € H® (]RQ), {E§n)}:’_1 c H* (R2), respectively. Then, by the Lemma

3.1 for s = 4, the corresponding sequence of local solutions will be
EM™ € ¢ ([0,t], H® (R?)) n C* ([0, 0], H* (R?)) N C2 ([0, 0], H? (R?)).

The decay assumptions are valid by the Proposition 2.2 for the approximate solution E(™.

Because the space H® (]RQ) is dense in H* (RQ) and so is H4 (RQ) in H? (]R2), we have
HE(()")—EOH =0, HE§”LE1H 50 asn— oo,
H4 H3

and hence, by the continuous dependence of the solution on the initial data in the Lemma
3.1, we have

HE(") - EHH4 0, HE§”’ - EtHH?’ 50 asn— oo,

that holds for all ¢ € [0, to].

18
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This approximation argument furnishes the required decay of solutions at infinity in the
justification of the energy balance (3.17).

Using (3.16), we estimate the m-dependent terms in (3.17) as follows

IN

/mx [Brat Bt + EreaEtte] dedz vaHLOO (HEthLQ ||E:vtt||L2 + HmeHLQ ||EtttHL2)

RQ

IN

8to M1 MsHs,

/ EwEwmidrdz < |Vm| 2 | Bullps | Bl 2 < SEMEMIHY >4y,
RQ

/ EE,E2mgdrdz < MyMs ||Vm|| e || Eil3e < 4toMZM2Hs,
R2
and similarly for the z-derivatives terms.

The estimates of the m-independent terms in (3.17) are straightforward

/ E? [E2,, + E2,, — 3E},| dvdz < MiHs,
R2

/EEtt [Ez:vsz + EzzzEz + EtttEt] drdz < Ml (2M2 + M3) ,H;/QH;)/Q

RQ
Therefore,
dHs 1/2.,,1/2

—r < My (My 4 16t My) Mg + 2M, (2Ms + M + 16t5 M1 M3) Hy “Hy'™ + 32tg M7 MIHo.

By the inequality 7—[5/2?{;/2 < % (H2 + H3), we have

d
% < F'Hz + GHo,
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where

F = M (M + 18tgMs + toMs + 16t5 M M3)

G = M (2Ms + M + 16t5 M M3) + 32t M7 M.
Then, by the Gronwall’s inequality (2.9), for ¢ € [0, ¢o], we bound

+ Gty sup Hs | e < .

Hs < <H3

Thus, we deduce that E € H?* (R?), E; € H? (R?) and Ey € H' (R?) for all t € [0, o).

We proceed to obtain the final energy estimates. We act by
3 3 2 2 3
ErratOy + E22240; + Epi1102:0; + Eo4100:0; + Byt 0;

on the first equation of the system (3.1) and integrate the result in (x, z) over R?. Following

the same steps as in the previous energy level computations, we can introduce the positive

definite energy functional

1 1
H4 = 5 /R2 |:(1 + m) (Eixwt + Egzzt + Ea%ttt + Egttt + Et2ttt) + 5 (E:%mmm + Egzzz)
1
+ 2E§zzz + 2Ea%ztt + E:%;ptt + Efm + E:%ttt + Egttt + ) (Bzzza — 2mamEtt)2
1
+ 5 (Beees — 2mZZEtt)2] dzdz (3.19)

to obtain

dt  — 2
- 4EEtt (Ewaa:a:xw + EzzEzzzz + EttEtttt) - 4mmc (EazttEJ:J:xt + EtttExxa:J:)

dH 1
! < 5 /R2 [E2 (Egmrt + Egzzt - 3E§ttt - 3E§ttt - 4E1€2ttt) —4Ey (EﬁExm + E,?Ezzzz + EfEtttt)

- 4mzz (Eztthzzt + Ettthzzz) - 6ma:E$ztthz:vt - szEzztthzzt - IQEEtEtttEtttt

+ AEwEy (m2, +m2,) + 8Ef (mys (E2 + EEy,) +m.. (EZ + EE,.))] dzdz. (3.20)
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This computation is valid under assumption on decay to zero of Eyprt Frrres Frrat Frraz,
EiontBrreey ErzatBuzezy, ButeBonte, EwitFott, EotttEvatt, ExtttBratt, Bt Foztt, Eattt Fozt,
Mgz By By and my, E, .. By as x| — oo, |z| — oo, but this decay can be justified by the
approximation argument for a sequence of local solutions of the Lemma 3.1 for s = 5 as done
in the previous energy level computations.

We have

||Emm||2L2 + HEZZZZ||%2 +4 ||EMZZH2L? +2 HEzth%? +2 ||Ezzzt||%2

2| Eanttl| 2o + 2 | Evael22 + 4 | Erare| 22 < 44 (3.21)

We use the Proposition 2.2 to bound

|Baell e < Co (|2 + | Baal ) < V2Co (M1 + #3%).

for some Cy > 0.
Using this estimate and the Corollary 2.1, from the second equation of the system (3.1),

we obtain, for ¢ € [0, to],

|Maz || foe < tosup [|[Mizzl o < 2t0M22 + 2v/2Cto My sup?-[i/2 + sup H;/Q .
[0,¢] [0,¢] t€0,to)

)

The similar estimates hold for the z-derivatives terms. Lengthy and tedious calculations
result in

d
% < M+ JsupHa+ L, (3.22)

d 0,1]
where I, J, L are some coeflicients that depend on tg, My, My, Ms, SUP;e (0,40 Ho and

SUPie(0,t0] Hs.

The last inequality can be rewritten in integral form as

t
supHa < Hal,o+toL + (L +J) / sup Hadr.
[0,¢] 0 [0,7]
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By the Gronwall’s inequality, we bound

sup Ha < [Hal,—o + toL] etU+)) oo,
te(0,t0]

Now, since

1 1

||Emzxz|‘%2 ) ||ExZZZHZL2 < 5 ”sz:pr%2 + 5 HE:m:zz||%2 )

1 1
HEmthQL? ) HszthQL? < 5 HEmrtH%2 + 5 HEzzzt”QLQ ’

which is a result of straightforward estimates on the Fourier transform side, from (3.21), we

conclude that £ € H* (RQ), E, € H? (]RQ) and Ey € H? (RQ) for all t € [0, to). O

Remark 3.1. To eliminate finite-time blow-up of the component m in H*-norm, we can use

the estimate of F and the Proposition 2.1 applied to the second equation of the system (3.1).

3.2 Local well-posedness of the NLS system

Let us now consider the question of the well-posedness of the system (1.5)-(1.6). For the

sake of brevity, we will work with the rescaled equations

8§(A +i(0OrA+0zA) + mpA =0,
(X,Z) eR?, T € Ry, (3.23)

aT7n0 = |A|2>
subject to the initial data A|,_, = Ag € H? (RQ), mo|p_o = 0, for some integer s > 2.

Theorem 3.2. For any integer s > 2 and 6 > 2 sup HAOHH.S(RQ), there exist a positive
TeRL

constant Ty and a unique solution A € C ([0,To], H* (R?)) N C* ([0, Ty], H¥2 (R?)) to the

system (5.23) such that Alp_q = Ao and suprejomy) Al s g2y < 0.

Proof. Let us take Fourier transform in both spatial variables, and denote

moA (&n,T) = o /R _mo (X, Z,T) A(X, Z,T) HEXHN2) 1X dz.

22



MSc Thesis — D. Ponomarev McMaster — Mathematics

The first equation then becomes
OrA =i (=€ +n) A+imoA,
which leads to
~ A~ . 2 T . 2 —
A(en,T) = Ag (&) 8T 1 / () (T=m) 1 A (¢, 7) dr. (3.24)
0

Introduce the Schrédinger kernel

Then, since

Fl [ei(—ﬁ”n)ﬂ = S (X)0(T — Z),
the inverse Fourier transform of (3.24) results in the integral equation

T
A(Xa ZaT) = ST (X)*AO (XaZ _T)+Z/ ST—T (X)*[mo (X7Z - T+T7T)A(XaZ_T+7-77_)] dTv
0

where % stands for convolution in X-variable.
Making use of the second equation in (3.23) and mg|;_, = 0, we can rewrite the last

line in the form of operator equation
A(X.2.T) = K[A(X, Z,T), (3.25)
where
T T
K [A] = Sp (X)*xAg (X, Z — T)—l—z'/ St_r (X)*[A (X, 7 — T+T,T)/ |A(X, Z — T—i—7~',7~')|2 dr| dr.
0 0

We will obtain local well-posedness of the system (3.23), once we are able to apply the

Proposition 2.5 to conclude the existence and uniqueness of solutions to the integral equation
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(3.25).
Let us show that the condition of the Banach fixed-point theorem is fulfilled in a closed
ball of radius 4 in the space C ([0, Tp], H* (R?)) for some s > 2, § > 0 and Ty > 0:

Bs = {f e C ([0,Tv], H* (R?)) : T:[%%} 1f s rey < 5}. (3.26)

First of all, we need to show that map B; is an invariant subspace of the operator K,

that is, for any A € Bs C C ([O,TO] ,H® (Rg))

sup || K [A]|l g2y < 6 (3.27)
TE[O,T()]

holds for suitable choice of 6 > 0 and Ty > 0. Then, we need to show that K is a contractive

operator in the sense that there is ¢ € (0,1) such that for any AW AR ¢ B;

K [A(l)] -k [A@)] HHS(RQ) : qTeS[%PTol

AL 4@ H (3.28)

sup

Te[0,To] H3(R?)

To choose 6 > 0 and Ty > 0 such that both conditions (3.27)-(3.28) are satisfied, we
proceed with analysis on the Fourier transform side using (3.24) rather than (3.25).
We start by showing (3.27). Let A € Bj, that is, suprep p) | Al s (m2y < 6. Then,

applying the Plancherel’s theorem and the Minkowski integral inequality to (3.24), we obtain

(L+€ +02) R[4

oy W Al = s L2(82)
T
sup H L+ &+ moA‘
L2(R?) TG[O,TO]/O ( )

IN

[+ )7 A

T
— Aol +_sup [ ol oy dr.
Te[0,To] YO

24
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Employing the Proposition 2.1 and the Corollary 2.2, we arrive at

IN

sup || K [A]l s (r2)

3
HAOHHS(R?)"‘CETO2 sup HAHHS(R?)
T€[0,To) Teo

€[0,7Tp

IN

[ Aol s 2y + C2T36°,

for some constant Cs > 0. Choosing & > 2|[Aol| s g2y and To < #@5’ the both terms
become less or equal to §/2 which furnishes (3.27).

Now, we proceed with showing (3.28). We write

o (1) <m0 4) = o (4) - 49

and using the triangle inequality, the Banach algebra property of H® (RQ) and the same

arguments as above, we obtain

By < [l (40) 0= (7)o
< citf swp [[a®] a0 -a®]
4 (2] + 4,0 a0 - 2]
< 302724 sup A<1>—A<2>HH9(R2).
Te[0,Ty ‘

From here, the contraction requirement results in restriction Ty < ﬁ.

Combining this with the previous condition, we conclude that the choice

1

(5 > 2 HAOHHS(RQ) ) TO S m

leads to the existence of unique solution A of the equation (3.23) in the ball (3.26).
Then, expressing Or A from the first equation of the system, the bootstrapping argument

gives A € C* ([0, Ty], H572 (R?)). O

Remark 3.2. Tracing the proof, it is straightforward to see that the same result holds in the
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presence of inhomogeneous terms in the first equation of (3.23) providing these terms belong

to the space C ([O, To), H?® (]RQ)).
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Chapter 4

Rigorous justification analysis

4.1 Near-identity transformations

Smallness of remainder terms U (x, z,t) and N (z,2,t) in the decompositions (1.8)-(1.9)
hinges on smallness of the right-hand side terms in the system of residual equations (1.10)-
(1.11). The right-hand side terms can be made smaller by perfoming appropriate near-
identity transformation.

Let us start with the source term €° (RéU)) in the first equation (1.10) and introduce
wo

U (z,2,t) :=U (z,2,t) — e (F(X,Z,T)) (4.1)

wo ?

where F' (X, Z,T) will be chosen later.

Eliminating U (z, z,t) from (1.10), we obtain

02U + 0201 — (1+mo + N) 0fUr = = (RY)) N - (RY) —& (RL)
wo wo wo

where
RY) = RY + & (WRF + 2iwge®drF — 103 F) |
R((aU) = O%F + 2wy (07F + OrF) + wimoF — (G%A — 974 — 2iw0mo<9TA) '
RY) = 0LF — 02F — mod2A + 2iwemodr F — mod%F.

From here one can see that the O (66) source term can be eliminated (i.e. f%éU) = 0)
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providing that F' (X, Z,T) solves the linear inhomogeneous Schrodinger equation
O% F + 2iwo (0zF + OrF) + wimoF = 02.A — 0% A — 2iwymodr A.

Hence, the equation for U (z, z,t) has a O (68) source term. Generally, such transfor-
mation can be repeated k times to have a source term of order O (€6+2k).
Now, we proceed with the second equation (1.11) treating it separately. To remove the

O (64) source term, we introduce

A2
Ny :=N-¢€| = (4.2)
2%(4)0 20

and obtain the equation with the O (66) source term

AorA
Ny = —¢" < T ) +2€¢% (A),, U+ U
W0 20
In a similar fashion, this transformation can be repeated n times to get the O (e4+2") source

term.
We can also improve the second term in (1.11) by performing another type of the near-

identity transformation

Ny := N — 2¢ (‘4) U, (4.3)
w0 wo

in which case we obtain

A orA
ONa = €t (A2), —22(—) QU -2 (=) U+U
2wo iwo / iwo /o

Such transformation move the linear term in U to the O (64) order, whereas the O (62>
term depends now on 0;U which norm is expected to be smaller. Note that repetition of this
transformation generally is not effective because smallness of a norm of 92U in comparison
with norm of 0;U is not anticipated.

The last two near-identity transformations (4.2)-(4.3) can be combined in a straight-
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forward way, however putting together near-identity transformations (4.1), (4.2) and (4.3)
should be done more carefully due to intertwining structure of the equations.

For justification analysis, we will need the double transformation (4.2) for the source term
in the N equation, the transformation (4.3) of the linear term, and the single transformation
(4.1) for the source term in the U equation. Due to dependence on N, the transforma-
tion in the U equation should be modified by including third-harmonic term which in turn

changes the equation for V. The resulting near-identity transformation is implemented by

introducing
V o= U-€'(B),, —€ (D), (4.4)
A A2
M := N —¢€'No+2¢ () V+e ( ) + eGRéM), (4.5)
W0 / 21w %0
where
pon . 2(AB—AB)  (AdrA AB+AD\ [ AD
6 iwo 202 iwo ooy \2iwg )4,

Here, bar denotes complex conjugation, and B (X, Z,T), D (X, Z,T), No (X, Z,T) solve the

following linear inhomogeneous equations

0% B + 2iwg (7B + 0rB) + wimoB = 0%A — 0%A — 2iwgmodrA — Z%OAQA, (4.6)
0% D + 2iwg (97D + drD) + wimeD = —Z%OA?’, (4.7)
OrNo = 2(AB+ AB). (4.8)

As a result of these transformations, the system of residual equations (1.10)-(1.11) transforms

to the system

B2V + 92V — (1+ Pmo + N) BV = =% (A),, M + 2iwoe* |[APV — ERY) . (4.9)
A
oM = ERM 4+ 2 RMY + 2¢ (Zw> OV + V2, (4.10)
0/ wo
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where
oy _ (OrA B D
e (z‘wo i )WUH o
y or (AB — AB _ or (AB+ AD
Rém:fT( : )+ BD*BT(A(ZTA)JF 7 ( B + ) + (o4 204D
2iwo 2wg wo 2iwo 4
2wq «wo
. 2
RY) = (“”70 [2|A]> B+ A’B + TAD + 4modrB] + 4] QOTA + A%9rA — mdr A+ 03B — a%B)
wo
. 2
- (“"7‘) [[A]* D+ A’ B — 12mo0r D] + AZiTA - 07D + a%D) +3 (iwoA’D) .
3wo

This system of equations is a starting point in our justification analysis.

4.2 Local control of the residual terms

We now proceed with the estimates of the residual terms U (z, 2,t), N (z, 2,t) in the decom-
positions (1.8)-(1.9) given sufficiently smooth initial data. The amplitudes A and mg change
on the temporal scale of T = €t on [0,Tp]. Therefore, the validity of approximation needs
to be justified for all ¢ € [O,To/€2].

We would like to prove that there are «g, By > 0 such that

sup U, )2 =0 (650) 7 (4.11)
tE[O,To/EQ}

sup [N (-, 8)[[ 2 = O (). (4.12)
tG[O,To/GQ]

At the same time, the leading order approximation in the decompositions (1.8)-(1.9) is

estimated to be

1/2
2 2 2 2 — 1/2
te[os’%)/eﬂ He (A)onL2 < 2¢ Tes[lé’;zpo] (/W |A (ea:,e z,T)‘ dxdz) @ (e ) ,

1/2
2 _ 2 2 2 _ 1/2
te[(ilil“g)/ez} He mOHL2 — TES[%PTO} (/R? ‘mo (656’ ‘ ZjT)‘ dﬂ?dz) =0 (6 ) '

Therefore, the error terms in the decompositions (1.8)-(1.9) are smaller than the leading
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order terms in L?-norm if aq, By > %

Note that we are loosing €3/2 in norm of €2 (A) wo due to integration because A depends
on the slow variables X = ex, Z = ¢2z. The same is true when computing L?-norms of the
other terms Rév), RéM), RELM) which absolute value depend only on slow variables X, Z.

As before, we will use index notation for partial derivatives and let C' denote a generic
positive constant. Also, we will employ subscript notation such as ||-| 12, V(x,z) and
A(x,z) when necessary to emphasize that a norm or derivatives are computed with respect
to slow variables.

Using the near-identity transformations (4.4) and (4.5), under assumptions B, D, Ny €
L? (RQ), AeL*® (Rz) N L? (Rz), RéM) €L? (RQ), we can see that

sup HU('a'at)HL2 < sup HV('a'at)HL2 +CES/2a
t€[0,T0/€2] t€[0,To/€2]

sup [N ()2 < sup M (82 +CE sup [V (e8]l + O
t€[0,To/€?] t€[0,To/€?] te[0,To/€?]

Hence, to have (4.11)-(4.12) with ag, By > 1, we need

sup [V (-, 8)ll 2 = O (), (4.13)
t€[0,To/€2]
sup ||M('7'7t)”L2 = O(6Q)7 (414)
te[0,T0/€2]
with
1
a, B> 5 (4.15)

4.2.1 First energy level

While M (z, z, t) can be controlled directly from the equation (4.10), the estimate of V' (x, 2, t)

relies on the energy approach used in the Section 3.1. Multiplication of the equation (4.9)
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by V; (x,z,t) and further integration by parts in (z, z) over R? lead to

d 1
% _ / <e4 APV + SN2 + € (4),,, MV, — 2inet [AP VY + eSRéV)Vt> dadz,
RQ
(4.16)
where we introduced the first energy functional
_ 1 2 2 2 2
Hi = 5 [(1+€mo+ N) V7 + V; + V7] dadz. (4.17)
R2
This yields the estimate
d?‘[l 4 A 2 \[ 2 2 A 1/2
o S 2|l Al Ha [ Nell oo Hu + 2V2€%0g [[All oo 1M ] 22 Hy
2 1/2 1% 1/2
+ 2V Al VI 17+ VRS2 RO L
Let Q1 := %}/2 and assume that we can prove
sup Q1 =0 (651> , (4.19)
tE[O7T0/€2]
for some 61 > 0.
Then, since V|,_,, the Corollary 2.1 implies, for ¢ € [O,TQ/EZ],
To V2T
Vil < = sup  [[Villpe < —— sup  Qu,
€ 1e[0,T0/€2] € 1e0,Tv/€%]

and hence sup,cio /e |V 2 = O (e2172), that is, 8 = §; — 2 in (4.13).

Similarly, by the Proposition 2.3 with o = 1, we estimate the nonlinear term in (4.10)

IVIIZs < ColVI2 IVV 2
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Since M]|,_, = 0, the Corollary 2.1 implies

T
—20 sup || My]|;2 < ATy sup
€ t€[0,Tp /2] te[0,Tp /€2

)

M| 2

IN

R{|

2
LX,Z

+ 2\/§T0 To sup
t€[0,T0/€2]

2
+— sup [[Afj ] sup @
Lee Woreln,1y) te[0,Tp /2]

2
+ 2CUT02674 sup Q1| ,
tE[O,T()/€2]
and thus supyco r/e2) [|M |2 = O (72 + € + €2174) that is, in (4.14),

a = min {Z, 01, 261 — 4} . (4.20)

To control the energy, we need to bound ||N¢|; . This can be done under additional
assumptions that will be verified after.

First of all, from (1.11), we estimate
1Nl oo < 26 Al 70 + 4€® 1Al oo Ul oo + U720 (4.21)
where ||U||; is controlled using (4.4)
U]l e < 26 1Bl oo + 26" [ Dl oo + [V o - (4.22)
By the Proposition 2.2, we can bound
Vil <CNVIIg2 (4.23)

if we assume the L?-norm of second derivatives of V is controlled by some quantity Qo to

be introduced later, that is

Vil g2 [ Veell 2 < V2Qq, sup Q2 =0 (652> : (4.24)
tG[O,To/GQ]
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for some &9 > 0, then, we have, for some Cy > 0,

Ve < Co |Q2+Toe? sup @ (4.25)

t€[0,T0/€2]

As we will see, sup;cjo /e |V is always bigger than O (€*), so we certainly have

U]l foe < ||Vl 0e- Using the last estimate, from (4.21), we can thus obtain

1Nl < 26! [|A] 70 + 4C0€ | All oo Q2 + CFQ3 (4.26)

2
+ e 1C3TS ( sup Q1> +2CoTy sup Q1 (€ 2CoQa + 2| Al 1) -
te[0,To/€2) t€[0,T0/€2]

These bounds applied to (4.18) yield

d
) < LQ+ Ji,

dt
where
2 2
4 2 cs
L = 4e sup ||Al|j | +2¢° sup [|A]|j sup Q2+ ? sup Q2
T€[0,To] T€[0,To) t€[0,To /¢2] €[0,To /¢2]
C2T¢
+ €2C2T, sup Qo sup Q4+ L0 sup Q1
t€[0,To/e?]  t€[0,To/e?] 2 t€[0,To /2]
+ 2CoTy sup [[Allp= sup  Qu,
TG[O,T()] tE[O,To/Eﬂ
. 1
Jio= V2822 sup —|—w0T0 sup ||Al|;~ sup RéM)H
2 1e[0,To /€2 t€[0,Tp /2] t€]0,Tp /€2] L% 2
2
+  26%woTy (44—\/5) sup ||Al|j | +270 sup RELM)H sup Q1
L | tej0,T0 /€?]

T€[0,To] te[0,To /2]

2
+  2V2¢ 2W2TEC, sup HA\LOO< sup Q1> .
[

T€[0,To] te[0,7Tn/¢€?]
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By the Proposition 2.4, we have, for t € [0, To/e2],

Ql S T06_2J1611T0672. (4.27)

I1Toe™

To prevent divergence of the exponential factor e “ase — 0, we impose the condition

min {(52, 209 — 2, 00 + 01 — 4, 201 — 6, &1 — 2} > 0. (428)

2
Also, we require 41 > 4 so the quadratic term (Supte[QTo/ez] Ql) in The=2J, is negligibly
small. On the other hand, the O (613/2) free term in Jy restricts smallness of supy¢(o 7 /e2) Q1-

Indeed, by (4.27), we have

RY|

. 1
sup Q1 < e“TOEQ[\@eQ/QTo ( sup

t€[0,To /2] t€[0,T0 /2] L% 2

Lx>

2
+ 2T (\/54-4) < sup HAHLOO> +2Tp  sup
te[0,To/€2] te[0,To/€2]

R

+ wiTo sup ||All~ sup
te[0,To/€2] t€[0,To/€?]

R
Lo | tef0,1 /€]

which bounds sup¢jo 7 /e2 @1 = O (69/ %) providing Tj is small enough such that

2
2<,L)0T02611T06_2 (\/5 + 4) sup  ||All; | +2Tp sup RSIM) H < 1.
te[0,To /€2 te[0,To /€2 Lee
Therefore, the conditions (4.20), (4.28) imply that
9 )
o 1 2 ’ B 1 2 ’ ( 9)
and we additionally require
5y > 1. (4.30)

We will ensure that this constraint on s is satisfied by continuing next with estimates
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on the second derivatives of V.

4.2.2 Second energy level

Acting on the equation (4.9) with operator V.0, + V.40, + V40, and integrating in (z, 2)

over R?, we introduce the second energy functional that shall be controlled

1
Hy = 2/ (1 + emo+ N) Vg + (24 e2mo + N) [V2 + V2] + V2 + V2 +2V2) dadz.
R2
(4.31)
Long but straightforward computations show that the rate of change of the second energy

functional is given by

dHa _ > K, (4.32)

where

Ky = ¢! /R AP (Vii + Via + Vi2) dadz,

Ky = —é3 / Vit (vmaxmo + eViudzmo +26|A’2Vtt> dzdz,
]RQ

1
K3 = 2/ N, (Vi + Viz = Vi7) dadz,
R2

Ky = N [V;ftm‘/;fx + Vit Vie + Vi (‘/tzx + V;‘/zz)] dmdz,
R2
K5 = e2w(2)/ (A)wo (M Vg + M, Vi, + MyVy) dxdz,
R2
Kg == % /2 M [e (Ax)y, Vi + ((iwoA),,, + e (Az)y,) Vie + (= (iwoA),, + ¢ (A7) ) Vit] dzdz,
R
Ko — 9 ( 2 2 2
7= —21€ Wy V (VieOx ‘A| + eV, 07 ’A‘ + eV Or |A’ dxdz,
]R2
Ks = —2i64wo/ (AP (Vie Vi + Vie Vi + Vi Vy) davdz,
R2

Ky e / (Vuox B + Vi RY) + Vidy RS dad.
RZ
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Let Q9 := 7—[;/2, and we want to ensure that

sup Q=0 (652> ) (4.33)

te[To /€2

for some d3 > 1 according to (4.30).

We estimate the terms in (4.32) as follows

K| < 264 | A} Hoa,

1Ko| < 463 (HV(X,Z)moHLOO te HA||§OO) o,

|Ks| < [Nl oo Ho

|Ka| < |INlpoe IVitzll g2 + Vil 12 + (| Vaatll 2 + (| Vaztll 2) Hém»

|Ks] < 22623 || All oo (2 VM| 2 + | M| 2) Hy'

Kol < 2V26202 | M| 2 (e | Axll oo + € Az oo + € [ Arll poo + 200 [|All o) Hy',

1/2
K] < 4€%wo [|All e 1V 2 (1AX [l oo + € | AZlloe + €[ ATl o) Hy'?,

1/2,,1/2
|Ks| < 126*wp || A] 2 Hy P 1Y,

Ko| < v2e3/2 (¢ ||ox RY) + lla.rY) + lo,rM)
8 8 8
L% 2 L% 2

1/2
Lx> T

To proceed further, we shall use the bounds

IN

\V4 Tt \Y 0
o IVeezmoll - 0 s [Vexz)0rmoll

4Ty sup ||Al[; sup HV(XZ)AHLOO’
T€[0,To] T€[0,To]

IN

sup  |[VM]. < 2V2Tp |Tp  sup VRELM)H YTt sup Qu
t€[0,Tn/€2] te[0,T0/€2] Lee te[0,Tp /2]
+ Coe 2 sup Qo sup Q1
t€[07T0/62] tE[O,Tg/EQ}
44/2T,
0 sup HV(X’Z)AHLOO sup  Qo, (4.34)
wWo  Tel0,To] te[0,Tp/€2]
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where we dropped terms which are of higher order of smallness under assumptions VR(M)

12 (R?), R\™ € 1 (R2), VA € L™ (R?).

In order to control || N|| e, we can use (4.26) and the Proposition 2.1

[N oo < €Ty sup  [|Nyl| e -
tG[O,T0/€2]

Additionally, to estimate the Ky term, we need to bound the third derivatives Vi, Vits,
Viewt, Vart, which L?-norms are controlled in terms of the energy Hs that will be introduced

further, that is

WVatoll gz [Visell o s WVaatll o s IVastll o < V2R, sup w2 = 0 (), (435)
t€[0T0/62]

for some 63 > 0.

Then,

2
Kyl < 2Ty 262< sup HA||LOO> +4Cy) sup [|Al;~ sup Qo
T€[0,To] T€[0,To] t€[0,To/€2]

2 2
+ e_ZCg sup Q2 +6_6C'0T02 sup Q1 +2C§T06_4 sup @1 sup Q2
t€]0,Tp /¢?] t€]0,Ty /€] te[0,To/e?]  te[0,To/e?]

+ 4CyTpe? sup Q1 sup | All 0o 7—[1/2622.

tG[U,To/EQ} TG[O,T[)]

Details for other K-terms in (4.32) can be elaborated using the bounds above. Neglecting

source terms in Kg in comparison with other terms, we obtain

d
% < 1,Qs + o, (4.36)

where

b o= 48Ty sw Al s [VAl+22Co sup Al sup Qs
TE[OTQ] TE[O 0 TE[OT()] [0,T0/62}
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2
C? e C2T? _
+ 20< sup Q2> +# sup Q1| +2e2CyTy sup Al sup Q1
te[0,To /2] t€[0,Ty/€2] T€[0,Ty)] t€[0,To/€2]

+ €102y sup Q1 sup Qo
t€[0,To/€2] t€[0,To/€2]

2
Jy = Ty sup Hé/Q 2e2< sup ||AHLOO> +4Cy) sup ||All; sup Qo
t€[0,Ty /e?] T€[0,To] T€[0,To) t€[0,To/€?]

2 2
+ € 2C2| sup Q| +eOCTE( sup Q1| +2tCETy sup Q1 sup Qo
t€[0,To/e?] t€[0,To/€2] tel0,To/e?]  t€[0,To/e?]

+ 4e€2CoTy sup Al sup Q1]
T€[0,T0] t€[0,To/€?]

b 42Ty sup Al [2 sup A~ s Qi

T€[0,Tp) T€[0,T0) te[0,Th /€2]
2
T
+ \/500 sup (1 sup Q2+6_2—0(200+ng0) sup Q1
te[0,To/e?]  t€[0,Th/e?] V2 +e[0,To /€2]
2
+ =€ sup |All ~ sup Qg].
wWo  T€l0,T0) t€[0,To/€?]

The Proposition 2.4 applied to (4.36) gives
Q2 < Tge_QJQeIQTOE_Q.
To bound the exponential factor, we require Ioe~2 to be finite, that is
min {Ja, 202 — 2, 201 — 6, §1 + d2 — 6, 61 — 4} > 0, (4.37)
which is further reduced to the condition

5y > 6 — 4. (4.38)
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Then, we obtain sup¢(o 7, /e2) @2 = O (65/2), that is,

dg = g (4.39)
To bound terms in Joe ™2, we require
min {01 + dy — 2, 201 — 4, 01 — 2} > da, (4.40)
min {03, o3 + 03 — 2, 201 + 03 — 8, 01 + d2 + 03 — 6, 01 + 03 — 4} > da, (4.41)
209 + 03 — 4 > 69, (4.42)

and Ty to be sufficiently small such that

2
4WOT()2€I2T°€72 2| sup ||All; + V2 2Cowo  sup lAll e sup Q1] <1.
T€[0,To] T€[0,To] te[0,To/€2]

Taking into account (4.29) and (4.40)-(4.42), we find a constraint on J3
53 > 0o (4.43)

Now, we proceed on the next energy level to verify (4.43) and finalize justification esti-

mates.

4.2.3 Third energy level

To get the next energy level estimates, we consider the operator Vi ;02 + V,.:0? + Vi 0?
acting on (4.9), which is followed by integration in (z, z) over R2.

Following the same steps as before, we introduce the third energy functional

1 1
Hs = 2/((1 + 627710 + N) (Va?xt + Vz2zt + Vvt%t) + 5 (szx:p + VZQZZ) + Vm2xz + V:E2zz
R2
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1 1
+ 5 [szax - 2N$Wt]2 + 5 [Vtzzz - 2Nz‘/;tt]2) dxdz (444)

such that (4.9) yields
i _ > Ly, (4.45)

where

—Vi3,) dadz,

zzt

Ly=é" [ |AP (V2 + V2
R2
1
Ly = 3 / N, (V2 + V2, — 3Vi3,) dudz,
RZ
Ls := —64/ Vit (tha?(mo + Vo 0gmo + € Vi Or |A|2> dzdz,
R2
Ly = —263/ (Vawt VarrOxmo + €Vezt Ve Ozmo) dadz,
RQ
L5 = —/ [Nm (2sztvztt + mex%tt - Va}2tt) + Nz (2‘/221&‘[2# + szz‘/ttt - ‘/zztt)] d.il?dZ,
]R2
L¢ := / [‘/tt (Nxtvx:px + Nzt‘/zzz) + V;&% (Ntt + 2Ny Ny + 2NzNzt)] dl’dZ,
RQ
Ly = 2/ ViViae (N2 + N?) dadz,
R2
Ls = / (A)oy (MyaVagt + MaeViry + MygVigy) ddlz,
RQ
L 3 .3
Lg = 2¢ / (zwo )wo (Mz‘/zzz — Mt‘/ttt) d(EdZ,
R2
Lig = 2€%wj / ((Ax) g M Vit + € (A7) g MVazt + € (A7),,y MiVir) dadz,
R2
Ly = '} /2 M ((Axx),, Vaat + e (Azz) 4y Veut + e (A7), Vin) dadz,
R
Lyg = —2@'6%0/ 1% (Vwa§< |A? + €2V..,.0% |A|* + €2V 02 |A|2> dzdz,
RQ
Lus == —dieSuwq / (vxvmax AP + €V, V.7 |A]? + €ViVigOr ]A\Q) dzdz,
RQ

Ly = _2i€4WO / |14|2 (szmvzvxt + VoVt + V;ftv;ftt) d.%’dZ,
R2

Lis =8 / (e2vma§<R§V) + V2u0?RY) + wttangV)) ddsz.
R2
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We shall estimate these terms in the following manner

|L1| < 2" | A7 Hs,

|La| <INl oo Hs.

|Ls| < 2€* (|| 0%mo|| oo + € ]|05m0|| oo + 2€% |All oo | AT e ) Hs,
|La| < 4€® (| 0xmol| oo + € [|0zmo]| ) Hs,

|Ls| < 12||VN|| e Hs,

|Lg| < 4V Nil| oo Hy*Hy* + 2 (INutl| oo + 8 I VN oo [V N[| o) Ho,
|Le| < 16| VN |20 1y *1y/,

|Ls| < 2v2e2w2 | All o (|AM |2 + | Ml 12) 73/,

|Lo| < 4v26%wd |A]l oo (VM | 2 + | Mol 12) 3%,

1/2
Lol < 4v2€] [(1Ax | oo + €| Azllpoe) IV M 2 + € | Azl oo 11611 2] 37,

L11| < 2V2e' (| Ax x|l oo + € 1Azl oo + € | Arrl 1) Hy!

|L1a| < 4V2€%0 V| 2 (I|Al oo [1AxX || oo + € [ Az 2]l oo + € |ATT | 100 ]

2 2 2 1/2
1 Ax I + € 14713 + €l Ar] ) 73,

1/2,,1/2
|L13| < 32670 || Al oo (| Ax || oo + € |4z oo + € | AT poo) Hy P HY?,
|Lya| < 126%wq | A2 H 1Y,

1%
ol < i (2], |

2R\ )

ot 2R

1/2
L2) s

At this energy level there will be no restriction on upper bound of time-interval, therefore
we do not necessarily need to keep track of particular expressions of all the L-terms estimates,

instead we will be looking at their order of smallness only.
To control the right-hand side of (4.45), we need (4.34). Also, we use the Corollary 2.1

and the Propositions 2.2 and 2.3 to obtain the following estimates

sup VN[ < 2006 sup [ A7 + 26" Al oo Ul oo + VU e + U] oo IVU ] o] s

te[0,Tp /2] te0,To/€2]
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Toc 2 sup [613/2 HAR<8M>H , T 2¢* HARELADH IVl 2
L2, Lo

sup  [|AM|l. <
te[0,To/e2] te[0,To/e2]
M

2 [RPO| IAVIa + 40 Al Vil + 45 Al e [1AVA]
+ 2|Vlpee 1AV L2 +2Co [VV |2 [AV] 2]

sup  ||Myll2 < l3/2 ‘ARS + 2¢* ’R<M) H sup  ||0: V] 12

te0,To /2] [0 To /e [0 To / 2] te[o,To/e2]
+ 2¢ ‘8 R H sup  ||V|l2 +4€ sup Al sup [V .
te[o To/e2] > te[o,Tg/eQ] T€[0,To] te[O,TO/eﬂ

€2
+ 4— sup  [Allp  sup Vil +2 sup [V sup [[VillL2,
Wo tefo,Ty/e?] t€[0,70/¢2) t€[0,70/¢2] t€[0,T0 /2

2
sup  [[VNil[ e < de'wo | sup [Allw | +4€’wo sup Al sup (U]l
t€[0,To /€2 T€[0,Tp] T€(0,To] te[0,To /€2

+ 4 sup Al sup  [|[VU| e +2 sup  [|[VU|,e sup U, e,
T€([0,To] te[0,Tp /2] te[0,T0/€2] te[0,Tp/€2]

2
sup  [|Netllo < d€'wo | sup [[All | +4wo sup (Al sup (U]l
te[0,To /€3] T€[0,To] T€[0,To] te[0,To/e2]

+ 4@ swp Al sup VU< 42 swp VUl sup (U
T€[0,To] te[0,Tp /€2 te[0,Tp /€2 te[0,Tp /€2

2
<Ts[up IIVAIILoo> + sup Al sup ]HAAHLoc ;
0

T€[0,Ty T€[0,Ty

sup [[Ax.zymol|, . < ATo

T€[0,To] ,To]

where smaller terms are neglected under assumption AA, VA, 9rA € L™ (Rz).

Taking into account (4.29), (4.39)-(4.43), we can drop a priori smaller terms and hence

obtain

dH
— < 24Ty sup [Allpe | sup [Allpe +2 sup Qo
dt Te[0,To) Te[0,To] t€[0,T0/€?]

+ 8woTh sup [|Alpe |€ 2CowoTy sup Q1 sup Qo

T€[0,To] t€[0,To/€2] t€[0,To/€2]
2
+ Cowo| sup Qu) +4€ sup VAl sup Qo Hi
t€[07T0/62] TG[O,To} tE[O,T()/€2]
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2
+ 8e%wy sup HAHL°°< sup Qg) <€2 sup ||All e
T€[0,T0] te[0,To/€2) T€[0,70]

+ Cp sup Qg). (4.46)
te[0,To/€?]

We set Q3 := 7—[?1)/ ? and neglect the free term assuming

min {4 + 209, 2 + 3(52} > 203 + do. (4.47)
Then,
d
dQs I3Q3 + Js, (4.48)
dt
where
I3:=12T sup [Alp~ |€ sup [|All+2 sup Qaf,
T€e[0,To] T€[0,70] tE[O,T0/62]
Js = dweTy sup [|A|ljw |€ 2CowoTh sup Q1 sup Qo
T€[0,To] te0,To/e?]  t€[0,To/e?]

2
+ C'owo< sup Q2> +4€ sup |[VA| .« sup Qo
t€[0,To /2] TE0,To] t€[0,Tp /¢2]

By the Proposition 2.4,

€2CoTy sup Q1 sup Qo
t€[0,To/€2] t€[0,To/€?]

sup Qs < 4e2WRTRBTT sup || Al
te[0,To/€2] T€[0,Tp]

2
+ (o sup Q2| +4€ sup ||VAl;~ sup Qa2
t€[0,To/€2] T€[0,To) t€[0,Ty /e?]

Taking into account (4.29), (4.39)-(4.43), from here, we deduce that

03 < min{61 + 09 — 4, 209 — 2, (52} .
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Because 61 = % and d9 = %, we obtain

)

which is compatible with the condition d3 < % implied by (4.47).

Hence the third energy level is controlled and we close all the assumptions.

4.2.4 Proof of the Theorem 1.1

According to (4.29),(4.39), (4.49), we have the following estimates

sup |V =0 (), sup [V =0 (), (4.50)
t€[0,To /€] te[0,Tp /2]

sup ||AV|2 =0 (65/2> , sup [|[VAV|;. =0 <65/2) , (4.51)
t€[0,To/€?] te€[0,To/€?]

swp (M2 =0 (@2), sup VM= sup [AM[ =0 (&2). (452)
t€[0,To/€2] te[0,To /€2 t€[0,T0/€2]

Due to (4.11)-(4.12), this leads to the main final estimates in our justification analysis

2 _ 5/2
te[(?,lf;op/@] HE ‘ (A)WOHHs(RQ) -9 (6 ) ’ (5%
2 _ 5/2
te[(?}%op/@] e mOHH?(RQ) 0 (6 ) ' (454)

Note that controllability of the right-hand sides of inequalities (4.27), (4.36), (4.48) is

also due to zero initial conditions

which hold because of exact match of initial data for approximated and true solutions.

Also, in the estimates throughout this section (in particular, those involving Rév), RéM),

RéM), RELM)) we assumed smoothness of A(X,Z,T), B(X,Z,T), D(X,Z,T). This, how-
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ever, follows from the Theorem 3.2 and Remark 3.2 providing the initial data Ay (X, Z) is
sufficiently smooth. Indeed, the most stringent requirements come from the estimates per-
formed on the third energy level where we imposed conditions 0% A, 0% A, 02.A € L*® (]RQ)
for all T € [0,Tp] and 8§(Rév), O%Rév), G%Rév) e L? (RQ) for all ¢t € [O,To/ez]. Expressing
T-derivatives from the equations (3.23), (4.6)-(4.7) and differentiating one more time with
respect to T', we have to require Ay € HS (]RQ) from the L>-restriction, and Ay € H® (]RQ)
from the 8%Rév) c€L? (RZ) condition.

We have already obtained a bound for sup,cpoz,/e2) Ul When performing estimates

on the first energy level. Similarly, applying the Proposition 2.2 to the derivatives of (4.4)
and using (4.50)-(4.51), we control

sp |Ullpw = suwp VU = sup [Tl = O (7). (4.55)
t€[0,To/€?] t€[0,Tp /2] t€[0,To /2]

This allows to apply the Theorem 3.1 to extend validity of local solution E up to time ty =
Ty /€%, and the estimates (4.53)-(4.54) furnish the justification of the NLS approximation.

The proof of the Theorem 1.1 is now complete.
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Chapter 5

Numerical results

5.1 One-dimensional model

In this chapter, we illustrate our main results by numerical simulations. To simplify the setup
for numerical work, we assume that all solutions are z-independent. This corresponds to
the modulated pulse propagating in the z-direction which is uniform in the (z,y)-directions.

Equations for the z-independent residual terms (1.10)-(1.11) become
02U — (1 4 €2mg + N) 92U = —¢? (Ré‘”) N — ¢ (RéU)> , (5.1)
wo wo

N = (A%),, +2¢(A), U+U? (5.2)

wo

subject to the zero initial conditions Ul,_, =0, 6;U|,_, =0, N|,_, = 0.
Note that RgU)and RéU) are the same as defined in (1.12)-(1.13), whereas A (Z,T) and
mo (Z,T) solve the system (1.5)-(1.6) which becomes

97 A+ OpA = “"7%014, (5.3)

GTmo =2 ‘A|2 y (5.4)

subject to the initial conditions A (Z,0) = Ay (Z), mo (Z,0) = 0.
The system (5.3)-(5.4) can be solved analytically by the method of characteristics.
Let Z =2z(s) =s+ 20, T =t(s) = s and denote A (s;29) := A (s + 20,5), M (s;20) :=

mo (s + 20, 5).
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Integrating the second equation, we have
T
mo (Z,T) = 2/ |A(Z,7)|? dr,
0
and hence
S S
M (s;29) = 2/ |A (s + 20, 7)) dr = 2/ |A (1320 — 7 + 5)|* dr.
0 0
The first equation, then, becomes

d S
75 log A(s;20) = iWO/ A (520 — 7+ 5)|* dr.
0

Using polar decomposition A (s; z9) = R (s; 20) exp (i (s; 20)), we obtain

R (s;29) = R(0;20),

and

9(s;z0)—9(0;zo)+w0/os (/OA\AO(ZOH—T)FCZT) dx

Finally, eliminating parameters zg = Z — T, s = T', we conclude

A(Z,T) = Ao (Z = T) exp [iwo /OT (/ZZTTH Ao (5)] ds) d)\] , (5.5)
mo (Z,T) = Q/ZZT |Ag ()% ds. (5.6)

5.2 Numerical set-up
We choose initial profile Ay (Z) = sech (Z). Then, according to (5.5)-(5.6),
cosh Z

A(Z,T) =sech (Z — T)exp [wo <1og (COSh(Z_T)) — Ttanh (Z — T))] . (5.)
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mo (Z,T) = 2 (tanhZ — tanh (Z — T)). (5.8)

With the following notation

a = 1+ €e*my,

b= @[ (@R A+ 2ig?OrA — E03.A) + e

¢ = O [eET (DFA — (1+ o) A + 2iwomodr A) + c.c.
d = 2 (Aeiwo(zft) + c.c.> ,

e = e (A2H0CD pce).

the equations to be solved are

1 bN + ¢
U = ——9°U 5.9
t a+N z + a—i—N’ ( )
ON =U?+dU +e. (5.10)

Discretizing the computational domain, we denote the value of X at the spatial point 4
and the j-th time step by XZ»(j).

We employ the two-step explicit Adams-Bashforth method for the equation (5.10) yield-

ing
NUHD Z N O % At [(U}”)Q LDV +e§j>}—; At [(Ui(j—l))Q I GY +e§j_1)} ’

that is followed by application of the Crank-Nicholson type of scheme to solve the equation
(5.9)

i i i— (5+1) (G+1) (G+1)
Ui(1+1) _ 2Ui(1) + Ui(J 1) _ 1 Uy =207 + U7 L pEHD NGED | G
(a0? 2 (a0 "0+ NO) @7 o
(G-1) (G-1) (G-1)
N 1 Uipa ~ —2U; + U7y LU NGD | D
. . 2 (3 (3 K :
9 (agj—l) + Ni(]—1)> (Az)

Both methods have the second-order accuracy in both space and time. Initial conditions
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for U and N are approximated respectively using central differences scheme and Heun’s
predictor-corrector method:

v — v _,

©0) _ a _ At o, @)
N7 =0, N/ = 5 (ei +e; >

If the initial pulse starts at the center of the computational domain, by taking size of the

domain large enough for the time of interest, we can assume zero boundary conditions for

U at the ends of the interval in z.

5.3 Simulation results

The numerical simulation was performed for ¢ = 0.3.

The Figures (1)-(12) present profiles of U and N versus z for various instances of t. We
can observe the pulse grows in amplitude and broadens in width.

The Figures (13)-(16) show changes of the H3- and L*-norms of the error terms U and
N. The size of the error terms oscillates and slowly grows.

Repeating the simulation for different small values of the parameter €, we obtain the
data given in the Table 5.1. This allows us to estimate exponents in the power laws for the

norms of the solution

. L b _ 3
sup [Vl O(e),  swp [Nl =0 (&),

sup Uy ooy = O (€7),  sup [|N];e —0 ().
30 [Vl =0 () sup [Nl = O (¢)

We can conclude from the Table 5.1 that & ~ 5, B ~ 3,9 ~ 06, § ~ 4. This is in agreement
with the results (4.53)-(4.54).

We note that the formal expansions (1.8) and (1.9) would suggest 4 = 6 = 4, and the
latter bound agrees with the numerical value 6 ~ 4. The former bound is bigger than

the actual numerical value 4 = 6 which may be due to some cancellations of error in our
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numerical simulations.

€ 0.40 0.30 0.20 0.15

Ul sy || 6.86-1072 | 1.67-107% | 9.50-107° | 2.26-107°
& 4.9113 4.9972

[Nl g2y || 41.09-107% | 17.09-1072 | 3.25-107 | 1.37-1072
3 3.0494 3.0028

Ul ooy || 12:9-107% | 2.40-107° | 26.08-107° | 4.66-107°
ol 5.8459 5.9879

IN| ooy || 5:13-1072 | 1.61-1072 | 27.00-10~* | 8.63-10~*
5 4.0283 3.9648

Table 5.1: Supremum of the solution norms over the time interval [0, 1/ 62].
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APPENDIX

Global justification for the linear system

Here, we demonstrate that the spatial Schrédinger equation used in the previous publications
[8, 16] can be justified globally in the linear case, that is, when the squared refractive index
n? =1 is constant.

Due to the linearity of the problem, we can use separation of variables. In particular, we

factor out time-dependence multiplier e =*¢ and, hence, work with the Helmholtz equation
DPE+’E+wlE=0, zcR,zeRy, (A1)

subject to the given boundary condition E|,_, =: Ey(x) = A (ex) with small parameter
e> 0.

The leading order approximation by the multiple-scale method reads
s (z,2) = e“*A (X, Z), (A.2)
where X = ex, Z := €2z, and A (X, Z) is governed by the linear Schrédinger equation
0% A+ 2iwgdzA=0, X eER, ZcRy (A.3)

with the boundary condition A|,_, = Ay (X).

To estimate the validity of such approximation, we will take advantage of the fact that
both the Helmholtz and the Schrédinger equations are exactly solvable with the Fourier
transform. Once the solutions are found, it remains to compare them in the whole range of

Z.
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Theorem A.1. For any s > 1/2, let Ag € H* (R), € > 0. Then, if E solves (A.1), and E,s
is as defined by (A.2)-(A.3), the following estimate holds

2(25—1)
sup 18~ Bl = 0 (<57 ). (A4
z€[0,Z0/€?]

Moreover, under additional assumptions on the Fourier transform of the boundary data,

Ag € L™ (R), A € L' (R), we have

2(2s-1)
Sup || E' — Ems|l poory = O | € 75 ). (A.5)

z€RL

Proof. Using Fourier transform in the slow variable X, we write the solution to (A.3) in the

form
2

~ k
Ay (k) exp [—ikX — izZ] dk,

wo

Amm:/

R

where

- 1 .
%w:%émmw%m

Similarly, taking into account radiation (when & < wp) and an exponential decay (when

€ > wp) conditions as z — oo, the solution to the equation (A.1) is obtained in the form

Emazé&@mﬂ4mHW@fﬂ@,

where

Ey (€)= 217T/RE0 (z)e%dr = e 1Ay (6_15) .

By the duality = <> &, X < k, we have k = {/e.

Using (A.2), we introduce the error term (E — E,,5) that shall be controlled in L*°-norm

. , 2
E—-FE,= /REO (€) e i <exp [—iwoz +iy/wi — 522] — exp [—zi}ﬂ) dg.
Zo

We proceed in two steps. First, we control || — Eps| 1 for extended range 0 < 2 < 72
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for u > 0, whereas the case u = 0 will correspond to the local justification result (A.4). Then,
for A > 0, we control ||E — Eys/;00 for z > EQZ% as well. Choosing the exponents p and
A such that the both ranges overlap, that is u > A, we will deduce the global justification
result (A.5).

In the estimates below, C' denotes a positive generic constant which value can change

from line to line.

Let us fix some 6 € (0,1), x> 0 and estimate

swp B = Buliey < s [ |Boi)]-

exp (—iwoz + iy wi — §2z)

0<z< 0 0<z< o
2
—exp (—z“) ‘ dé = sup / +/
2wo ngﬁézzTOM l€]<el =9 €| >el—¢
= J1+ Jo. (AG)
Setting
2
0 0 2(4)07

we bound the first term in (A.6), for any s > 1/2,

R A 1 .
J< swp / Eo ()] | —1)de S ——5 sup AH&/ Eo (6)] de
0<z<Fo Jlgl<el = (2w0)” p<z< e lg|<et—o
p 1/2
— 0362(125)/1«/ 1210 (k)’ dk S 062(1725)*/1« / AO (k)‘ (1 4 kZ)s dk
(2wo) k| <e=d || <e?
< O Aol

where we used the Cauchy-Schwarz inequality, Plancherel theorem and the bound for small

m{%?ﬂswwasé;z

values of £

0= _ 1‘ —2

Hence, Jj is small if g < 2(1 —20) and since g > 0, we must have § < % Also, clearly,

w< 2.
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Now, we proceed with the second term in (A.6). We use regularity of Ay to obtain desired

smallness,

Jo

IN

Eo©lde=2 [  |Aow)|ax

),
lg[=et =2 |k|>e—0

dk 1/2
C A . — <C A . (25—1)5/2’
4ol ( [ (Hkg)) < O Aol e

IA

1
for any s > 3.
Therefore,

sup  [|[E — EmSHLoo(R) =0(e"), (A7)

Zg
OS2 oty

with o = min {2 — 40 — p, (2s — 1) /2}, and hence, to maximize the smallness power «, we

2(2-p)

choose § = 3577

yielding
(2—p)(2s—1)

= . A.
@ 25+ 7 (A-8)

In particular, for © = 0, we obtain the local justification result (A.4).
Note that there was no restriction on the z-interval in Jy. The restriction comes when
integrating in ¢ near the origin. To improve this, we take advantage of the oscillatory factor

e %% t0 obtain bound for larger values of z

sup |E = Emsllpo®y < sup sup ”/le y A (k) exp (—iekx — iwoz + iy /wE — e2k2z> dk

o> Lo, o> o, veR
+ / Ao (k) exp <iek:x - kaQZ) dk ] . A>0.
|k|<e=? 2wo
Setting
k 2 k2
et FE
we have |¢" (k)| = B > C > 0 for |k| < e 9 since 6 < 1. This allows to apply the

(w% —e2 k2)3/2
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van der Corput lemma (see, for instance, [6]) to estimate the first integral as

Ll(R)) '

Clearly, in the same fashion we can bound the second integral, so we finally have

sup

)
22 P RN

/k< 3y Ao (k) exp (¢ (k) €2) dk

< ([Jdd] ., + 146
Lo (R)

sup || E — Epns| gy = O (EW) .

Zg
22 57x

Summing up the results, we obtain

sup [|E — Ems|l ooy = O (eﬁ) ’
z€R

where

N ]

We require A < p to have overlap between intervals 0 < z < €QZ£H and z > e2Z+0*' Taking
= 4(62584:51)7 we obtain 8 = 2(2s—1)

6575~ Which provides the optimal error bound in the performed

analysis completing the proof of the estimate (A.5). O
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