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Abstract
In this thesis we discuss in detail the density-matrix renormalization group (DMRG) for simulating low-

energy properties of quantum spin models. We implement an original DMRG routine on the S = 1/2

antiferromagnetic Heisenberg chain and benchmark its efficiency against exact results (energies, correlation

functions, etc.) as well as conformal field-theoretical calculations due to finite-size scaling (ground-state

energy and spin gap logarithmic corrections). Moreover, we apply the DMRG to a two-leg square ladder

system, where in addition to bilinear exchange terms, we also consider an additional cyclic four-spin ring-

exchange. The transposition of four spins gives rise to biquadratic exchange terms which are non-trivial to

implement in the DMRG. Intermediate results of the ring-exchange are presented along with the difficulties

presently encountered.
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CHAPTER 1

INTRODUCTION

In condensed matter physics a theoretical investigation of magnetic behaviour often begins with writing

down a sensible Hamiltonian. Within a solid, however, the types of atomic interactions which give rise to

magnetism are generally complicated and difficult to model. Rather than obtain an exact Hamiltonian, which

can be hard to do, we often resort to simplified effective descriptions of the interactions. In many cases the

effective interactions within magnetic materials can often be described in terms of low-dimensional quantum

spin models. Not only can these models provide insight into the microscopic physics, a large number of them

in recent years have also been experimentally realized.

The simplest and perhaps most dominant interaction is a nearest-neighbour exchange of quantum spins.

By quantum spins we mean the effective description used to model the magnetic moments of an atom. This

formalism of quantum spin interaction was derived simultaneously by Heisenberg and Dirac in 1926. One

of the most widely used and successful Hamiltonians describing a set of interacting quantum spins with

nearest-neighbour exchange is the Heisenberg model [1]

HHeis = J
∑
〈i,j〉

Si · Sj , (1.1)

where J denotes the strength of the interaction, and the quantum mechanical operators Si = (~/2)σi are

the Pauli matrices1 for spins of magnitude |S| = 1/2, 1, 3/2, . . . etc. We note that (1.1) is indeed one of the

more “simpler” Hamiltonians one can use to describe magnetic phenomena.2 Two immediate intuitive states

we can think of are the ferromagnetic phase (J < 0) and the antiferromagnetic phase (J > 0), depicted in

Figures 1.1a and 1.1b, respectively. But what of other phases? How well-suited is this model at describing

experimental data? Should we consider other interactions terms, and if so, what can we expect to find?

1See Eq. (A.1) in Appendix A for more details.
2It can be derived from the more general Hubbard model (see Appendix B).
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2 A. H. L. Chan – MSc. Thesis

(a) J < 0 (b) J > 0

Figure 1.1: (a) Ferromagnetic phase: all spins are aligned in parallel. (b) Antiferromagnetic phase: neigh-
bouring spins are aligned in opposing orientations.

1.1 Modelling Magnetism in 3He

One of the earliest attempts at understanding the magnetic behaviour of solid 3He was through the Heisenberg

model [2]. Helium atoms are practically impenetrable hard spheres with a weak attractive interaction

potential. With high enough pressure solid 3He can be formed by decreasing the available space for each

atom. As a solid, due to the small mass of helium, the mean-square displacement of the atoms is large

compared to ordinary solids, thus making atom-atom exchange processes significant. Made of two protons

and one neutron, solid 3He has an overall spin of S = 1/2 where, through atom-atom exchange, an effective

interaction between nuclear spins is induced. From these exchange interactions it was observed that the

nuclear spins ordered at ∼1mK (see Figure 2 in Section II of reference [2]). At the time, the hope was to

use the Heisenberg model to explain this behaviour and possibly more.

Among the first predictions were the magnetic exchange coefficients of solid 3He through high-temperature

series expansions [2]. These coefficients were shown to agree reasonably well when compared with a number

of experiments which included nuclear magnetic resonance (NMR) techniques [3, 4], pressure measurements

in zero field [5] and specific-heat measurements [6]. Having thought to be well-understood as a Heisenberg

antiferromagnetic [7], the model became inadequate when studied at low temperatures since several predic-

tions were qualitatively wrong including the nature of the phase transition at ∼1mK and the behaviour of

the Curie-Weiss law [8, 9, 10]. This seemed to suggest that bilinear exchange, as in (1.1), was not sufficient

to capture the magnetic behaviour of solid 3He.

The mechanism behind low-temperature magnetic phenomena turned out to be from higher-order ex-

change processes involving three- or four-atom permutations; not only do the electrons exchange places but

whole atoms corresponding to real permutations of hard spheres. The actual exchange of atoms is about

three orders of magnitude greater than magnetic dipole interactions [2]. The most general effective exchange
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Hamiltonian can be written as [11, 12]

Hex = −
∑
P

(−1)sgn(P )JPP, (1.2)

where P is any permutation operator of the spins on the lattice, and JP equals one-half of the positive

tunnelling frequency associated with the permutation. An important consequence was that odd permuta-

tions, such as cyclic three-particle exchange, generally lead to ferromagnetism, while even permutations such

as two and four, favour antiferromagnetism [12]. Subsequently, three- and four-spin exchange terms were

shown to be at least the same order of magnitude as two-particle exchanges [13]. Moreover, the first-order

phase transition could be accounted for at ∼1mK, giving a qualitative description of the phase diagram [14]

and explain the correct Curie-Weiss behaviour [15]. Eventually, it was deemed that an antiferromagnetic

nearest-neighbour-only description was inadequate [16].

1.2 The Multiple-Spin Exchange in Two-Leg Ladders

Having established that biquadratic exchanges were essential to describing the magnetic behaviour of solid

3He [2], the concept of multiple-spin exchange (MSE) in the form of (1.2) can also be extended to other

areas. For instance, the three-particle ferromagnetic exchange in two-dimensional high-density solid 3He films

adsorbed on graphite [17] as well as in low-density calculations in the Wigner crystal of electrons [18]. As

recent as the early 1990s it was suggested that strongly correlated systems involving cuprates [19, 20] and two-

leg spin ladders [21] exhibit biquadratic exchange. In particular, a number of experiments on S = 1/2 two-leg

spin ladder “telephone number compounds” A14Cu24O41, have been realized to have non-negligible four-

spin cyclic ring-exchange interactions. These works include measurements using inelastic neutron scattering

(A = Sr14) [22], NMR (A = La8Ca6, Sr14, Sr11Ca3) [23] and optical conductivity (A = Ca14, La14) [24]. In

addition, attempts to fit experimental data without MSE resulted in an unnaturally large ratio of Heisenberg

couplings [23] which did not agree with electronic structure calculations nor the geometrical structure of the

ladder [25], furthering the evidence of a ring-exchange contribution.

With experiments setting the pace, theory has spawned a number of studies on two-leg square ladders and

triangular strips with four-spin ring-exchanges. These quantum spin systems, with additional frustration,

should lead to new and exotic phases. The common form of the two-leg square ladder Hamiltonian is given

by the following SU(2) invariant S = 1/2 model3:

HSL = J⊥
∑
i

Si,1 · Si,2 + J||
∑
i

∑
α=1,2

Si,α · Si+1,α +K
∑
〈ijkl〉

(
P	
ijkl + P�

ijkl

)
, (1.3)

where J⊥ and J|| are the bilinear exchange couplings on the rungs and along the legs of the ladder, respec-

tively, and K is the coupling of the cyclic four-spin permutation operator per plaquette (see Figure 1.2).

3The two-leg triangular strip can be defined analogously.
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Roman subscripts denote the lattice positions while Greek subscripts number the two legs. Note that a

bilinear cross-plaquette term can also be added to this Hamiltonian.

Figure 1.2: A schematic of a two-leg square ladder with Heisenberg interactions along the rungs and legs
as well as an additional cyclic four-spin ring-exchange per plaquette.

The action of the P operator is a cyclic permutation of four spins, i.e.

P	
ijkl

∣∣∣∣∣i j

l k

〉
=

∣∣∣∣∣j k

i l

〉
and P�

ijkl

∣∣∣∣∣i j

l k

〉
=

∣∣∣∣∣ l i

k j

〉
. (1.4)

Through a bit of algebra (see Appendix A) it can be shown that P decomposes into spin operators involving

bilinear and biquadratic terms:

P	
ijkl + P�

ijkl =
∑
µ<ν

Sµ · Sν + 4Gijkl +
1

4
, (1.5)

where the sum
∑
µ<ν is performed over all distinct pairs in a plaquette of four-spins and

Gijkl = (Si · Sj) (Sk · Sl) + (Sj · Sk) (Sl · Si)− (Si · Sk) (Sj · Sl) , (1.6)

which carries the biquadratic terms.

In recent years an assortment of methods were used to explore the phase diagram and behaviour of (1.3).

In both the strong and weak ring-exchange coupling regimes investigations have used a variety of perturbative

expansions [21, 26], spin-wave analysis [27, 28], numerical exact diagonalization (ED) in conjunction with

conformal field theory (CFT) [29], renormalization group (RG) analysis around different CFT solutions

[30], the density-matrix renormalization group (DMRG) [31, 32, 33] and large scale exact diagonalizations

supplemented with trial wavefunction variational Monte Carlo (VMC) [34]. Both analytical and numerical

approaches have observed a variety of phases. The phase diagrams are quite exotic in that these phases are

both unexpected and unconventional. The following two sections provides an overview of the phase diagrams

for different ladder geometries.
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1.2.1 Square Ladder

Starting with the two-leg square ladder, as in Figure 1.2, we show a schematic of the phase diagram in

Figure 1.3 obtained from reference [33]. The phases captured within this study agree with most of the

studies presented above. We briefly describe these phases and their properties.

Figure 1.3: A schematic of the phase diagram from reference [33] of the two-leg square ladder obtained from
exact diagonalization and DMRG calculations. The couplings are set as J⊥ = J|| = J = cos(θ)

and K = sin(θ) so that the energy scale
√
J2 +K2 is set to one. First- and second-order phase

transitions are denote by squares and circles, respectively. The empty circle marks a phase
transition of unknown nature while the dashed line indicates a crossover between two regions
without a phase transition.

Valence-bond crystals. Around θ = 0 (J = 1, K = 0), there is a phase in which the ground-state

is well-approximated by the product of local rung singlets and all excitations are gapped. In this region,

spin-spin correlations dominate and decay exponentially with distance. Since K ≈ 0, this behaviour is

perhaps expected. As θ becomes non-zero, there is a second-order phase transition to a staggered dimer

phase where a finite gap to triplet excitations exists. The ground-state is two-fold degenerate and breaks

translational symmetry. Furthermore, the system exhibits valence-bond long-range order (LRO), with the

order parameter given by

〈Si−1,α · Si,α − Si,α · Si+1,α〉 . (1.7)

Phases with chirality. There are two phases characterized by the chirality in the order parameter. As
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θ becomes larger the dimerization vanishes and there is a phase transition (of unknown type) to a staggered

scalar chirality phase with LRO. The symmetry breaking two-fold degenerate ground-state is described by

the order parameter

〈
Si,1 ·

[
Si,2 × Si+1,1

]〉
, (1.8)

which breaks both spatial and time reversal symmetries but not SU(2). This discrete symmetry breaking is

suggestive of a small finite gap to triplet excitations. The other phase, as θ continues to increase, is observed

to have short-range order (SRO) and is characterized by vector chirality. Its order parameters are given by

〈Si,α × Si+1,α〉 and 〈Si,α × Si,α+1〉 , (1.9)

which break translational symmetry. These can be visualized in a staggered circular arrangement along each

plaquette and can be regarded as local spin current operators. Thus correlations between diagonal sites are

weaker than the bonds on rungs or legs. It should be noted that these vector chirality correlations are seen

to decay much slower than spin-spin correlations. Lastly, the system has a unique ground-state and a fully

gapped excitation spectrum.

Polarization of spins. As we continue around in θ, we cross over into a region characterized by collinear

spin-spin correlations on individual legs. That is, spins on the same (different) leg exhibit ferromagnetic

(antiferromagnetic) correlations and have SRO. Similar to the vector chirality phase, the system has a

unique ground-state with a fully gapped excitation spectrum. Finally, bound between two first-order phase

transitions is a ferromagnetic phase where the energy for each plaquette is minimized separately.

1.2.2 Triangular Strip

Another ladder geometry with a cyclic four-spin ring-exchange that also has a rich phase diagram is the

two-leg triangular strip. With this geometry, the Hamiltonian (1.3) can be written as a 1D J1 − J2 chain

with an additional four-spin interaction. This system was studied [34] using a wide variety of numerical

techniques including ED, DMRG, and VMC. Using the DMRG, four distinct phases were observed in the

J2/J1 −K/J1 plane (see Figure 2 on page 2 of [34]). For K = 0 the system is a conventional Bethe chain

when J2 . 0.241167J1 and a period 2 valence bond solid (VBS-2) for larger J2. In a fairly wide region

with K > 0.2J1, J2 6= 0, a new phase exhibiting spin liquid behaviour is seen. This phase, called a spin

Bose metal (SBM), is suggested to be a gapless spin liquid possessing spin correlations which are singular

along surfaces in momentum space, i.e. “Bose surfaces”. Signatures of this state are expected to manifest in

quasi-one-dimensional (quasi-1D) ladder systems as in (1.3). This proposed SBM is believed to be a quasi-1D

descendant state of the two-dimensional “boson-ring” model describing itinerant hard-core bosons hopping

on a square lattice with a four-spin exchange term. Its ground-state is believed to be a gapless spin liquid,

called a d-wave Bose liquid, where in momentum space the Bose surface is singular. It has been suggested

that SBMs could be accessed by systemically approaching two dimensions through a sequence of quasi-1D
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ladder models [34, 35]. Surely enough, signatures of the SBM phase are observed via the DMRG and can

be seen to dominate the intermediate J2/J1 −K/J1 parameter space. We also note that in this study the

DMRG found a VBS-3 as well as a partially ferromagnetic phase flanked between SBMs. These two phases

result from instabilities of the SBM at special commensuration4. SBM has also been observed in four-leg

triangular ladders [35].

Having access to an assortment of phases, an interesting property one can measure is the entanglement

and how it differs between phases. For example, the entanglement entropy (EE) of a state, first introduced in

the context of quantum information theory [36], has gained popularity within the field of strongly correlated

systems. For a many-body quantum system the EE is defined as the von Neumann entropy (see Section 3.6.1).

It is an easily attainable quantity using the DMRG and is one kind of entanglment we wish to study in detail.

We have organized this thesis into two main parts: Chapter 2 discusses in fair detail iterative numerical

techniques for investigating 1D strongly correlated systems as well as briefly outlining Wilson’s numerical

renormalization group [37]. Chapter 3 focuses on the intricate details of the DMRG [38, 39]. We benchmark

the efficiency of an original DMRG implementation on the S = 1/2 antiferromagnetic Heisenberg chain

(1.1) by comparing with known theoretical results. This includes ground-state properties and CFT loga-

rithmic corrections. Finally, in Chapter 4 we describe the technical issues associated with the DMRG when

considering a ring-exchange Hamiltonian (1.3) on a two-leg square ladder.

4The system has developed order compatible with the lattice.
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CHAPTER 2

NUMERICAL TECHNIQUES

In this chapter we discuss the Lanczos method [40], an iterative exact diagonalization technique used to

treat quantum spin models such as the Heisenberg Hamiltonian (1.1), as well as provide a brief overview of

Wilson’s numerical renormalization group (NRG) [37].

A full investigation of a quantum many-body system requires a complete diagonalization of the ma-

trix representation of the system’s Hamiltonian. However, for strongly interacting quantum spin systems

the Hilbert space grows exponentially with the system size. It is therefore not practical in terms of time

consumption and memory storage to perform a complete diagonalization. Moreover, the simplest effective

models which involve only nearest-neighbour interactions generate sparse1 Hamiltonians presenting difficul-

ties for standard algorithms. Be that as it may, the investigation of condensed matter systems is almost

always targeted towards the low-energy properties, usually the ground-state and a few low-lying excited

states. By projecting out those states which contribute to the low-energy spectrum we can restrict our

analysis to what is known as a Krylov subspace [41] and reach larger system sizes.

2.1 Krylov Space

In general, the many-body matrix representation of a Hamiltonian is large and in particular sparse. For

numerical routines which require the full Hamiltonian to solve the eigenvalue problem, such as Jacobi’s rota-

tion method [42], the large number of matrix-matrix operations puts limitations on practical computational

efficiency and the system size. However, if the focus is to probe the low-energy physics of a strongly inter-

acting system, in particular the ground-state, one can use iterative diagonalization techniques. The basic

idea behind iterative diagonalization is to use successive matrix-vector operations (instead of matrix-matrix

operations) to construct a linear subspace in such a way that the ground-state is well-approximated. It is

1A matrix is said to be sparse if it is populated primarily with zeros.

9
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an approximation due to the repeated application of the Hamiltonian through matrix-vector products, but

it is numerically exact.

Consider an N -dimensional Hilbert space with Hamiltonian H and eigenbasis satisfying H|n〉 = En|n〉.
Let |v〉 be an initial state with random entries. Expanding |v〉 in terms of the eigenbasis and applying H

with power M gives

HM |v〉 = HM
N∑
n=1

cn|n〉 =

N∑
n=1

cnE
M
n |n〉 = cmaxE

M
max

|nmax〉+
∑

n 6=max

cn
cmax

(
En
Emax

)M
|n〉

 , (2.1)

where the constructed Krylov subspace is defined by

K = span
{
|v〉, H|v〉, H2|v〉, . . . , HM |v〉

}
. (2.2)

It is clear that if M is large enough and cmax 6= 0, the eigenpair (|Emax|, |nmax〉) will dominate the sum in

Eq. (2.1) guaranteeing a ground-state2. However, even if M is large, convergence to the ground-state may

not occur; the difference between the ground-state and the first-excited state eigenvalues must be sufficiently

large. It is otherwise unclear as to whether we have found the true ground-state. Although useful, this power

method is limited to finding only one eigenvalue (the one with the greatest absolute value) and the speed

at which it converges also varies. In the proceeding section we discuss the Lanczos method which not only

optimizes this power method but is also capable of targeting excited states. For a more detailed discussion

see Cullum and Willoughby [43].

2.2 Lanczos Method

The Lanczos method is an iterative numerical technique where a special orthonormal basis is constructed via

a Krylov subspace {|v0〉, |v1〉, . . . , |vM−1〉}. Using this basis, an N ×N -dimensional Hermitian Hamiltonian

(likely sparse) is transformed into a simple tridiagonal matrix where its matrix elements are generated

through an iterative procedure. In this form, it can be diagonalized by dense matrix algorithms.

Similar to the power method, we start with a normalized initial state |v0〉 of dimension N with random

entries. In general, no a priori information about the ground-state is known and thus random entries are

used to ensure a finite overlap between the initial state and the actual ground-state, i.e. 〈v0 |Ψ0〉 6= 0. On

the other hand, if information about the ground-state is known, e.g. the total spin number, total spin in

the z-direction, total charge, etc., the initial state can be chosen (also with random entries) to lie in a

reduced subspace belonging to that conserved quantity. It is therefore advantageous to know a priori some

information about the nature of the ground-state as both the speed of convergence and precision can be

increased. Note that this initial state can also be chosen to target excited states. Having chosen |v0〉 we

2The ground-state can be ensured by using (H−c)M instead of HM , for c > 0 and large enough, so that |E0−c| > |EM−1−c|.
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perform M iterations of the recursion relation

βi = 〈vi−1|H|vi〉

αi = 〈vi|H|vi〉

|vi+1〉 = H|vi〉 − αi|vi〉 − βi|vi−1〉 (2.3)

|vi−1〉 = |vi〉

|vi〉 =
|vi+1〉√
〈vi+1|vi+1〉

, for i = 0, 1, . . . ,M − 1

with |v−1〉 ≡ 0. Note that the vectors |vi〉 are normalized in this formulation. By construction, the Gram-

Schmidt process guarantees the orthogonality condition 〈vi |vj〉 = δij . The resulting tridiagonal matrix can

be read off as

T =



α0 β1

β1 α1 β2

β2 α2
. . .

. . .
. . . βM−1

βM−1 αM−1


. (2.4)

The main advantage the Lanczos method has over dense matrix algorithms is not due to the tridiagonal

form of H but rather that only three vectors |vi−1〉, |vi〉, and |vi+1〉 of size N need to be stored in memory,

making this method very efficient. Typically, for quantum spin systems, M ∼ O(10)−O(100) for convergence.

The most time-consuming step is the implementation of the matrix-vector product H|vi〉, which should be

written as efficiently as possible. Equation (2.4) can be diagonalized (via standard linear algebra subroutine

libraries) to yield approximate eigenvalues (λ0, λ1, . . . , λM−1) of H, and eigenvectors (|φ0〉, |φ1〉, . . . , |φM−1〉),
represented the Lanczos basis.

In order to calculate quantities such as quantum mechanical observables the eigenvectors need to be in

the original basis |n〉. There are two ways to perform a change of basis. The first approach is to store the

basis vectors |vi〉 generated at each iteration creating a transformation matrix

V =


〈0 |v0〉 〈0 |v1〉 . . . 〈0 |vM−1〉
〈1 |v0〉 〈1 |v1〉 . . . 〈1 |vM−1〉

...
...

. . .
...

〈N − 1 |v0〉 〈N − 1 |v1〉 . . . 〈N − 1 |vM−1〉

 . (2.5)
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The ground-state in the original basis can then be obtained by carrying out the change of basis

|φ0〉 =

M−1∑
i=0

|vi〉 〈vi |φ0〉 =

N−1∑
n=0

M−1∑
i=0

|n〉 〈n |vi〉 〈vi |φ0〉 , (2.6)

which is equivalent to performing the matrix-vector multiplication V |φ0〉. In practice, and in particular for

larger system sizes, the transformation matrix (2.5) would require storing a matrix of size N ×M and is

therefore not usually implemented. The second and more memory efficient approach is to run the Lanczos

subroutine twice; the first iteration as described above, while during the second iteration the basis vectors

|vi〉 would be systematically reconstructed to give the coefficients 〈n |vi〉 to form the ground-state in the

original basis |n〉.

As we have seen, the Lanczos method approximates the extremal eigenvalue and eigenvector by system-

atically improving upon a variational state that is used to represent the ground-state. For most systems

convergence to the ground-state is reached roughly on the order of 10-100 iterations. If excited states are

required then additional iterations are needed to ensure their convergence. In exact arithmetic, the set of

basis vectors {|v0〉, |v1〉, . . . , |vM−1〉} are mutually orthogonal and at most only M − 1 iterations are needed;

the eigenvalues and eigenvectors of Eq. (2.4) are then exact. However, as the number of iterations grows,

the Lanczos method suffers from finite machine precision leading to a loss of mutual orthogonality among

the basis vectors. This loss of orthogonality can lead to the appearance of spurious eigenvalues which are

not part of the original eigenvalue spectrum. Figure 2.1 shows an example of this behaviour. This loss

in orthogonality is intrinsic to the algorithm. There are, however, ways to restore lost orthogonality by

modifying the original Lanczos method (see [44] and references therein).

The basic Lanczos method is one of many iterative diagonalization procedures. Each method shares a

common idea: project the Hamiltonian onto a subspace smaller than the original Hilbert space and generate

a set of orthonormal bases spanning a Krylov subspace. In doing so the original matrix is transformed into

a convenient representation and dense matrix algorithms can be used for diagonalization. The resulting

extremal eigenpairs are known as Ritz eigenvalues and Ritz eigenvectors. In quantum mechanics, given a

trial wavefunction |φ〉, the Ritz variational principle asserts that

E0 ≤
〈φ|H|φ〉
〈φ |φ〉

. (2.7)

That is, the true ground-state energy E0 is always bounded from above by λ0. Nevertheless, the efficiency

and convergence rate of the Lanczos method makes it a common tool in studying quantum spin systems.

Finally, a number of software packages are available such as the ALPS project [45] and ARPACK [46, 47]

which have optimized implementations of various iterative diagonalization routines. A matrix-vector product

routine H|v〉 must be provided by the user and should be implemented efficiently for best results.
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Figure 2.1: Convergence of the ten lowest-lying energies as a function of the number of iterations M for a
10-site isotropic S = 1/2 antiferromagnetic Heisenberg chain. The ground-state converges in
less than 10 iterations while excited states require more. In this example, additional iterations
cause the appearance of spurious eigenvalues which skews the multiplicity of certain states.

2.3 Numerical Renormalization Group

The major problem when treating a many-body quantum system is the exponential growth of the Hilbert

space with the system size. While iterative methods are capable of handling surprisingly large matrices they

are ultimately limited by maximum system sizes3. Moreover, numerical instabilities cause the structure of

the energy spectrum to be determined incorrectly. Nevertheless, in a strongly-interacting system, there will

be large parts of the Hilbert space which are irrelevant if focus is solely on the low-energy spectrum. By

throwing away states which do not contribute an effective Hamiltonian can be formed to capture the essential

low-energy physics. The question is how do we decide which states to keep? In this chapter we give a brief

discussion of the NRG approach developed by Wilson to solve the Kondo impurity problem [37].

From statistical physics, the scaling hypothesis states that the singular behaviour of physical quantities

at the critical point is controlled by the competition between long-range correlations and fluctuation of the

order parameters at all length scales up to the correlation length. Given that these fluctuations exist at every

energy scale, an RG scheme can be developed to find the underlying hierarchical structure from which the

RG flow can be studied. The basic idea behind lattice RG techniques is to increase the system size iteratively

3L ∼ 40 sites for the S = 1/2 Heisenberg chain.
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while keeping the number of basis states constant. The computational approach is analogous to Kadanoff’s

block-spin RG [48] where the lattice Hamiltonian can be split into “blocks”. Rather than discussing the

details of the Kondo problem Wilson’s NRG will be presented in the context of 1D real-space blocking.

Starting with a chain small enough to be treated exactly we isolate two identical blocks AA as in Fig-

ure 2.2. We then diagonalize the Hamiltonian matrix HAA, corresponding to two blocks joined together, and

retain m of its lowest-lying eigenstates. These eigenstates are used to transform HAA into a new Hamiltonian

HA′ representing a block A′ which is now twice as large. With the new block and new effective Hamilto-

nian HA′ we continue this procedure iteratively until a desired length is reached. The NRG algorithm is

summarized in Table 2.1.

Figure 2.2: Blocking scheme for real-space numerical renormalization group.

Table 2.1: Numerical renormalization group in real-space.

0. Construct the full Hamiltonian HAA from two identical isolated blocks AA.

1. Diagonalize HAA and obtain the m lowest eigenstates.

2. Form matrix representations of all relevant operators HAA, QAA, etc., for AA from

the corresponding matrices for A.

3. Perform a change of basis via HA′ = O†HAAO, etc., where O is an N ×m matrix and

N is the dimension of HAA. The columns of O are the m lowest eigenstates of HAA.

4. Replace A with A′.

5. Go to step 0. .

It is clear that for the system to remain treatable the Hilbert space at each iteration must be decreased.

This reduction is the RG step and is done by projecting the Hamiltonian HAA onto the basis spanned by

the m < N lowest-lying eigenstates of HAA. Thus, the idea is to enlarge the system iteratively by doubling

its size at each iteration without having to increase the Hilbert space.
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While the NRG method succeeds in capturing the physics of the Kondo problem it fails when applied

to 1D quantum lattice models. To illustrate this we consider the elementary problem of a single particle

confined to a box (block) of length L. The Schrödinger equation is

− ~2

2m

d2

dx2
ψ(x) = Eψ(x), (2.8)

where from the boundary conditions, the states of this Hamiltonian are

ψn(x) =

√
2

L
sin
(nπ
L
x
)
, n = 1, 2, . . . . (2.9)

Depicted in Figure 2.3 (as points) are the ground-state and first-excited state wavefunctions for an isolated

block A of a given length L. When two identical isolated blocks are joined together to form a block AA

twice as large, the ground-state results in a node at the centre. However, we know that for a box of length

2L the ground-state wavefunction is at a maximum when x = L (Figure 2.3 solid line). Hence, from this

example we see that it is incorrect to assume that only those states which are energetically the lowest-lying

contribute to the ground-state of the final (infinite) system. In other words, the eigenstates which are kept

to form the new basis are likely to have inappropriate features at the boundaries for building up the blocks.

The effect of the boundary conditions on real-space RG methods was eventually understood by White and

Block A Block A

Block AA

Figure 2.3: Two isolated blocks A are connected to form a block twice as large AA. The lowest-lying
eigenstates of A do not approximate well the eigenstate of the larger block AA.

Noack [49]. Several solutions were proposed, each with a different treatment of the boundary conditions. It

was shown that errors could be eliminated, at least for single particle problems.

In summary, we have seen that the standard RG approach is not particularly effective when applied to
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strongly correlated systems. It works remarkably well for the Kondo problem because the couplings between

adjacent layers (sites) decreases exponentially, whereas in 1D systems the couplings remain constant. We

have also demonstrated that the two key aspects in the renormalization procedure need refining: enlargement

of the block and the criterion in how we choose which states to keep.



CHAPTER 3

DENSITY-MATRIX RENORMALIZATION GROUP

As the main focus of this thesis, this chapter aims to provide both a theoretical and computational under-

standing of the DMRG approach developed by White [38, 39]. In the concluding remarks of Chapter 2 we

stated that the two most important aspects of numerical renormalization group techniques are the way in

which we enlarge the system (connecting blocks together) and how we decide which states to keep (decreasing

the dimension of the Hilbert space as the system grows). In this chapter we will see that both aspects are

one in the same when viewed from the perspective of the DMRG. In the standard NRG approach, we chose

the m lowest-lying eigenstates of HAA as the new basis for the next iteration. However, these eigenstates

contain no information about the rest of the system (the new block it connects to) and is therefore the prin-

cipal issue. The superblock method (analogous to “supercell” as used in electronic structure calculations)

suggested by White and Noack, where the system is embedded in an environment, is the basis for the density

matrix approach. The idea is to optimize the basis which describes the system allowing for a “smoother”

connection to a new block.

In a standard DMRG calculation, the focus is a single target state of the superblock Hamiltonian, usually

the ground-state (although it is possible to target multiple states simultaneously). The density matrix is

constructed from the target state where from its properties an optimal basis can be found. We begin the

DMRG discussion by reviewing density matrices. For a more complete analysis see Feynman’s introduction

to density matrices [50].

3.1 The Reduced Density Matrix

To motivate the use of density matrices, let us consider a statistical mechanical problem where the universe

is divided into two parts: system and environment. From this perspective we can think of the environment

as a large heat bath in contact with a system. Using the notation in Figure 3.1, let |i〉 and |j〉 be a complete

17
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set of states describing the system and environment, respectively.

Figure 3.1: A typical superblock configuration divided into system and environment blocks with basis |i〉
and |j〉, respectively.

A general wavefunction of the universe can be written in a direct product basis as

|ψ〉 =
∑
i

∑
j

ψij |i〉 ⊗ |j〉 =
∑
ij

ψij |i〉|j〉, (3.1)

where we have dropped the ⊗ notation which is henceforth implied. Let A be an operator which acts only

on the system, i.e.

A =
∑
ii′

∑
j

Aii′ |i〉|j〉〈j|〈i′|. (3.2)

Taking the expectation value of A, we have

〈A〉 = 〈ψ|A|ψ〉 =
∑
ij

∑
i′j′

ψijψ
†
i′j′〈j| 〈i|A|i

′〉 |j′〉

=
∑
ij

∑
i′j′

ψijψ
†
i′j′ 〈i|A|i

′〉 〈j|j′〉

=
∑
ii′

∑
j

ψijψ
†
i′j 〈i|A|i

′〉

=
∑
ii′

ρii′ 〈i|A|i′〉

= tr (ρA), (3.3)

where we have defined the reduced density matrix

ρii′ =
∑
j

ψijψ
†
i′j . (3.4)

Let us define an operator ρ such that ρii′ = 〈i|ρ|i′〉. Using the hermiticity of ρii′ and the completeness

relation
∑
|i〉〈i| = 1, ρ can be diagonalized as

ρ =
∑
α

wα|uα〉〈uα|, (3.5)
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where |uα〉 is a complete orthonormal basis with corresponding eigenvalues wα. If we let the operator A = 1

and use Eqs. (3.3) and (3.5) we see that

∑
α

wα = tr ρ = 〈A〉 = 〈ψ|ψ〉 = 1. (3.6)

On the other hand, since the trace is representation-independent, we can let A = |uα〉〈uα| and conclude that

wα = tr (ρA) = 〈A〉 = 〈ψ|A|ψ〉

= 〈ψ|uα〉 〈uα|ψ〉

=
∑
j

〈ψ|uα〉 |j〉〈j| 〈uα|ψ〉

=
∑
j

∣∣(〈j|〈uα|)|ψ〉∣∣2
≥ 0. (3.7)

In summary, any universe composed of a system and environment can be described by a density matrix

ρ in the form of Eq. (3.5) with the following properties:

0. Hermitian, ρ† = ρ.

1. |uα〉 is a complete orthonormal basis.

2. Eigenvalues are non-negative wα ≥ 0 with
∑
α wα = 1.

3. Probability interpretation: Recall that

〈A〉 = tr (ρA)

=
∑
α

〈uα|ρA|uα〉

=
∑
αβ

〈
uα|ρ|uβ

〉 〈
uβ |A|uα

〉
=
∑
αβ

wα
〈
uα|uβ

〉 〈
uβ |A|uα

〉
=
∑
α

wα 〈uα|A|uα〉 . (3.8)

Hence wα can be interpreted as the probability that the system is in state |uα〉.

The above density operator formalism describes qualitatively the physical state of an ensemble. By this

we mean an ensemble which is either pure or mixed. A pure ensemble is a state in which the collection of

all interacting parts can be described by the same basis, i.e. all but one of the wα are zero. In contrast, in

a mixed ensemble, for example, the system would be described by one set of bases while the environment in



20 A. H. L. Chan – MSc. Thesis

another. In other words, a mixed ensemble is a collection of pure ensembles. Using this prescription we can

view quantum mechanics in a different light. Rather than describe a quantum mechanical system in terms

of the wavefunction, we can instead use the density matrix. This turns out to be very convenient because

for a general state |ψ〉, the eigenvalues wα of the reduced density matrix carry important information about

the entanglement of the system with the environment. That is, given that the universe is in a state |ψ〉, wα
is the probability that the system is in state |uα〉. This is precisely the criterion we need for deciding which

states to keep. In the context of the DMRG, by projecting the Hamiltonian onto those states which carry

the most weight in describing the target state, the blocks are better suited to be connected to new blocks at

the next iteration. It is therefore very natural to use the density matrix.

To compare this with the standard RG approach, consider an isolated block with Hamiltonian H at finite

temperature T . Assume that we know all the states |n〉 to H|n〉 = En|n〉. The probability that the block is

in an eigenstate |n〉 is given by the Boltzmann weight

pn =
1

Z
exp(−βEn), (3.9)

where Z is the partition function and β = (kBT )−1 is the thermodynamic beta. For an isolated block, its

density matrix is not Eq. (3.4) but rather given by the expression

ρiso =
∑
n

pn|n〉〈n| =
1

Z

∑
n

exp(−βEn)|n〉〈n|. (3.10)

The Boltzmann weight is clearly an eigenvalue of the density matrix since

ρiso|n〉 =
1

Z

∑
n′

exp(−βEn′)|n′〉 〈n′|n〉 =
1

Z
exp(−βEn)|n〉. (3.11)

Thus an eigenstate of the Hamiltonian is also an eigenstate of the density matrix. Therefore, under the

assumption that the block is isolated, choosing the m lowest-lying eigenstates to represent the block is

equivalent to viewing the new block connections as a heat bath at an effective inverse temperature β, to

which the system is very weakly coupled. However, since the system is in fact not isolated and strongly-

interacting with its environment, the more appropriate choice is to use the density matrix Eq. (3.4) and its

eigenstates to describe the system.

3.2 The Optimal States

We now show that a target state of the universe, which we assume for the moment to be pure, can be

accurately represented by keeping the m lowest-lying eigenstates of both the system and environment density

matrices. Mathematically, we wish to minimize the error

S =
∣∣|ψ〉 − |ψ′〉∣∣2, (3.12)
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where |ψ〉 is the target state in the original basis, Eq. (3.1), and |ψ′〉 is the target state in the density matrix

basis, Eq. (3.5). Let |i〉, i = 1, 2, . . . , I and |j〉, j = 1, 2, . . . , J be complete sets of states for the system and

environment, respectively. From Eq. (3.5) the following eigenstate expansions

|uα〉 =
∑
i

uαi |i〉 and |vα〉 =
∑
j

vαj |j〉, (3.13)

are where we choose the m < I, J states to keep. Thus, the approximation for |ψ〉 is

|ψ〉 ≈ |ψ′〉 =

m∑
α=1

uαi v
α
j |uα〉|vα〉 =

m∑
α=1

aα|uα〉|vα〉. (3.14)

Switching to matrix notation, the error is

S =
∑
ij

(
ψij −

m∑
α=1

aαu
α
i v

α
j

)2

, (3.15)

where minimization is over all |uα〉, |vα〉 and aα. In this form we can invoke a theoretical result from linear

algebra to obtain the desired solution. The superblock state vector |ψ〉, with possibly complex coefficients,

may be thought of as a rectangular matrix ψij . We may write it as a singular value decomposition

ψ = UDV †, (3.16)

where U and D are I × I matrices, and V † is I × J . Specifically, U and V are unitary and D is a diagonal

matrix containing the singular values of ψ1. This is made clear by noticing that

ψψ† = UDV †V DU† = UD2U† =⇒ D2 = U†ψψ†U (3.17a)

ψ†ψ = V DU†UDV † = V D2V † =⇒ D2 = V †ψ†ψV (3.17b)

and thus the elements of D are the square roots of the eigenvalues of ψψ† or ψ†ψ, the reduced density

matrices of the system or environment. Moreover, the matrices U and V are column orthogonal eigenvectors

corresponding to ψψ† and ψ†ψ, respectively. It is now clear how we minimize S: the m largest-magnitude

diagonal elements of D are the aα and the corresponding columns of U and V are the uαi and vαj . Therefore,

an optimal basis is found for a given m < I, J .

Comparing Eqs. (3.4) and (3.17a) we see that the reduced density matrix for the system is (the environ-

ment is analogous)

ρii′ =
∑
j

ψijψ
†
i′j = UD2U†, (3.18)

1Singular values are defined as the square roots of the eigenvalues of ψψ† or ψ†ψ and are non-negative real numbers.
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where U diagonalizes ρii′ . The eigenvalues wα = a2α represent the probability of the system being in state

|uα〉, and hence the optimal states uαi to keep are the eigenvectors with the largest eigenvalues. We note the

deviation from unity

ε = 1−
m∑
α=1

wα , (3.19)

measures the error in the truncation to m states.

The generalization can be made to a universe in a mixed state, in other words, an ensemble at finite

temperature. As defined earlier, a mixed state is a collection of pure states, thus we write the mixed state

wavefunction as an expansion of pure state wavefunctions Eq. (3.1)

|ψ〉 =
1

Z

∑
k

exp(−βEk)|ψk〉 =
∑
k

Wk|ψk〉, (3.20)

where the Wk are normalized Boltzmann weights. The appropriate definition of the error is now

Sk =
∑
k

Wk

∑
ij

(
ψkij −

m∑
α=1

akαu
α
i v

k,α
j

)2

, (3.21)

where the interest is in obtaining a single set of system optimal states uαi while allowing the environment to

vary over k. The reduced density matrix is simply

ρii′ =
∑
k

Wk

∑
j

ψijψ
†
i′j , (3.22)

where the eigenvalues are analogously

wα =
∑
k

Wk

(
akα
)2
. (3.23)

Thus the conclusion we draw is identical to that of the pure state: for a universe in a mixed state the optimal

states to keep are the eigenvectors of the reduced density matrix with the largest eigenvalues.

3.3 DMRG Algorithms

Having demonstrated the advantage in using density matrices, we now formulate DMRG algorithms for

investigating one-dimensional lattice models. The general idea is to follow the standard NRG approach

whereby an iterative diagonalization technique is applied to the superblock and a target state is obtained.

To represent the target state appropriately at the next iteration, we form a new truncated basis by choosing

the m lowest-lying eigenstates of the reduced density matrices. However, in order to construct a sensible

algorithm we must address the details of how the superblock is constructed and how new degrees of freedom
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are added. The former element deals with how we build the superblock from the system and environment

blocks whereas the latter is concerned with how the blocks are enlarged.

At this point, how we build up the superblock seems rather arbitrary. One approach is to follow the

NRG and double the system size at each iteration. However, for an efficient DMRG algorithm employing

an iterative diagonalization technique, the number of degrees of freedom should be minimized. For that

reason it is not computationally efficient to double the size but instead to grow the superblock by adding

only a single site to the system and environment blocks at each iteration. This freedom in how we construct

the superblock leads to two classes of algorithms which depend on how we evolve the superblock at each

iteration: the infinite and finite system procedures. The two proceeding sections outline the details and uses

of each method in a pedagogical fashion.

It will be useful to introduce some terminology to avoid any confusion that may arise. The infinite

and finite “system” algorithms refer to the superblock as a whole (the system block plus the environment

block), hence the system and environment blocks will always be referred to explicitly. When discussing the

algorithms, in particular the finite system, the left and right blocks (made clear in Figure 3.2) will refer to all

operators associated with that block defined as matrix representations in the current basis that is relevant.

We will adopt the following matrix notation

[
Mi

]b
a;a′

, (3.24)

where M is the operator, i a specific site location, b the block the operator belongs to, and a is the basis. As

previously mentioned, it is possible to target multiple states simultaneously, however, for simplicity we shall

target only the ground-state. Finally, forthcoming figures will depict the DMRG applied to block schematics

corresponding to one-dimensional lattice models, and even though originally developed for one dimension

the technique is not strictly limited by the dimensionality.

3.3.1 Infinite System Build

The following refers to Figure 3.2. We start with a chain of L sites as depicted in Figure 3.2a, small enough

to be treated exactly from which the superblock Hamiltonian H is formed2. It is convenient to separate the

superblock into four smaller blocks as in Figure 3.2b: a left block, two central blocks which are typically

single sites, and a right block3. We label the states of the elementary unit site, denoted by a solid circle •,
by |sd〉 (d = 1, . . . , D), where D is the number of accessible configurations4. The blocks Bl,m and B′l′,m′
contain l and l′ sites such that L = l+ l′+ 2. In addition the blocks are labeled by an m-dimensional5 basis,

|al〉, al = 1, . . . , (sd)
l and |bl′〉, bl′ = 1, . . . , (sd)

l′ , i.e. m = (sd)
l and m′ = (sd)

l′ , to reflect the number

of sites contained. Finally, Figure 3.2c shows one particular choice in distinguishing the system from the

2“Forming the superblock” is to be interpreted as constructing the HamiltonianH in sparse form via iterative diagonalization.
3This configuration is for open boundary conditions. See Section 3.3.3 for periodic boundary conditions.
4For example, in the Heisenberg model D = 2: |s1〉 = | ↑〉, |s2〉 = | ↓〉 in the Sz basis.
5In general, m is chosen so that the Hilbert space does not grow with the system size but at this stage it is exact.
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environment. It is usually the case that for the infinite system algorithm the environment block is chosen to

be a reflection of the system block which includes a single site. With (l′,m′) = (l,m) the superblock grows

by two sites per iteration until a desired “infinite” length is reached. For the proceeding discussion (l′,m′)

are not necessarily equal to (l,m).

(a)

(b)

(c)

Figure 3.2: (a) One-dimensional chain of L sites with open ends. (b) A typical superblock configuration
broken into four separate blocks. Rectangles represent blocks containing l and l′ sites, while
solid circles • represent single sites. (c) One choice in isolating the system from the environment.

Having defined an appropriate basis, the first step in the infinite system algorithm is to construct the

Hamiltonian H for the superblock configuration Bl,m • •′ B
′

l′,m′ . To illustrate how we construct H, let us

assume for simplicity that the chain interacts through a nearest-neighbour exchange J and is subjected to

an on-site field term h. The superblock Hamiltonian can then be written as

H = HB ⊗ 1••
′B′ + 1B••

′
⊗HB′

+ J
(
HB• ⊗ 1•

′B′ + 1B ⊗H••
′
⊗ 1B

′
+ 1B• ⊗H•

′B′
)

+ h
(
1B ⊗H• ⊗ 1•

′B′ + 1B• ⊗H•
′
⊗ 1B

′
)
. (3.25)

Using the Lanczos method, or any other sparse matrix diagonalization routine, we calculate the ground-state

wavefunction in the superblock basis

|ψ〉 =
∑

al,sd,sd′ ,bl′

ψalsdsd′bl′ |alsdsd′bl′〉. (3.26)

To extend the length of the superblock to L+2 and simultaneously suppress the growth of the Hilbert space,

we form an effective Hamiltonian H̃ for the superblock configuration Bl+1,m • •′ B
′

l′+1,m′ from an optimal
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basis obtained through diagonalizing the system and environment reduced density matrices

[
ρ
]sys
al sd;a

′
ls
′
d

=
∑
sd′ ,bl′

ψ
al sdsd′bl′

ψ†
a′ls
′
dsd′bl′

, (3.27a)

[
ρ
]env
s
d′bl′ ;s

′
d′b
′
l′

=
∑
al,sd

ψ
al sdsd′bl′

ψ†
al sds

′
d′b
′
l′
. (3.27b)

From Eqs. (3.27a)-(3.27b) the optimal bases uαalsd and vβsd′bl′ satisfy

∑
a′l,s
′
d

[
ρ
]sys
al sd;a

′
ls
′
d

uαalsd = wαu
α
alsd

, (3.28a)

∑
s′
d′ ,b
′
l′

[
ρ
]env
s
d′bl′ ;s

′
d′b
′
l′
vβsd′bl′ = wβv

β
sd′bl′

, (3.28b)

where the set of eigenvectors uα and vβ are expanded in terms of the superblock basis. Retaining the m (m′)

largest-magnitude eigenvalues6 and associated eigenvectors of the system (environment) density matrix, we

construct the following truncation matrices

[
O
]sys
alsd;α

= uαalsd , α = 1, 2, . . . ,m , (3.29a)[
O
]env
sd′bl′ ;β

= vβsd′bl′ , β = 1, 2, . . . ,m′. (3.29b)

Note that if all the states are retained then O†O = 1. These will be used to “renormalize”, or rather,

transform the blocks B• and •′B′ to an appropriate basis to represent the ground-state at the next iteration.

To apply the transformation we form matrix representations of the system (left+central) and environment

(central+right) block Hamiltonians

[
H̃
]B
α;α′

= Osys,†HB•Osys =
∑

al ,sd,a
′
l,s
′
d

Oα;al sd
Hal sd;a

′
ls
′
d
Oa′ls′d;α′

, (3.30a)

[
H̃
]B′
β;β′

= Oenv,†H•
′B′Oenv =

∑
s
d′ ,bl′ ,s

′
d′ ,b
′
l′

Oβ;s
d′bl′

Hs
d′ ,bl′ ;s

′
d′ ,b
′
l′
Os′

d′b
′
l′ ;β
′ , (3.30b)

as well as any other relevant operators such as a spin component7

[
S̃σ•
]
α;α′

= Osys,† (1B ⊗ Sσ• )Osys =
∑

σ,al ,sd,a
′
l,s
′
d

Oα;al sd

[
Ŝσ•
]
al sd;a

′
ls
′
d

Oa′ls′d;α′
, (3.31a)

[
S̃σ•′
]
β;β′

= Oenv,†
(
Sσ•′ ⊗ 1B

′
)
Oenv =

∑
σ,s

d′ ,bl′ ,s
′
d′ ,b
′
l′

Oβ;s
d′bl′

[
Ŝσ•′
]
s
d′bl′ ;s

′
d′b
′
l′
Os′

d′b
′
l′ ;β
′ . (3.31b)

6The values of m and m′ should be chosen sufficiently large to accurately represent the ground-state at the next iteration
but also sufficiently small to maximize efficiency.

7Eqs. (3.31a)-(3.31b) show that for a chain with nearest-neighbour interactions, it is necessary to reconstruct the appropriate
“link” needed between the rightmost (leftmost) site of the system (environment) block and a free site.
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The superblock Hamiltonian H̃ of size L + 2 is formed using H̃B, two single sites and H̃B
′
, plus any other

local operators needed to connect the blocks. For example, if the Hamiltonian is of the form

H = J

L−1∑
i=1

Si ·Ti+1 + h

L∑
i=1

Vi , (3.32)

where Si, Ti and Vi are operators acting on the ith site, then the effective superblock Hamiltonian is

H̃ =
[
H̃
]B
α;α′
⊗ 1••

′B′
sdsd′β;s

′
ds
′
d′β
′ + 1B••

′

αsdsd′ ;α
′s′ds

′
d′
⊗
[
H̃
]B′
β;β′

+ J

([
S̃l+1

]B
α;α′
⊗T•

sd;s
′
d

⊗ 1•
′B′
s
d′β;s

′
d′β
′

+ 1Bα;α′ ⊗ S•
sd;s

′
d

⊗T•
′

s
d′ ;s
′
d′
⊗ 1B

′

β;β′

+ 1B•
αsd;α

′s′d
⊗ S•

′

s
d′ ;s
′
d′
⊗
[
T̃l

]B
β;β′

)
+ h

(
1Bα;α′ ⊗V•

sd;s
′
d

⊗ 1•
′B′
s
d′β;s

′
d′β
′ + 1B•

αsd;α
′s′d
⊗V•

′

s
d′ ;s
′
d′
⊗ 1B

′

β;β′

)
, (3.33)

and has a reduced Hilbert space of size D2mm′. Note the similarity in form between Eqs. (3.25) and (3.33).

The calculation is then repeated substituting H̃ for H, until a desired length is reached. We summarize the

infinite system algorithm in Table 3.1.

Table 3.1: Infinite system density-matrix algorithm.

0. Form the superblock Hamiltonian H (in sparse form) from four initial blocks: a left
block, two central blocks and a right block.

1. Using a sparse matrix diagonalization routine, diagonalize H and obtain the target
state (usually the ground-state) in the superblock basis ψ(al, sd, sd′ , bl′).

2. Form the reduced density matrices ρ[ and diagonalize to obtain the m[ largest-
magnitude eigenvalues and corresponding eigenvectors uα[ .

3. Construct the appropriate truncation matrices O[[;α = uα[ , α = 1, 2, . . . ,m[, such that

the columns are the m[ retained eigenvectors of ρ[.

4. Form matrix representations of all relevant operators H[, Sσ,p, etc., and truncate to

the new basis of m[ states via H̃[ = O[,†H[O[, etc.

5. Form the next iteration superblock Hamiltonian H̃ of length L + 2 (in sparse form)

using H̃B, two single sites and H̃B
′
, plus any other local operators.

6. Is the desired length Lmax? If not, go to step 0. substituting H̃ for H.

As illustrated by Eq. (3.33) and Figure 3.3 the new sites replace the old central ones, effectively pushing

the ends of the chain apart. It is important to note that these new sites are in the original superblock
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Figure 3.3: Three infinite system DMRG steps. Central sites are absorbed (red and blue dashed boxes)
with each successive iteration, pushing them outward towards the ends of the chain.

basis as they have had no previous connection to the system. When a desired length Lmax is reached, each

block approximately represents one-half of an infinite chain but both are neither completely isolated in the

standard NRG sense; the effective Hamiltonian formed contains a system block which depends strongly on

the environment block.

We emphasize that the infinite system algorithm can increase the total number of sites by two at each

iteration without increasing the Hilbert space. For a strongly-interacting system of L sites each with D

degrees of freedom, the Hilbert space is reduced to D2mm′ at each iteration provided m and m′ are chosen

appropriately. Clearly, the more states kept the better the representation. However, the precision of the end

result is, in some sense, predetermined since each block is always described by m states regardless of the

number of sites it contains. Hence, for a reliable DMRG calculation m should be chosen by inspecting the

truncation error Eq. (3.19) at each iteration and ensuring that ε remains sufficiently small ∼ 10−5−10−8. In

particular, for critical one-dimensional systems where the correlation length ξ =∞, ε decays algebraically in

m whereas for non-critical ξ <∞, ε decays exponentially. This decay behaviour characterizes how entangled

the system is: a critical system is more entangled and requires more states to be kept.

3.3.2 Finite System Sweep

The infinite system algorithm is used to build up the size of the superblock to a “thermodynamic limit” by

systematically introducing new sites between the system and environment blocks. There is, however, a slight

setback due to the nature of the algorithm; at each step as we truncate all operators to an m-dimensional

basis superficial errors are introduced in the description of the wavefunction for the next iteration. As the

algorithm iterates, these errors are compounded leading to poor convergence8 of the wavefunction. The

result is an unsatisfactory wavefunction for a superblock of length Lmax. The underlying physical reason is

because the wavefunction of the final lattice size is completely different from the initial size.

8Not in the sense of converging to the wrong state.
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In this section we describe how to overcome the issue of different lattice sizes by using a finite system sweep

procedure on a superblock of length Lmax. This procedure optimizes, to a degree, the bases in both blocks

by varying the size of the environment block while keeping the superblock length fixed. By optimizing the

bases most of the compounded superficial errors can be eliminated as well as reducing some of the truncation

error. As a direct consequence, measurements of observables can be adjusted to be more accurate and in

some cases change the overall qualitative behaviour.

The finite system algorithm is summarized in Table 3.2 and a schematic is presented in Figure 3.4. We

start with a slightly modified infinite system DMRG for a chain of L sites, where for simplicity we assume

the environment block has been chosen to be a reflection of the system block Bl,m • •B
′

l,m. Ordinarily, Bl+1,m

would replace Bl,m at each step; instead we store in memory the block Hamiltonian and any other relevant

operators of Bl,m so that we may recall them later. Aside from this addition, we carry out the infinite system

DMRG as normal until the superblock becomes BLmax/2−1,m • •B
′

Lmax/2−1,m, the starting point of the finite

system DMRG.

Table 3.2: Finite system density-matrix algorithm.

0. Use the infinite system algorithm on a chain of L sites to build up a superblock of length
Lmax, storing at each iteration the block Hamiltonian and any relevant operators for
the left and right blocks. Here, l = l′ = Lmax/2− 1.

1. Left-to-right. Carry out steps 2. - 4. of Table 3.1 enlarging only the left block to

Bl+1,m. Store the block. Now l = l + 1 and l′ = l′ − 1.

2. Form the superblock Bl,m • •B
′

l′,m of length Lmax, where the right block is obtained

from step 0. .

3. Repeat steps 1. - 2. until l = Lmax − L/2− 1 and l′ = L/2− 1.

4. Right-to-left. Carry out steps 2. - 4. of Table 3.1 reversing the roles of the left and

right blocks, that is, enlarge only the right block to B′l′+1,m using the stored Bl,m as

the environment. Store B′l′+1,m. Now l = l − 1 and l′ = l′ + 1.

5. Form the superblock Bl,m • •B
′

l′,m of length Lmax, where the left block is obtained
from the previous sweep.

6. Repeat steps 3. - 4. until l = L/2− 1 and l′ = Lmax − L/2− 1.

7. Go to step 1. until convergence has been obtained, in which case terminate with a

symmetric superblock configuration BLmax/2−1,m • •B
′

Lmax/2−1,m.

The finite system algorithm improves the convergence of the wavefunction by carrying out a “sweep”

procedure. The idea is to systematically grow the left block by one site while reducing the right block

correspondingly. In the first step we diagonalize the superblock configuration BLmax/2−1,m • •B
′

Lmax/2−1,m

but enlarge only the left block to BLmax/2,m in the usual way. Like before we store this block in memory. In
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Figure 3.4: A schematic of the finite system algorithm completing a full system sweep. Dashed boxes (red)
denote the direction of the sweep.

the next step, we take the right block from memory and form the configuration BLmax/2,m
• •B′Lmax/2−2,m,

where again we enlarge only the left block to BLmax/2+1,m and store it to memory. We continue this until the

number of sites in the right block reaches the minimum size of L/2− 1, comprising one finite system sweep.

We now reverse the roles of the blocks and sweep in the opposite direction. Note that subsequent

iterations will use blocks which have been obtained from the previous sweep. The second sweep starts by

diagonalizing the configuration BLmax−L/2−1,m • •B
′

L/2−1,m to obtain an enlarged right block B′L/2,m. Here,

B′L/2−1,m is always known exactly and BLmax−L/2−1,m is taken from memory. From this point the remainder

of the second sweep is equivalent to the first sweep in that we iterate until the superblock configuration is

BL/2−1,m • •B
′

Lmax−L/2−1,m. We continue sweeping back and forth in this manner, improving the ground-

state with each sweep, until the ground-state energy converges. Although in some cases the energy will not

show any sign of improvement until after a few sweeps. For one-dimensional systems a typical number of

sweeps is of O(1). The last sweep should end in the symmetric configuration BLmax/2−1,m • •B
′

Lmax/2−1,m,
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where the wavefunction can then be used to calculate observables.

By keeping the superblock length fixed, each finite system sweep improves the overall accuracy of the

block matrix representations, leading to a more desirable description of the ground-state. However, because

of the truncation to m basis states, the reduced Hilbert space of the Hamiltonian will always yield a ground-

state energy higher than the exact value. By sweeping back and forth, the finite system DMRG is equivalent

to a variational method whereby the trial wavefunction at each step is automatically constructed under the

restriction of the m basis states.

Throughout the discussion of the two algorithms we focused our attention on the ground-state of the

Hamiltonian. However, because we employ a sparse matrix diagonalization routine, it is possible to target

more than one state using both DMRG algorithms. After each diagonalization step, reduced density ma-

trices for each extracted target state must be calculated leading to separate truncation matrices. Thus, for

every target state acquired each operator must be kept and updated accordingly during the entirety of the

calculation. In this way, the DMRG is capable of representing the Hilbert spaces around each target state

very efficiently.

3.3.3 Periodic Boundary Conditions

The DMRG algorithms described in the two previous sections were in terms of open boundary conditions

(OBC). To use DMRG with periodic boundary conditions (PBC), the correct superblock configuration is

Bl,m • B
′

l′,m′•′, which helps to reduce the sparseness of the superblock Hamiltonian. This is useful since

most one-dimensional strongly correlated systems are studied using PBC. For smaller system sizes PBC are

mainly preferred to OBC since finite-size effects can be kept to a minimum. Be that as it may, even with

this configuration the periodic case yields less accurate results [51]. Thus, OBC are mainly used since better

results are obtained for a given computational effort, i.e. if a certain accuracy is obtained by keeping m

states for OBC, then m2 states need to be kept to achieve the same accuracy for PBC.

3.4 Measurements

Once the superblock of Lmax sites has been swept through, the improved wavefunction(s) can be used to

calculate expectation values of quantum observables. In addition to the energy, the DMRG is capable of

evaluating expectation values of the form

〈A〉 = 〈ψ|A|ψ〉 , (3.34)

using the ground-state (or an excited-state) wavefunction |ψ〉 from the diagonalization of the Lmax − site

superblock. Note that the most accurate results will come from diagonalizing the symmetric configuration

l = l′ = Lmax/2− 1, where both left and right blocks have an equal number of sites.

Although seemingly a straightforward task, one cannot just simply carry out Eq. (3.34). The problem
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lies in the basis of the obtained wavefunction |ψ〉. The states which describe the left and right blocks have

been transformed many times over, evolving in such a way that cannot be easily deciphered. That is to say,

any quantum observable we wish to measure must also evolve in exactly the same manner as the blocks.

For example, to measure the expectation value of the on-site spin density Szi for a site i in the left block,

the matrix representation
[
S̃zi
]B
α;α′

must be tracked throughout the entire calculation and updated at each

subsequent DMRG step. Suppose we have added the site i to the left block as in Eq. (3.31a). When a new

site is added at the next iteration the matrix representation must be adjusted properly according to

[
S̃zi
]B
α;α′
←−

∑
al ,sd,a

′
l,s
′
d

Oα;al sd

([
S̃zi
]B
al ;a

′
l

⊗ 1•
sd;s

′
d

)
Oa′ls′d;α′

. (3.35)

where the measurement can then be carried out as

〈ψ|Szi |ψ〉 =

m∑
al ,a

′
l

∑
sd,sd′ ,bl

ψ†
al sdsd′bl

[
S̃zi
]B
al ;a

′
l

ψ
a′lsdsd′bl

, (3.36)

giving an exact evaluation of 〈ψ|Szi |ψ〉 for an approximate eigenstate |ψ〉.

For a non-local measurement such as the two-point correlation function Cij =
〈
ψ|Szi Szj |ψ

〉
extra care

must be taken. If the sites i and j are located on different blocks, say the left block and the right block

respectively, the expectation value is a direct application of Eq. (3.36) with an intermediate step:

〈
ψ|Szi Szj |ψ

〉
=

m∑
al ,bl ,a

′
l,b
′
l

∑
sd,sd′

ψ†
al sdsd′bl

[
S̃zi
]B
al ;a

′
l

[
S̃zj
]B′
bl ;b
′
l

ψ
a′lsdsd′b

′
l

. (3.37)

However, if i and j are located on the same block, say the left block, the expression is not

〈
ψ|Szi Szj |ψ

〉
6=

m∑
al ,a

′
l,a
′′
l

∑
sd,sd′ ,bl

ψ†
al sdsd′bl

[
S̃zi
]B
al ;a

′
l

[
S̃zj
]B
a′l;a

′′
l

ψ
a′′l sdsd′bl

, (3.38)

but is rather given by the compound object

〈
ψ|Szi Szj |ψ

〉
=

m∑
al ,a

′
l

∑
sd,sd′ ,bl

ψ†
al sdsd′bl

[
S̃zi S

z
j

]B
al ;a

′
l

ψ
a′lsdsd′bl

, (3.39)

which must also be updated analogous to Eq. (3.35). To see why this is the case, consider a symmetric

configuration where l′ = l = L/2, and i = l + 1 and j = l + 2 belonging to the system block with a basis
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indexed by al = 1, . . . ,m. The on-site spin density matrix representations are then

[
S̃zi
]B
α;α′

= Osys,†
(
1Bi ⊗ 1j2;2 ⊗ Szi

)
Osys =

∑
al ,sd,a

′
l,s
′
d

Oα;al sd

[
Ŝzi
]
al sd;a

′
ls
′
d

Oa′ls′d;α′
, (3.40a)

[
S̃zj
]B
α;α′

= Osys,†
(
1Bj ⊗ Szj ⊗ 1i2;2

)
Osys =

∑
al ,sd,a

′
l,s
′
d

Oα;al sd

[
Ŝzj
]
al sd;a

′
ls
′
d

Oa′ls′d;α′
, (3.40b)

[
S̃zi S

z
j

]B
α;α′

= Osys,†
(
1Bij ⊗ Szi ⊗ Szj

)
Osys =

∑
al ,sd,a

′
l,s
′
d

Oα;al sd

[
Ŝzi S

z
j

]
al sd;a

′
ls
′
d

Oa′ls′d;α′
, (3.40c)

where Bi, Bj and Bij label the appropriate dimensions for the respective identity matrices. Applying

Eqs. (3.38)-(3.39) we have

〈
S̃zi S̃

z
j

〉
=

〈
m∑

al ,a
′
l,a
′′
l

[
S̃zi
]B
al ;a

′
l

[
S̃zj
]B
a′l;a

′′
l

〉

=

〈
m∑

al ,a
′
l,a
′′
l

∑
sd,s

′
d,s
′′
d

(
Oal ;al sd

[
Ŝzi
]
al sd;a

′
ls
′
d

Oa′ls′d;a′l

)(
Oa′l;a′ls′d

[
Ŝzj
]
a′ls
′
d;a
′′
l s
′′
d

Oa′′l s′′d ;a′′l

)〉

=

〈
m∑

al ,a
′
l,a
′′
l

∑
sd,s

′
d,s
′′
d

Oal ;al sd

[
Ŝzi
]
al sd;a

′
ls
′
d

Oa′ls′d;a′l
Oa′l;a′ls′d︸ ︷︷ ︸
6=1

[
Ŝzj
]
a′ls
′
d;a
′′
l s
′′
d

Oa′′l s′′d ;a′′l

〉

6=

〈
m∑

al ,a
′
l

[
S̃zi S

z
j

]B
al ;a

′
l

〉
. (3.41)

We see that the product of two truncated operators results in a non-unitary inner multiplication of O†O.

We stress that this kind of multiplication leads to incorrect measurements. The solution is to multiply the

two operators as soon as possible guaranteeing the sum to run over a complete set of states, i.e. O†O = 1.

Generally speaking, one should choose points i and j located on different blocks, preferably a block and a

free site. If possible, avoid choosing i and j such that they are separated across the centre as this generally

leads to a larger error (since both the left and right blocks have been truncated). In Chapter 4 we will see

that multiplications occurring on the same block as well as different blocks are unavoidable when applying

the DMRG to Hamiltonians with higher-order interactions.

3.5 Improving Efficiency

The most time-consuming part of any DMRG calculation is the multiplication of the Hamiltonian with an ar-

bitrary vector H|v〉 during the iterative diagonalization step. The Lanczos method, discussed in Section 2.2,

converges to a target state typically on the order of O(10)−O(100) iterations. Of course, if a sufficiently large

basis is generated, then we are guaranteed a numerically exact result. However, in a typical DMRG calcu-

lation where the number of matrix-vector multiplications could be several hundred, reducing the number of
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steps to reach convergence would lead to a proportional speedup of the diagonalization. Moreover, depending

on the complexity of the interactions in the system several of these bonds may need to be reconstructed to

form the superblock Hamiltonian. In such an instance, because each operator is m×m in size, the number of

operations scales linearly with the overall time O(Nm2) needed to perform one matrix-vector multiplication.

In this section we discuss the properties of both the Hamiltonian and the finite system algorithm which can

be exploited in order to construct an efficient implementation.

3.5.1 Exploiting Symmetries

For an overall increase in speed and precision it is essential to exploit a system’s symmetries. By truncating

to m basis states we have thrown away bits and pieces of the description of the target state which seemingly,

according to the density matrices, are not all that important. However, to ensure that we are as precise

as possible it is necessary that we minimize the degrees of freedom which do not contribute. In condensed

matter we often use models which exhibit Abelian symmetries, i.e. conserved quantities. These could be a

rotational symmetry, parity inversion, square of the total spin, total spin in the z direction, total particle

number, etc. For example, if a Hamiltonian H preserves symmetry A, i.e.

[
H,A

]
= 0, (3.42)

then the eigenvalues of H and A are simultaneous good quantum numbers. Once good quantum numbers

are identified we can choose to work in a representation where the symmetry operators are always diagonal,

i.e. working in a basis which simultaneously diagonalizes H and A. In one-dimensional systems where short-

ranged interactions are the norm, the matrix representations of operators are populated mostly by zeros.

Depending on the target state, most of these zeros will not contribute and thus should be ignored from

the entire calculation. By choosing an appropriate symmetry sector for the target state, i.e. keeping only

relevant states, we can do away with large sparse matrices and instead work with smaller dense matrices.

The target state is then always computed within a set of good quantum numbers and not in the superblock

Hilbert space, thus leading to a significant reduction in the computational effort. The payoff is a faster and

more precise DMRG implementation.

3.5.2 Preconditioning: Transforming the Wavefunction

We emphasize that the following procedure improves only the speed at which the target state is computed

while the precision remains unchanged. To reduce the time needed to perform the matrix-vector multiplica-

tions and to ensure convergence to the actual target state, we make use of the fact that the starting vector

can be preconditioned. Typically, the operation H|v〉 requires ∼ O(40) − O(100) iterations to converge to

the target state with sufficient accuracy. In the Lanczos method where the starting vector is random, a large

number of iterations are needed to ensure convergence to the target state. The solution to ensuring that the

DMRG always remains stable and accurate is to modify the starting vector.
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The basic principle behind preconditioning is to provide the Lanczos method with an initial starting

wavefunction that is a good approximation to the desired target state. Not only will this will ensure conver-

gence to the correct target state, but more importantly it will reduce the overall computational time. Since

the lattice size remains fixed during the finite system DMRG, an ideal starting wavefunction would be the

state |ψ〉 obtained from the previous step. However, this wavefunction is in a different basis corresponding to

a different superblock. To transform the wavefunction into an appropriate basis to describe the superblock

at the next finite system step, we make use of the truncation matrices Eqs. (3.29a)-(3.29b) obtained after

step 3 of Table 3.1.

Following [52] we present the wavefunction transformation using the four-block superblock description of

fixed size L. We begin with the left-to-right finite system sweep. At step l of the sweep the wavefunction in

the superblock basis is given by

|ψ〉 =
∑

αl,sl+1,sl+2,βl+3

ψαlsl+1sl+2βl+3
|αl〉 ⊗ |sl+1〉 ⊗ |sl+2〉 ⊗ |βl+3〉, (3.43)

where |αl〉 is the basis of the left block containing l sites, |sl+1〉 and |sl+2〉 are the bases of the two single

sites l+ 1 and l+ 2, and |βl+3〉 is the basis of the right block containing L− l− 2 sites. The transformation

of the wavefunction into the new superblock basis for step l+ 1 is carried out in two steps: absorb a site into

the left block and “spit out” a site from the right block. After enlarging the left block in the usual manner,

we use the constructed truncation matrix
[
O
]sys
αlsl+1;αl+1

to form the new left block basis

|αl+1〉 =
∑

αl,sl+1

[
O
]sys
αlsl+1;αl+1

|αl〉 ⊗ |sl+1〉. (3.44)

The right block basis |βl+3〉 was formed with the truncation matrix
[
O
]env
sl+3βl+4;βl+4

at an earlier DMRG

step9 and is similarly written as

|βl+3〉 =
∑

sl+3,βl+4

[
O
]env
sl+3βl+4;βl+4

|sl+3〉 ⊗ |βl+4〉. (3.45)

To transform the wavefunction into the appropriate basis for the next step, |αl+1sl+2sl+3βl+4〉, we make use

of the approximations10

∑
αl+1

|αl+1〉〈αl+1| ≈ 1 and
∑
βl+3

|βl+3〉〈βl+3| ≈ 1. (3.46)

With these the coefficients of the wavefunction in the new basis are obtained through two steps:

9Either from the infinite system DMRG or a previous finite system sweep.
10They are approximate simply because we have truncated to m states.
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0. Form the intermediate result

〈
αl+1sl+2βl+3

∣∣∣ψ〉 ≈∑
α′l+1

〈
αl+1

∣∣∣α′l+1

〉〈
α′l+1sl+2βl+3

∣∣∣ψ〉
=

∑
αl,sl+1

[
O
]sys,†
αlsl+1;αl+1

〈
αl sl+1sl+2βl+3

∣∣∣ψ〉 . (3.47)

1. Followed by the final result

〈
αl+1sl+2sl+3βl+4

∣∣∣ψ〉 ≈∑
βl+3

〈
αl+1sl+2sl+3βl+4

∣∣∣βl+3

〉〈
βl+3

∣∣∣ψ〉
=
∑
βl+3

∑
s′l+3,β

′
l+4

〈
αl+1sl+2sl+3βl+4

∣∣∣[O]env
s′l+3β

′
l+4;β

′
l+4

∣∣∣s′l+3β
′
l+3

〉〈
βl+3

∣∣∣ψ〉
=
∑
βl+3

〈
αl+1sl+2βl+3

∣∣∣ψ〉 [O]env
sl+3βl+4;βl+4

. (3.48)

Therefore, the complete transformation sweeping left-to-right is

〈
αl+1sl+2sl+3βl+4

∣∣∣ψ〉 ≈ ∑
αlsl+1βl+3

[
O
]sys,†
αlsl+1;αl+1

〈
αl sl+1sl+2βl+3

∣∣∣ψ〉 [O]env
sl+3βl+4;βl+4

, (3.49)

and analogously for the right-to-left sweep

〈
αl−1sl sl+1βl+2

∣∣∣ψ〉 ≈ ∑
αlsl+2βl+3

[
O
]env,†
sl+2βl+3;βl+3

〈
αl sl+1sl+2βl+3

∣∣∣ψ〉 [O]sys
αl−1sl;αl

. (3.50)

Indeed, preconditioning requires storing all truncation matrices to memory but is comparatively less

than the blocks themselves. The overall gain in speed during the diagonalization procedure more than

accounts for the time spent transforming the wavefunction, which is considerably small when compared

to say, diagonalizing a reduced density matrix. Preconditioning is thus an essential part in any efficient

implementation of the DMRG.

3.6 Benchmarking and Analysis

In this section we benchmark the efficiency of an original DMRG implementation through a variety of

calculations. We use a symmetric configuration (l′,m′) = (l,m) for the infinite system DMRG with open

boundary conditions (OBC) and benchmark with the S = 1/2 antiferromagnetic Heisenberg chain. In

some cases we add a next-nearest-neighbour coupling J2. In addition to using ARPACK for the iterative

diagonalization, we also exploit the SU(2) spin-rotation invariance of the Heisenberg model by restricting

our calculations to
∑
i S

z
i = const subspaces. Properties of the low-lying excitations are compared with

well-established theoretical results, where in particular we focus on logarithmic corrections (due to finite-size
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effects) which are obtained from conformal field-theoretical approaches. Note that all calculations use a

nearest-neighbour coupling strength of J1 = 1.

3.6.1 Observables

Accuracy and precision. J2 = 0; Shown in Figure 3.5 are the reduced density matrix eigenvalues wα of

the system block for the ground-state and first-excited state of a 32-site chain. Comparing with the Bethe

ansatz results [53], the relative error (inset) in the ground-state energy
∣∣∆E/E∣∣ =

∣∣1− EDMRG
0 /EBA

0

∣∣ is seen

to falloff slower than the density matrix eigenvalues, reflecting that higher precision is attained when more

states are kept. One way to ensure a desired accuracy of the target state is to check that the truncation

error ε(m) = 1−
∑m
α=1 wα at each step meets a specific cutoff.
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Figure 3.5: Reduced density matrix eigenvalues wα for the ground-state and first-excited state plotted
against the index number α for a 32-site isotropic Heisenberg chain. These eigenvalues were
obtained from a 14-site superblock keeping m = 64 states at each iteration. The step-like
structure is the result of spin degeneracies. Inset shows the relative error in the ground-state
energy

∣∣∆E/E∣∣ as a function of the states kept m, and is seen to falloff slower than the wα.

Target-state energy. J2 = 0; We compare the ground-state energy of a 100-site chain with the Bethe

ansatz result as a function of the finite system sweep position. In Figure 3.6a, one sees the energy improve

with sweeping. In this example with m = 128, the precision of the ground-state energy is improved roughly

by one order of magnitude after 3 sweeps while no significant improvement was observed with additional

sweeps. Figure 3.6b is a similar result but as a function of the sweep iteration. When m is too small no
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amount of sweeping will improve the description of the wavefunction, whereas for large enough m, there is

a clear emphasis on the improvement of the wavefunction per iteration.
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Figure 3.6: (a) The ground-state energy EDMRG
0 output from a 3-sweep finite system DMRG procedure

compared with the Bethe ansatz result EBA
0 for a 100-site isotropic Heisenberg chain. Position

refers to the location of the finite system sweep. (b) Same as (a) but as a function of the sweep
iteration for different values of m. Only every third point is plotted.

Entanglement Entropy. With access to the density matrix weights, one can measure how entangled the

system is with its environment. First introduced in the context of quantum information [36], the entanglement

entropy (EE) of a subsystem embedded in a larger system is defined as the von Neumann entropy [54] of the

reduced density matrix:

SvN(ρ) = −tr(ρ lnρ) = −
∑
α

wα lnwα. (3.51)

For a one-dimensional isotropic Heisenberg chain, the EE of a semi-infinite subsystem of size x including the

open end has been shown to follow the universal form [55, 56]

S(x, L) =
c

6
lnx+ k, (3.52)

where c is the central charge of the associated CFT [57, 58] and k is a non-universal constant. For critical

systems such as the Heisenberg chain where the correlation length is infinite, we should expect the ground-

state entanglement to extend to all length scales. We can see this reflected in Figure 3.7 where the EE

diverges logarithmically with L. We also notice that the EE of the 100-site system block disagrees with

the CFT fit (red line) (3.52); it does not account for the alternating behaviour. The use of OBC breaks

translational symmetry which causes an additional slowly decaying alternating term or dimerization to the
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Figure 3.7: The von Neumann entropy of the system block (environment block is the same) of a 200-site
chain obtained from reduced density matrices of the ground-state. The alternating behaviour
is due to open boundary conditions and therefore does not obey the CFT prediction (red line).

entropy [59]. This alternating behaviour can be understood in terms of a resonating valence bond picture.

An example of a valence bond state is

|Φ〉 =
1

2L/2
⊗L/2x=1

[
| ↑2x−1↓2x〉 − | ↓2x−1↑2x〉

]
, (3.53)

where the valence bonds are nearest-neighbours. Since any singlet state can be written as a linear combination

of all valence bond states (with no bonds crossing each other), there is naturally a higher EE associated with

paired spins than with unpaired. We therefore end up with a staggering structure for the EE where every

odd (even) bond has an enhanced (reduced) entropy.

Spin-spin correlations. One of the defining characteristics of any quantum spin system is the two-point

spin-spin correlation function, a measure of the similarity of the states of spins separated by a distance r.

For the spin-isotropic Heisenberg chain the correlation function can be written as

C(r) = 〈Si · Si+r〉 = 3
〈
Szi S

z
i+r

〉
, (3.54)

where r is the distance from a reference site i. For the ground-state of the isotropic Heisenberg chain,

Figure 3.8 shows the corresponding correlation function for one-half of the superblock where the left free site
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is taken as the reference and the measurement is out towards the end of the system block. For large r, the

correlation function decays to zero with the distance algebraically C(r) ∼ (−1)r/r, up to a multiplicative

logarithmic correction (lnr)1/2 [60, 61]. This power law behaviour is indicative of a critical ground-state

which does not order magnetically (is spin-disordered and has quasi-long-ranged order), in agreement with

the Mermin-Wagner-Hohenberg theorem [62, 63], i.e. the global SU(2) spin-rotation symmetry under short-

ranged interactions is not spontaneously broken at zero temperature. From the staggering structure we can

conclude that the ground-state of the isotropic Heisenberg chain is of antiferromagnetic nature.
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Figure 3.8: The ground-state spin-spin correlation function of the isotropic Heisenberg chain. The stag-
gering behaviour confirms that the ground-state is antiferromagnetically ordered. For large r,
the multiplicative logarithmic correction (lnr)1/2 is small and not shown.

3.6.2 Logarithmic Corrections

While it is remarkable that Bethe ansatz [64] solves the S = 1/2 antiferromagnetic Heisenberg chain exactly,

there is no implied understanding of how finite-size corrections come about. Through an appropriate two-

dimensional CFT the use of marginally irrelevant operators has shown that there are logarithmic corrections

to finite-size calculations where the associated coupling constant scales as g(L) ∼ 1/lnL, and L is the

characteristic length or energy scale [65]. Due to this slowly vanishing g(L) logarithmic corrections are

expected to appear in virtually all measurable quantities. In this section we show that there are indeed

logarithmic corrections, particularly to the ground-state energy and spin gap of the Heisenberg chain [60, 61].
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In addition we also show that these corrections can vanish when we consider the J1 − J2 Hamiltonian

H = J1

L−1∑
i=1

Si · Si+1 + J2

L−2∑
i=1

Si · Si+2 , (3.55)

at a critical next-nearest-neighbour coupling of Jcrit
2 .

3.6.2.1 Ground-State Energy

For any one-dimensional Hamiltonian which renormalizes to a CFT, i.e. at some energy scale the Hamiltonian

becomes conformally invariant, the ground-state energy of a finite chain of length L with open ends can be

written as the general expression

E0(L) = e0L+ e1 −
πv

24L
c, (3.56)

where e0 is the ground-state energy per spin in the limit L → ∞, e1 is some non-universal surface energy

arising from OBC, v is the spin-wave velocity, and c is the central charge. The expression with logarith-

mic corrections, obtained through a perturbative expansion in powers of the marginally irrelevant coupling

constant g(L), is given by

E0(L) ≈ e0L+ e1 −
πv

24L

[
1− 24π2g(L)2

]
. (3.57)

For the S = 1/2 antiferromagnetic Heisenberg chain, we have from the Bethe ansatz e0 = 1/4 − ln2, and

e1 = (π − 1− 2 ln2)/4 which can be exactly calculated for the two open ends of the chain [61]. To capture

the logarithmic scaling we rearrange Eq. (3.57) and fit against the function f(L, v, a):

E0(L)−
(

1

4
− ln2

)
L− 1

4
(π − 1− 2 ln2) ≈ − πv

24L
+
π3v

L

( a

lnL

)2
= f(L, v, a). (3.58)

In Figure 3.9 we see that there is indeed a universal O(1/L) and additive O(1/lnL) logarithmic dependence.

In particular the DMRG calculation shows excellent agreement with the prediction. We have also extracted

a central charge c ≈ 1 and spin-wave velocity v ≈ π/2, which also agrees with the Weiss-Zumino-Witten

non-linear σ model (c = 1) [66] and Bethe ansatz solution (v = π/2). We note that a better fit (red line) is

made if v is treated as a variable and we find that it varies smoothly to π/2 with increasing length.

3.6.2.2 Spin Gaps

Finite-size logarithmic corrections can also be observed with excited states. The spin gap ∆ of an antifer-

romagnet is a characteristic of the spin excitation spectrum where its magnitude is the difference between

the energies of the ground-state, usually expected to be of spin S = 0, and an excited state of spin S. To

emphasize the finite-size scaling of the gap we consider three cases: J2 = 0, 0.241167, and 0.4. The point
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Figure 3.9: The modified ground-state energy expression EDMRG
0 − e0L − e1 versus the system length L.

The number of states kept is m = 128. A logarithmic correction to the energy is clearly visible
from the fit f(L, v, a) (red line), with v = 1.44592 ≈ π/2, and a = 0.06398.

Jcrit
2 = 0.241167 is known as the dimerization transition point which distinguishes two phases:

J2 < Jcrit
2 : unique |ψ0〉 J2 > Jcrit

2 : doubly degenerate |ψ0〉

antiferromagnetic quasi order valence bond order

power law C(r) ∼ (−1)r/r exponential C(r) ∼ (−1)rexp(−r/ξ)/r

gapless ∆ = 0 gapped ∆ 6= 0

where ξ is the correlation length, a measure of the distance over which fluctuations in one region influence

another region, i.e. how correlated two regions/points are. Hence, two points which are separated by

a distance larger than ξ will be relatively uncorrelated. The transition across Jcrit
2 is analogous to the

Kosterlitz-Thouless transition for the classical two-dimensional XY model and is of infinite order [67].

Using the DMRG we plot in Figure 3.10 the spin gap of the Heisenberg chain between the ground-state,

which has
∑
i S

z
i = 0, and the first-excited state, which has

∑
i S

z
i = 1, as a function of the inverse lattice

size for different values of J2. When J2 = 0 < Jcrit
2 the gap scales to zero as 1/L, agreeing with Haldane’s

conjecture that Heisenberg chains with half-integral spin are gapless ∆ = 0 in the thermodynamic limit

L→∞ [68, 69]. On the other hand by introducing frustration, the gap opens up when J2 > Jcrit
2 leading to
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Figure 3.10: Spin gaps of the Heisenberg and J1 − J2 chains as functions of the inverse lattice size. For
J2 < Jcrit

2 the gap converges to zero as 1/L in the limit L→∞, and non-zero for J2 > Jcrit
2 .

Inset shows the gap multiplied by the length. If J2 6= Jcrit
2 long-distance spin-spin correlations

remain enhanced.

valence bond ordering.

The gap behaviour has also been predicted to scale with an additive 1/lnL correction term which is made

clear when multiplied by the lattice length L (inset of Figure 3.10). For J2 6= Jcrit
2 this effect is clearly visible

while not as distinct when Jcrit
2 = 0.241167. At the critical value the leading order logarithmic correction

vanishes, as can be seen by the (almost) 1/L behaviour; a pure 1/L dependence can only be expected in the

limit L→∞. Analytically, with an additive logarithmic correction, the spin gap expression between states

of spin S = 0 and S = 1, is given by [61]

∆ = E1(L)− E0(L) ≈ πv

L

[
1− 4π√

3
g(L)

]
, (3.59)

where again we expect that g(L) ∼ 1/lnL. As with the ground-state energy of the Heisenberg chain, we find

that the spin gap matches the predicted behaviour of Eq. (3.59). This agreement can be seen in Figure 3.11.

Again, the spin-wave velocity is v ≈ π/2, however, the prefactor of 4π2v/
√

3 for g(L) is significantly off. For

this we adopt the reasoning in reference [61]: there are various corrections at higher orders in the coupling

constant for different energy levels. This varying behaviour is plotted in Figure 3.12 where we have calculated

g(L) from Eqs. (3.57) and (3.59). When L is small (not of exponential length) the estimates of g(L) clearly
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Figure 3.11: DMRG calculation of the isotropic Heisenberg chain spin gap. The gap is between the ground-
state and first-excited state. From the fit (red line) it is clear the DMRG verifies very accu-
rately the CFT finite-size scaling prediction of the gap.

do not agree but are seen to approach zero as L → ∞. Since CFT predicts g(L) → 0 in the large L limit,

both estimates indeed coalesce into one value which approaches zero. To show this is the case, we compare

the one-loop renormalization group CFT prediction of the coupling constant [60]

g(L) =
g0(l0)

1 + (4π/
√

3)g0(l0)ln (L/l0)
, (3.60)

where g0(l0) is an average dependent on the chain length l0, to the DMRG extrapolation of g(L). The

full line is the CFT prediction Eq. (3.60) with g0(l0) determined by averaging the DMRG calculation of

the ground-state’s g(L) at a chain length of l0 = 200. We see that the two logarithmic corrections of

the Heisenberg chain both merge with the CFT g(L) at large L. We have thus confirmed the logarithmic

corrections predicted by CFT through an efficient implementation of the DMRG.
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Figure 3.12: The marginally irrelevant coupling constant g(L) calculated from the expressions for
the ground-state energy and the spin gap of the isotropic Heisenberg chain as
predicted by CFT. The full line is the one-loop renormalization group prediction
g(L) = g0(l0)/[1 + πbg0(l0)ln(L/l0)] with b = 4/

√
3. We have determined g0(l0) by averaging

the ground-state’s g(L) at a chain length of l0 = 200.



CHAPTER 4

CYCLIC FOUR-SPIN RING-EXCHANGE

The simplest geometry to study a cyclic four-spin ring-exchange model is on a two-leg square ladder. Cou-

pling two chains together, the seemingly two-dimensional structure is effectively a one-dimensional chain

with extended interactions. In this thesis we apply the DMRG to such a spin ladder as described by Hamil-

tonian (1.3). We discuss the difficulties encountered in applying the DMRG, where in particular the effective

Hamiltonian at each step is highly non-trivial. In regards to this, only preliminary results are presented.

For the following analysis we take the couplings to be J⊥ = J|| = 0 and K = 1. The Hamiltonian is then

given by

HRing =
∑
〈ijkl〉

(
P	
ijkl + P�

ijkl

)

=
∑
〈ijkl〉

(∑
µ<ν

Sµ · Sν + 4Gijkl +
1

4

)

=
∑
〈ijkl〉

[∑
µ<ν

Sµ · Sν + 4

(
(Si · Sj) (Sk · Sl) + (Sj · Sk) (Sl · Si)− (Si · Sk) (Sj · Sl)

)
+

1

4

]
, (4.1)

and is illustrated in Figure 4.1.

Figure 4.1: A schematic of a two-leg square ladder with a cyclic four-spin ring-exchange per plaquette.
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At the end of Section 3.4 we noted that multiplications occurring on the same block require more care.

With the introduction of biquadratic terms, same block multiplications are unavoidable and one must carry

a set of compound operators, updating them accordingly at each DMRG step, similar to the correlation

function. This will be made clear below.

In a standard DMRG calculation, two new sites are added and the Hamiltonian governs which bonds

need to be formed. For a Hamiltonian with only bilinear interactions, the implementation is straightforward.

It is not the case when biquadratic terms are present. To understand where the difficulty lies, we consider

a symmetric configuration in which the environment is a reflection of the system. If L (taken to be even) is

the total number of sites then depending on the parity of L/2 (odd or even) we have the following scenarios

as depicted in Figure 4.2. As we can see, the way Gijkl is formed for a given parity is affected by the lattice

(a)

(b)

Figure 4.2: Even (a) and odd (b) DMRG schematics for the two-leg ladder when two sites are added for
the first time. Solid (open) circles denote original (new) sites and solid lines denote exact local
Hamiltonians. The labelling scheme of the sites indicates the environment is a reflection of the
system. The three dashed, dashed-dotted, and dotted line pairs denote the dimer-dimer bonds
that are needed to form Gijkl.

geometry at each DMRG step. In the even case there are two sites, S1 and S2, which are on the same block

whereas in the odd case there are three as well as a cross-block multiplication between S1 and S1′ . We have

emphasized before (see Eq. (3.41)) that by multiplying truncated operators residing on the same block the

result is non-unitary. This is precisely the issue at hand for the Hamiltonian (4.1). The solution, to state

again, is to multiply them before hand to guarantee a summation over a complete set of states, i.e. O†O = 1.

What this means is a decomposition into spin components.

Following the labelling scheme in Figure 4.2 we give an alternate formulation of the biquadratic terms

in Gijkl for a given DMRG step. Each of the three terms in Gijkl (for either system or environment) can be

written as
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0. Even

(S1 · S2)(Si · Sj) −→ (O†S1 · S2O)(Si · Sj), (4.2a)

(S1 · Si)(S2 · Sj) = (Sa1S
a
i )(Sb2S

b
j ) = Sa1S

b
2S

a
i S

b
j −→ (O†Sa1S

b
2O)Sai S

b
j , (4.2b)

(S1 · Sj)(S2 · Si) = (Sa1S
a
j )(Sb2S

b
i ) = Sa1S

b
2S

a
j S

b
i −→ (O†Sa1S

b
2O)Saj S

b
i , (4.2c)

where

SakS
b
l S

a
i S

b
j = SzkS

z
l S

z
i S

z
j

+
1

2

(
SzkS

+
l S

z
i S
−
j + SzkS

−
l S

z
i S

+
j

)
+

1

2

(
S+
k S

z
l S
−
i S

z
j + S−k S

z
l S

+
i S

z
j

)
+

1

4

(
S+
k S

+
l S
−
i S
−
j + S−k S

−
l S

+
i S

+
j

)
+

1

4

(
S+
k S
−
l S
−
i S

+
j + S−k S

+
l S

+
i S
−
j

)
. (4.3)

1. Odd

(S2 · S3)(S1 · Sj) = (S2 · S3)(Sa1S
a
j ) −→ (O†S2 · S3S

a
1O)Saj , (4.4a)

(S3 · S1)(S2 · Sj) = (S3 · S1)(Sa2S
a
j ) −→ (O†S3 · S1S

a
2O)Saj , (4.4b)

(S1 · S2)(S3 · Sj) = (S1 · S2)(Sa3S
a
j ) −→ (O†S1 · S2S

a
3O)Saj , (4.4c)

where

Sk · SlSai Saj = Sk · Sl
[
Szi S

z
j +

1

2
(S+
i S
−
j + S−i S

+
j )

]
. (4.5)

Note that the cross-block multiplications of Gijkl occurring in the centre plaquette with sites S1 and

S1′ is straightforward and does not require a rewrite of matrices.

In Table 4.1 we give the ground-state energies for one iteration of the infinite system DMRG. Indeed by

decomposing the interactions into spin components we were able to obtain results which are in good agreement

with exact diagonalization.

Table 4.1: Ground-state energy from one DMRG iteration of the ring-exchange Hamiltonian.

L → L+ 2 Parity m EED
0 (L+ 2) EDMRG

0 (L+ 2)

14→ 16 odd 64 -12.04957305280811 -12.04952454957575

16→ 18 even 128 -13.73377982355355 -13.73377127051409

We now discuss the main problem we have encountered during the implementation of the DMRG. In the

next and subsequent iterations the new sites must be absorbed into the system and environment blocks. It

is in this step where the formation of the effective local Hamiltonians for each block presents some confusion.
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It is unclear for the even case as to how one should absorb spin Sj since there is no four-spin plaquette

to reconstruct the ring-exchange. We will, however, attempt to understand this process for the odd case.

Following the notation used in Section 3.3.1, the system (and similarly the environment) Hamiltonian will

be comprised of the previous local Hamiltonian, six bilinear Heisenberg terms and three biquadratic terms:

[
H̃
]B•j
2α;2α′

←−
[
H̃
]B
α;α′
⊗ 1•j2;2 +

1

4
(previous Hamiltonian + constant)

+

3∑
n=1

[
S̃n
]B
α;α′
⊗ S

•j
2;2 +

3∑
µ,ν=1
µ<ν

[
S̃µ · Sν

]B
α;α′
⊗ 1•j2;2 (bilinear terms)

+ 4

([ ˜S2 · S3Sa1
]B
α;α′

+
[ ˜S3 · S1Sa2

]B
α;α′
−
[ ˜S1 · S2Sa3

]B
α;α′

)
⊗ Sa,•j2;2 . (biquadratic terms) (4.6)

Notice that in the second summation of the bilinear terms we are required to have three Heisenberg terms

previously calculated. Moreover, by absorbing a new spin Sj we need to update the individual spins S1, S2,

etc. for the next iteration. This is accomplished by pushing them inward S1 ← Sj , S2 ← S1, etc. analogous

to Eq. (3.35). We now transform (4.6) according to (3.30a) (updating individual spins as well) and repeat.

However, now that L/2 is even, one needs to compute the appropriate set of biquadratic terms similar to

those of Eqs. (4.2a)-(4.2c) for the next diagonalization step:

Eq. (4.2a) −→ O†II

([
S̃1

]B
α;α′
⊗ S

•j
2;2

)
OII, (4.7a)

Eqs. (4.2b)− (4.2c) −→ O†II

([
S̃a1
]B
α;α′
⊗ Sb,•j2;2

)
OII, (4.7b)

where the subscript II on the truncation matrices indicates the DMRG iteration. We have done this and the

results are shown in Table 4.2 for two iterations of the DMRG starting with the odd case L = 14. We see

Table 4.2: Two DMRG iterations of the ring-exchange starting with odd parity.

Iteration L EED
0 (L) EDMRG

0 (L)

0 14 -10.45040854700329 exact

1 16 -12.04957305280811 -12.04952454957575

2 18 -13.73377982355355 -13.73352838489993

that the ground-state energy for L = 18 is in good agreement with exact calculations. We note that at the

time, complications arose when updating these biquadratic terms (at least for the case presented) in which

resulting matrices were not strictly Hermitian. This issue has since been resolved.

With these preliminary ground-state energies we have confirmed that decomposing the spins of the

biquadratic terms serves to give the correct result. Currently we are moving forward with the rest of

the implementation. Once a working DMRG routine is in place we hope to confirm the phase diagrams

of previous studies (see Sections 1.2.1 and 1.2.2), where in particular we would like to understand the

entanglement properties of the various phases.



CHAPTER 5

CONCLUSION AND FUTURE WORK

In this thesis we have shown that the DMRG captures very accurately the low-energy physics of strongly

correlated one-dimensional systems. We accomplished this by using the infinite system algorithm on the

S = 1/2 Heisenberg model to iteratively build up a lattice of sites to a desired chain length. A finite system

sweep was then used to optimize the blocks so that accurate measurements of observables could be made.

These measurements (see Section 3.6) are supported by well-known theoretical results such as the Bethe

ansatz, Haldane’s spin gap conjecture and conformal field-theoretical calculations.

With an understanding of the DMRG, we applied the algorithm to a S = 1/2 two-leg square ladder

with an additional cyclic four-spin ring-exchange. However, due to the non-trivial biquadratic terms in the

ring-exchange, a number of difficulties were encountered leading to preliminary results in the ground-state

energy. We are currently in the stages of completing a full implementation. The goal is to study the phase

diagrams of previous works where the primary focus will be on the entanglement properties of the different

phases.

5.1 Extending to Higher Dimensions

Although the DMRG is tailored for one-dimensional systems an extension to two dimensions is possible.

At the cost of long-range interactions two-dimensional systems can be investigated through an appropriate

choice in path, as seen in Figure 5.1. To minimize the number of long-range interactions one should choose

a path such that the width of the system is traversed before the length. Of course, depending on the lattice

one path may be more optimal over another. As with the one-dimensional case, two sites are added at each

DMRG step. It is, however, not a straightforward extension of the infinite system DMRG mentioned above;

there no longer exists any reflection symmetry between the system and environment blocks. The implication

is that both the system and environment blocks must be built separately requiring additional storage.

49
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Figure 5.1: A superblock schematic of a two-dimensional system with a one-dimensional path traced out.
Such a mapping introduces long-range interactions.

Another factor one must consider is the boundary between the two blocks. Whatever the schematic one

chooses to employ there is a fundamental limitation the DMRG suffers from. The number of interactions

along the boundary (scaling with the width of the lattice) leads to large entanglement between the system

and the environment. A direct consequence is a slower fall-off of the density-matrix weights, requiring more

states to be kept in order to attain a given accuracy. In practice, an upper bound is established on the

system sizes one can simulate. Nevertheless, through a variety of techniques, issues concerning ground-state

convergence, finite-size limitations and excited states have been addressed [70], resulting in a successful

extension into two dimensions.

5.2 Real-Time Dynamics

One can take the approach a step further by studying the real-time dynamics of one- or two-dimensional

systems using the DMRG. In practice, such as in the lab via inelastic neutron scattering, it is important

to understand how a material scatters incident radiation. For example, the dynamical structure factor (a

frequency-dependent quantity) contains information on the evolution of inter-particle correlations. Such

quantities have applications in material science and engineering.

Time evolution in DMRG can be accomplished by realizing that as a wavefunction evolves through time

its density matrix samples a region of a continuously changing Hilbert space. The idea is to evolve the

wavefunction through a series of time steps to generate an accurate basis at a later desired time. To this

end, the evolution is carried out through a modified finite system sweep procedure which makes use of the
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classical fourth-order Runge-Kutta (RK) method [71]. During each step in a half sweep1, one calculates the

set of four RK vectors,

|k1〉 = τH̃(t)|ψ(t)〉,

|k2〉 = τH̃(t+ τ/2)
[
|ψ(t)〉+ |k1〉/2

]
,

|k3〉 = τH̃(t+ τ/2)
[
|ψ(t)〉+ |k2〉/2

]
,

|k4〉 = τH̃(t+ τ)
[
|ψ(t)〉+ |k3〉

]
, (5.1)

for the time-dependent Hamiltonian H̃(t) = H(t) − E0. Using the density matrix four states are targeted,

|ψ(t)〉, |ψ(t+ τ/3)〉, |ψ(t+ 2τ/3)〉, and |ψ(t+ τ)〉, which can be approximated by the RK vectors as

ψ(t+ τ/3) ≈ |ψ(t)〉+
1

162

[
31|k1〉+ 14|k3〉+ 14|k3〉 − 5|k4〉

]
,

ψ(t+ 2τ/3) ≈ |ψ(t)〉+
1

81

[
16|k1〉+ 20|k3〉+ 20|k3〉 − 2|k4〉

]
,

ψ(t+ τ) ≈ 1

6

[
|k1〉+ 2|k3〉+ 2|k3〉+ |k4〉

]
, (5.2)

giving an overall error O(τ4). The advancement in time is then done on the last step of a half sweep. We

conclude by noting that this is just one approach to time-dependent DMRG.

1A half sweep is defined as a finite system sweep over the left or right block, as opposed to over the entire superblock.
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APPENDIX A

TWO-, THREE-, AND FOUR-SPIN CYCLIC PERMUTATIONS

In this appendix we provide a short summary of the Pauli matrices and their relation to transposition of

quantum spins. Defined under the permutation operator between two spins, we derive expressions for three-

and four-spin cyclic exchanges.

A.1 Pauli Matrices

The Pauli matrices σ are a set of three 2× 2 complex, Hermitian and unitary matrices given by

σx = σ1 =

(
0 1

1 0

)
, σy = σ2 =

(
0 −i
i 0

)
, σz = σ3 =

(
1 0

0 −1

)
. (A.1)

These matrices have the following properties:

0. Commutation and anticommutation identities:

[
σa, σb

]
= 2iεabcσc and {σa, σb} = 2δab , (A.2)

where εabc is the Levi-Civita symbol and δab is the Kronecker delta. Moreover, (A.2) is equivalent to

σaσb = δab + iεabcσc. (A.3)

1. Completeness relation:

σ · σ =

3∑
i=1

σiαβσ
i
γδ = 2δαδδβγ − δαβδγδ. (A.4)
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The permutation (transposition) operator P	
ij between two spins σi and σj can be written as

P	
ij =

1

2
(1 + σi · σj) . (A.5)

One can then check that the action of (A.5) satisfies P	
ij |σiσj〉 = |σjσi〉. Note that (A.5) also satisfies

(
P	
ij

)2
= 1 and

(
P	
ij

)−1
= P	

ij . (A.6)

A.2 Three- and Four-Spin Cyclic Permutations

For a three-spin cyclic exchange the permutation operator can be written as the product of two transposition

operators

P	
ijk = P	

ij P
	
ik =

1

4
(1 + σi · σj) (1 + σi · σk) =

1

4

[
1 + σi · σj + σi · σk + (σi · σj) (σi · σk)

]
, (A.7)

where

(σi · σj) (σi · σk) = σai σ
a
j σ

b
iσ
b
k = σaj σ

b
k

(
δab + iεabcσci

)
= σj · σk + iεabcσaj σ

b
kσ

c
i . (A.8)

The imaginary terms end up cancelling when we perform the summation:

P	
ijk + P�

ijk =
1

2

(
1 + σi · σj + σj · σk + σk · σi

)
. (A.9)

The four-spin cyclic exchange can be written as the product of three transposition operators

P	
ijkl = P	

ij P
	
ikP

	
il

=
1

8

[
1 + σi · σj + σi · σk + σl · σi + (σi · σj) (σi · σk)

+ (σi · σj) (σi · σl) + (σi · σk) (σi · σl) + (σi · σj) (σi · σk) (σi · σl)

]
. (A.10)

The triple product can be simplified as follows:

(σi · σj) (σi · σk) (σi · σl) = σai σ
a
j σ

b
iσ
b
kσ

c
iσ
c
l

= σai σ
a
j σ

b
kσ

c
l

(
δbc + iεbcdσdi

)
= (σi · σj) (σk · σl) + iεbcdσaj σ

b
kσ

c
l

(
δad + iεadeσei

)
= (σi · σj) (σk · σl)− σaj σbkσcl σei εbcdεade + iεbcdσaj σ

b
kσ

c
l , (A.11)
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where upon using the relation

εadeεbcd = −εdaeεdbc = − (δabδec − δacδeb) , (A.12)

we obtain

(σi · σj) (σi · σk) (σi · σl) = (σi · σj) (σk · σl) + (σj · σk) (σl · σi)− (σi · σk) (σj · σl) + iεbcdσaj σ
b
kσ

c
l .

(A.13)

Combining relations (A.8) and (A.13) we have

P	
ijkl + P�

ijkl =
1

4

(∑
µ<ν

σµ · σν + Gijkl + 1

)
, (A.14)

where the sum
∑
µ<ν is performed over all distinct pairs in {i, j, k, l} and

Gijkl = (σi · σj) (σk · σl) + (σj · σk) (σl · σi)− (σi · σk) (σj · σl) . (A.15)

Finally, in terms of quantum spin operators we let σ = 2S (~ = 1) giving

Pij →
1

2
(1 + 4Si · Sj) , (A.16)

where (A.3) becomes

SaSb =
1

4

(
δab + 2iεabcSc

)
. (A.17)

It is then straightforward to show that

P	
ijk + P�

ijk = 2
∑
µ<ν

Sµ · Sν +
1

2
, (A.18)

and

P	
ijkl + P�

ijkl =
∑
µ<ν

Sµ · Sν + 4Gijkl +
1

4
. (A.19)
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APPENDIX B

FROM HUBBARD TO HEISENBERG

We often study the microscopic details of solids by confining electrons to lattice models, for example, the

Heisenberg model (1.1). These are often great approximations to physical systems since the atomic structure

determines the possible locations of where electrons are allowed to be. Sharing of electrons is possible if two

neighbouring atoms at roughly equal energies have overlapping electronic orbitals. On the other hand the

strong repulsion between electrons gives rise to an on-site Coulomb potential. The Hubbard model consists

of these two competing interactions and is the simplest model of interacting particles in a lattice. In this

appendix, starting from the one-band Hubbard model, we apply second order Brillouin-Wigner perturbation

theory in the atomic limit to obtain the low-energy effective Heisenberg Hamiltonian.

B.1 The Hubbard Model

Let tjk be the matrix element denoting the tunnelling amplitude from lattice site j to k and U the strength

of the on-site repulsive potential, the generalized Hubbard model can be written as

HHubb =

L∑
j,k=1

∑
α=↑,↓

tjk

(
c†jαckα + c†kαcjα

)
+ U

∑
j

nj↑nj↓ , (B.1)

where c†jα (cjα) is the creation (annihilation) fermionic operator of an electron with spin α =↑, ↓ in a Wannier

orbital at lattice site j. If the local particle number operator njα = c†jαcjα counts the number of electrons

of spin α at site j then the total particle number can be written as

N̂ =

L∑
j=1

(nj↑ + nj↓) . (B.2)
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The fermionic operators obey the anticommutation relations

{cjα, ckβ} = {c†jα, c
†
kβ} = 0, (B.3)

{cjα, c
†
kβ} = δjkδαβ . (B.4)

The creation operators c†jα generate the Hilbert space H of the Hubbard model by acting on the vacuum

state |0〉 defined by the condition

c†jα|0〉 = 0, j = 1, 2, . . . , L, α =↑, ↓ . (B.5)

The number of linearly independent Wannier basis states for a fixed number of particles N is equal to
(
2L
N

)
giving the dimension of the Hilbert space to be

dim H =

2L∑
N=0

(
2L

N

)
= 4L, (B.6)

since the four states

|0〉, c†j↑|0〉, c†j↓|0〉, c†j↑c
†
j↓|0〉, (B.7)

are the associated states with every lattice site. That is, on a lattice of L sites each site has four possible

configurations: empty, one electron with either of the two spin orientations, or two electrons with opposite

signs. From the anticommutation relations (B.3)-(B.4) and (B.7), it follows that

[
njα, c

[
kβ

]
= njαc

[
kβ − c[kβnjα = δjkδαβc

[
kβ , (B.8)

for [ = empty, †.

In Appendix A we introduced the quantum spin operators as a set of three 2×2 complex, Hermitian and

unitary matrices. Equivalently, using fermionic operators we define the site-specific total spin operator as

Sj =
1

2

∑
α,β=↑,↓

c†jασαβcjβ , (B.9)

where the components satisfy the commutation relation

[
Sa, Sb

]
= iεabcSc, a, b, c = x, y, z. (B.10)

Using the above definitions it can be shown that the Hubbard model conserves the total particle number

and the z-component of the total spin, i.e.
[
HHubb, N̂

]
=
[
HHubb, S

z
]

= 0.

Following [72] in our derivation of the Heisenberg model we define for convenience the 2 × 2 operator-
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valued matrix

Sjk ≡ c
†
jαckβ =

[
c†j↑ck↑ c†j↑ck↓

c†j↓ck↑ c†j↓ck↓

]
, (B.11)

such that

Sajk = tr
(
σaSjk

)
and S0

jk = tr
(
Sjk

)
. (B.12)

These definitions will come in handy later. With these the familiar local spin density and particle number

operators are Saj = 1
2S

a
jj and S0

jj = nj↑ + nj↓ = nj , respectively.

B.2 Brillouin-Wigner Perturbation Theory

The ground-state of the Hubbard model is highly degenerate making the familiar Rayleigh-Schrödinger

perturbation theory unusable. Fortunately, with a weak perturbation, i.e. the hopping parameter, the

ground-state energy splits into singly- and doubly-occupied states. Since the perturbation is assumed to be

small, we can project out the doubly-occupied states and obtain a well-approximated effective Hamiltonian.

Consider any general Hamiltonian H acting on a Hilbert space H. Let P be a projection on the subspace

PH of H and Q = 1− P . Now |ψ〉 is a solution to the Schrödinger equation

H|ψ〉 = E|ψ〉, (B.13)

if and only if

(PHP + PHQ)|ψ〉 = EP |ψ〉, (B.14)

(QHP +QHQ)|ψ〉 = EQ|ψ〉. (B.15)

We begin by solving for Q|ψ〉 from (B.15):

Q|ψ〉 = (E −QH)
−1
QHP |ψ〉, (B.16)

which upon substitution into (B.14) gives

PHP |ψ〉+ PH (E −QH)
−1
QHP |ψ〉 = EP |ψ〉,

PH
[
1+ (E −QH)

−1
QH

]
P |ψ〉 = EP |ψ〉,

PH
[
1+ (E −QH)

−1
QH

]
|φ〉 = E|φ〉, (|φ〉 = P |ψ〉) (B.17)

Ĥ(E)|φ〉 = E|φ〉. (B.18)
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Thus, |φ〉 ∈ PH is a solution to the spectral problem (B.18) with eigenvalue E. Moreover, if |φ〉 ∈ PH solves

(B.18) then

|ψ〉 =
[
1+ (E −QH)

−1
QH

]
|φ〉 (B.19)

is a solution to the full stationary Schrödinger equation (B.13) with eigenvalue also E.

We now consider now a bare hamilton with a weak perturbation of the form

H = H0 + λH1, (B.20)

where the spectral decomposition of H0 =
∑
nEnPn is known. We now let P → Pn so that the Hamiltonian

Ĥn(E) = PnH
[
1+ (E −QnH)

−1
QnH

]
Pn, (B.21)

in subspace PH acts non-trivially only on the degenerate subspace corresponding to the nth energy level En

of H0.

We first focus on simplifying the non-linear term in the energy. The ground-state of the Hubbard model is

highly degenerate but the first-excited state in comparison is quite large. To extract an effective Hamiltonian

which captures the low-lying excitations we make use of a little trick. Let us define the resolvent operators

G = (E −QnH)
−1

and G0 = (E −QnH0)
−1
. (B.22)

Using these definitions notice that

G−10 G = (E −QnH0)G

= (E −QnH0 − λQnH1 + λQnH1)G

= (E −QnH0 − λQnH1)G + λQnH1G

= 1+ λQnH1G. (B.23)

We therefore have a recursion relation for G given by

G = G0 + λG0QnH1G, (B.24)

where upon iteration we obtain the series expansion

G = G0 + λG0QnH1G0 + λ2G0QnH1G0QnH1G0 +O
(
λ3
)
. (B.25)
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From the elementary relations

PmPn = δmnPn,
(
i.e. P 2 = P

)
(B.26)

PnH0 = H0Pn = EnPn (B.27)

QnH0 = H0Qn =
∑
m 6=n

EmPm (B.28)

PnHQn = λPnH1Qn (B.29)

QnHPn = λQnH1Pn (B.30)

it can be shown easily that

(E −QnH0)
−1

=

E −∑
m 6=n

EmPm

−1

=


E − E0P0

E − E1P1

. . .

E − ELPL



−1

. (B.31)

Since the projectors P−1n = Pn are invertible within their respective subspaces we may write

(E −QnH0)
−1

=

E −∑
m6=n

EmPm

−1 =
∑
m 6=n

Pm
E − Em

, (B.32)

where using (B.26) gives

(E −QnH)
−1

=
∑
m 6=n

Pm
E − Em

+ λ
∑
m6=n

Pm
E − Em

H1

∑
m6=n

Pm
E − Em

+ λ2
∑
m 6=n

Pm
E − Em

H1

∑
m 6=n

Pm
E − Em

H1

∑
m6=n

Pm
E − Em

+O
(
λ3
)
. (B.33)
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Therefore, upon substitution and using (B.27)-(B.30) we obtain

Ĥn(E) = PnHPn + PnH (E −QnH)
−1
QnHPn

= Pn (H0 + λH1)Pn + Pn (H0 + λH1) (E −QnH)
−1
λQnH1Pn

= PnH0Pn + λPnH1Pn + λPnH0 (E −QnH)
−1
QnH1Pn + λ2PnH1 (E −QnH)

−1
QnH1Pn

= EnPn + λPnH1Pn + λPnH0

∑
m 6=n

Pm
E − Em

QnH1Pn + λ2PnH1

∑
m6=n

Pm
E − Em

QnH1Pn + · · ·

= EnPn + λPnH1Pn + λ2PnH1

∑
m 6=n

Pm
E − Em

H1Pn + · · ·

= EnPn + PnH1

∞∑
k=0

λk+1

∑
m6=n

PmH1

E − Em

k

Pn

=

En + PnH1

∞∑
k=0

λk+1

∑
m6=n

PmH1

E − Em

k
Pn. (B.34)

And thus the spectral problem (B.18) about energy level En becomes

PnH1

∞∑
k=0

λk+1

∑
m6=n

PmH1

E − Em

k

|φ〉 = (E − En)|φ〉, (B.35)

for |φ〉 ∈ PnH. It is now clear that perturbation theory around an energy level En is an iterative solution.

Clearly, when λ = 0, E = En . We expect that corrections to the energy will be of the form

E = E(0)
n + λE(1)

n + λ2E(2)
n +O

(
λ3
)
, (B.36)

thus the spectrum of (B.20), which evolves from the energy level En as λ is turned on, is given by

PnH1

∞∑
k=0

λk+1

∑
m 6=n

PmH1

En − Em

k

Pn|φ〉 =
(
λE1

n + λ2E2
n + · · ·

)
|φ〉,

λPnH1Pn + λ2PnH1

∑
m 6=n

PmH1

En − Em
Pn + · · ·

 |φ〉 =
(
λE1

n + λ2E2
n + · · ·

)
|φ〉,

PnH1Pn + λ
∑
m 6=n

PnH1PmH1Pn
En − Em

+ · · ·

 |φ〉 =
E − En

λ
|φ〉, (B.37)

where on the left hand side we have what is known as an effective Hamiltonian restricted to PnH.
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B.3 Hubbard Model in the Large U Limit

The following calculation was done with reference [72] as a supplement. We now consider the Hubbard

model with a large on-site Coulomb potential and the tunnelling strength to be a small perturbation. This

corresponds to the atomic limit where the electrons are confined to their lattice positions. To apply the

perturbative theory from the previous section we first rescale the Hubbard model as

H/U = D + T/U, (B.38)

where

D =

L∑
j=1

nj↑nj↓ and T =

L∑
j,k=1

tjkc
†
jαckα. (B.39)

We assume that tjj = 0, tkj = t∗jk, U > 0, and |tjk|2 � U for j, k = 1, 2, . . . , L. A sum over the spin index

α is also assumed. We now use the fact that D is diagonal in the Wannier basis (it counts the number of

doubly occupied sites) where its eigenvalues are simply n = 0, 1, . . . , L. Denoting by Pn the projectors onto

eigenspaces Hn, we decompose the Hubbard Hilbert space into H(L) = H0 ⊕ · · · ⊕ HL allowing us to write

D in the convenient form

D =

L∑
n=1

nPn. (B.40)

We restrict our analysis to the condition that N ≤ L. The number of ground-states for a fixed number of

electrons N is 2N
(
L
N

)
, yielding a Hilbert space with no doubly occupied sites a dimension of

dim H0 = 3L. (B.41)

Under the small perturbation T this degeneracy is partially lifted, splitting the lowest energy level of D.

However, as long as |tjk|2 � U remains true, the first-excited state will be well-separated from the ground-

state. This splitting of the ground-state via second-order Brillouin-Wigner perturbation theory is described

by an effective Hamiltonian know as the t− J model, which we now derive.

Let H0 = D, H1 = T and λ = U−1. With only singly-occupied sites we set n = 0 and have to first-orderP0TP0 −
1

U

∑
m6=n

P0TPmTP0

m

 |φ〉 = E|φ〉, (B.42)

where the energy UE as also been rescaled to E. The operator on the left hand side is the t− J model. It

describes the splitting of the ground-state energy E0 = 0 of the Hubbard Hamiltonian in the atomic limit

when hopping amplitudes are small. We now simplify the t− J model.
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First, we need expressions for the projection operators Pn in a fermionic representation. They can be

obtained through the generating function

G(α) =

L∏
j=1

(
1− αnj↑nj↓

)
, (B.43)

where

Pn =
(−1)n

n!
∂nαG(α)

∣∣∣∣
α=1

, n = 0, 1, · · · , L. (B.44)

In particular we are interested in the projection operator which projects onto the space with no doubly

occupied sites

P0 =

L∏
j=1

(
1− nj↑nj↓

)
. (B.45)

From this definition we can conclude the following: since nj↑nj↓ = 1 if site j has a fermion and (1−nj↑nj↓) = 0

if not, then it must be true that

nj↑nj↓P0 = P0nj↑nj↓ = 0 (B.46)

is always true, and vice versa. To simplify (B.42) we first compute the PmTP0/m term. This can be done

by direct application of (B.44):

L∑
m=1

PmTP0

m
=

(
P1 +

1

2
P2 + · · ·+ 1

L
PL

)
TP0

=

[
− ∂αG(α)

∣∣∣∣
α=1

+
1

2

1

2!
∂2αG(α)

∣∣∣∣
α=1

+ · · ·+ 1

L

1

L!
∂LαG(α)

∣∣∣∣
α=1

]
TP0. (B.47)

The result of this expression turns out to be equivalent for all values of L. Below is a short calculation for

L = 2.
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L=2∑
m=1

PmTP0

m
=

(
P1 +

1

2
P2

)
TP0

=

−∂α L=2∏
j=1

(
1− αnj↑nj↓

) ∣∣∣∣
α=1

+
1

2

1

2!
∂2α

L=2∏
j=1

(
1− αnj↑nj↓

) ∣∣∣∣
α=1

TP0

=

[
−
({

∂α

(
1− αn1↑n1↓

)}(
1− αn2↑n2↓

)
+
(

1− αn1↑n1↓
)
∂α

{(
1− αn2↑n2↓

)})∣∣∣∣
α=1

+
1

4
∂α

({
∂α

(
1− αn1↑n1↓

)}(
1− αn2↑n2↓

)
+
(

1− αn1↑n1↓
)
∂α

{(
1− αn2↑n2↓

)})∣∣∣∣
α=1

]
TP0

= −
[
− n1↑n1↓(1− n2↑n2↓) + (1− n1↑n1↓)(−n2↑n2↓)

]
+

1

4
∂α

[
− n1↑n1↓(1− αn2↑n2↓) + (1− αn1↑n1↓)(−n2↑n2↓)

]∣∣∣∣
α=1

TP0

=

(
n1↑n1↓ + n2↑n2↓ −

3

2
n1↑n1↓n2↑n2↓

)(
t12c

†
1ac2a + t21c

†
2ac1a

)
P0

=

L=2∑
j,k=1

tjknj↑nj↓c
†
jackaP0 . (B.48)

The term with the factor of 3/2 is zero because we are projecting onto singly occupied sites. Moreover, the

terms where the first index of t and the index of n do not match also result in zero due to (B.8) and (B.46).

Therefore, the result for general L is

L∑
m=1

PmTP0

m
=

L∑
j,k=1

tjknj↑nj↓c
†
jackaP0 . (B.49)
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B.3.1 The t− J Model

With the result from the previous section we now have an explicit form for the t− J model:

Ht−J = P0

 L∑
j,k=1

tjkc
†
jacka −

1

U

L∑
j,k,k′,l=1

tjktk′lc
†
jackank′↑nk′↓c

†
k′bclb

P0 , (B.50)

as the effective Hamiltonian for the low-energy regime of the Hubbard model in the atomic limit. We may

further simplify the second sum. Most calculations below use (B.8). Each simplification is given by

c†jackank′↑nk′↓ =


c†ja

(
nk′↑cka − δkk′δ↑acka

)
nk′↓,

c†jackanj↑nj↓,

c†jackanj↑nj↓,

=


nk′↑nk′↓c

†
jacka = 0, k′ 6= j, k,

c†janj↑ckanj↓ = c†jackanj↑nj↓ by (B.46), k′ = j 6= k,(
nj↑ + nj↓

)
nj↑nj↓ = 2nj↑nj↓ = 0 by (B.46), k′ = j = k.

(B.51)

Only when k′ = j = k is there a non-vanishing contribution in the sum:

Ht−J = P0

 L∑
j,k=1

tjkc
†
jacka −

1

U

L∑
j,k,l=1

tjktklc
†
jackank↑nk↓c

†
kbclb

P0 . (B.52)

We now consider the term

ckank↑nk↓c
†
kb =

ckac
†
k↑ck↑

(
1− ck↓c

†
k↓

)
c†k↓ = ckac

†
k↑ck↑c

†
k↓, b =↓,

cka

(
1− ck↑c

†
k↑

)
c†k↑c

†
k↓ck↓ = ckac

†
k↓ck↓c

†
k↑, b =↑,

= ckankb′c
†
kb, b

′ 6= b, (B.53)

where by the same method,

ckankb′c
†
kb =

cka
(

1− ckac
†
ka

)
c†kb = ckac

†
kb, a = b′ 6= b,

ckbnkb′c
†
kb = ckbc

†
kbnkb′ =

(
1− nkb

)
nkb′ , a = b 6= b′.

(B.54)

Then in general,

c†jackank↑nk↓c
†
kbclb = c†ja

[
ckac

†
kb +

(
1− nkb

)
nkb′

]
clb

= c†jackac
†
kbclb + c†jbnkb′clb − c

†
jankbnkb′clb. (B.55)
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For the last term, if j 6= k then

c†jankbnkb′clb = nkbc
†
jankb′clb = nkbnkb′c

†
jaclb = 0, (B.56)

by (B.46). On the other hand, if j = k then

c†jankbnkb′clb = c†jac
†
jbcjbc

†
jb′cjb′clb =

njbc
†
jac
†
jb′cjb′clb = 0, a = b′ 6= b,

0, a = b 6= b′.
(B.57)

Putting it all together and using (B.8) on the second term of (B.55) we arrive at

Ht−J = P0

 L∑
j,k=1

tjkc
†
jacka −

1

U

L∑
j,k,l=1

tjktkl

(
c†jackac

†
kbclb + c†jaclac

†
kbckb

)P0 , (B.58)

where the former term in the second sum can be rewritten as

c†jackac
†
kbclb = −c†jac

†
kbckaclb = c†jac

†
kbclbcka = c†ja

(
δkl − clbc

†
kb

)
cka = −c†jaclbc

†
kbcka, (B.59)

since a 6= b and k 6= l. The reason for this will be made clear in just a moment. From Eqs. (B.9) and (B.12)

we have the following the products

Sajk · Salm = c†jασ
a
αβckβ · c

†
lγσ

a
γδcmδ =

(
σaαβ · σaγδ

)
c†jαckβc

†
lγcmδ, (B.60)

S0
jk · S0

lm = c†jασ
a
αβckβ · c

†
lγσ

a
γδcmδ = δαβδγδ c

†
jαckβc

†
lγcmδ. (B.61)

For (B.60) we use the completeness relation (A.4) to consider the non-vanishing contributions given by

Sajl · Sakk =
(

2δαδδβγ − δαβδγδ
)
c†jαclβc

†
kγckδ = 2c†jαclβc

†
kβckα − c

†
jαclαc

†
kγckγ , (B.62)

S0
jl · S0

kk = c†jαclαc
†
kγckγ . (B.63)

Thus, with (B.59) the second sum in (B.58) becomes

c†jαclβc
†
kβckα − c

†
jαclαc

†
kγckγ =

1

2

(
Sajl · Sakk − S0

jl · S0
kk

)
. (B.64)
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With this result we express the t− J model conveniently as

Ht−J = P0

 L∑
j,k=1

tjkc
†
jacka +

1

U

L∑
j,k,l=1

tjktkl

(
c†jaclbc

†
kbcka − c

†
jaclac

†
kbckb

)P0

= P0

 L∑
j,k=1
j 6=k

tjkS
0
jk +

1

2U

L∑
j,k,l=1
j 6=k 6=l

tjktkl
(
Sajl · Sakk − S0

jl · S0
kk

)P0

= P0

 L∑
j,k=1
j 6=k

tjkS
0
jk +

1

2U

L∑
j,k,l=1
j 6=k 6=l=j

|tjk|
2
(
Sajj · Sakk − S0

jj · S0
kk

)

+
1

2U

L∑
j,k,l=1
j 6=k 6=l 6=j

tjktkl
(
Sajl · Sakk − S0

jl · S0
kk

)P0 , (B.65)

where using the definitions of the total particle number (B.2) and total spin (B.9) the form becomes

Ht−J = P0

 L∑
j,k=1
j 6=k

tjkS
0
jk +

1

2U

L∑
j,k,l=1
j 6=k 6=l=j

|tjk|
2
(

4Sj · Sk − njnk
)

+
1

U

L∑
j,k,l=1
j 6=k 6=l 6=j

tjktkl

(
c†jaσ

α
abclb · Sk −

1

2
c†jaclank

)P0 . (B.66)

B.3.2 The Antiferromagnetic Heisenberg Model

Another useful representation of the t − J model is obtained when we move the left projector P0 through

the sums. In doing so the first sum in (B.66) becomes

P0 c
†
jacka =

(
1− nj↑nj↓

)
c†jacka = c†jacka − nj↑nj↓c

†
jacka, (B.67)

where

nj↑nj↓c
†
jacka =

nj↑
(
c†ja + c†janj↓

)
cka = nj↑c

†
jacka = c†jackanj↑, a =↓,

nj↑c
†
janj↓cka =

(
c†ja + c†janj↑

)
nj↓cka = c†jackanj↓, a =↑ .

(B.68)

Hence

P0 c
†
jacka = c†jacka − c

†
jackanj↑ − c

†
jackanj↓ = c†jacka

(
1− nj

)
. (B.69)
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The second sum is unaffected while the third becomes

P0

(
c†jaσ

α
abclb · Sk −

1

2
c†jaclank

)
= P0 c

†
jaσ

α
abclb · Sk −

1

2
P0 c

†
jaclank

=
(

1− nj↑nj↓
)
c†jaσ

α
abclb · Sk −

1

2

(
1− nj↑nj↓

)
c†jaclank. (B.70)

Simplifying the former term with nj↑nj↓ we obtain

nj↑nj↓c
†
jaσ

α
abclb · Sk = nj↑

(
c†ja + c†janj↓

)
σαabclb · Sk

= nj↑c
†
jaσ

α
abclb · Sk, a =↓,

= c†jaσ
α
abnj↑clb · Sk

= c†jaσ
α
abclbnj↑ · c

†
kcσ

α
cdckd, l 6= j,

= c†jaσ
α
abclb · Sknj↑, j 6= k. (B.71)

Similarly, if a =↑ then

nj↑nj↓c
†
jaσ

α
abclb · Sk = c†jaσ

α
abclb · Sknj↓. (B.72)

Therefore,

P0 c
†
jaσ

α
abclb · Sk = c†jaσ

α
abclb · Sk

(
1− nj

)
. (B.73)

The other term with nj↑nj↓ is similar in calculation. We obtain

nj↑nj↓c
†
jaclank = nj↑

(
c†ja + c†janj↓

)
clank

= nj↑c
†
jaclank, a =↓,

= c†jaclanj↑nk, a =↓, l 6= j,

= c†jaclanknj↑, k 6= j. (B.74)

Similarly, if a =↑ then

nj↑nj↓c
†
jaclank = c†jaclanknj↓, (B.75)

and thus

1

2
P0 c

†
jaclank =

1

2
c†jaclank

(
1− nj

)
. (B.76)
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Under the application of P0 the t− J model now takes on the form

Ht−J =

L∑
j,k=1
j 6=k

tjkc
†
jacla

(
1− nj

)
+

1

2U

L∑
j,k,l=1
j 6=k 6=l=j

|tjk|
2
(

4Sj · Sk − njnk
)

+
1

U

L∑
j,k,l=1
j 6=k 6=l 6=j

tjktkl

(
c†jaσ

α
abclb · Sk −

1

2
c†jaclank

)(
1− nj

)
. (B.77)

Note that since Ht−J ∈ P0H the right P0 may be left out.

At half-filling, when the number of electrons equals the number of lattice sites L, all the eigenstates of

Ht−J must be pure spin states. That is, every lattice site is occupied precisely by one electron nj = 1.

Therefore, the t− J model reduces down to the Heisenberg model

HHeis =

L∑
j,k=1
j 6=k

2|tjk|2

U

(
Sj · Sk −

1

4

)
. (B.78)

If we consider only nearest-neighbour hopping then

tjk = −t
(
δj,k−1 + δj,k+1

)
, (B.79)

and we obtain the isotropic antiferromagnetic Heisenberg model

HHeis =
4t2

U

∑
<i,j>

(
Si · Sj −

1

4

)
. (B.80)

Finally, we note that the cyclic four-spin ring-exchange term is obtained at the next non-vanishing order of

Eq. (B.37) at half-filling. The result is an interaction exchange of 20t4/U3.
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[33] A. Läuchli, G. Schmid, and M. Troyer, “Phase diagram of a spin ladder with cyclic four-spin exchange,”

Physical Review B, vol. 67, pp. 4–7, Mar. 2003.

[34] D. N. Sheng, O. I. Motrunich, and M. P. Fisher, “Spin Bose-metal phase in a spin-1/2 model with ring

exchange on a two-leg triangular strip,” Physical Review B, vol. 79, p. 205112, May 2009.

[35] M. Block, D. N. Sheng, O. I. Motrunich, and M. P. Fisher, “Spin Bose-Metal and Valence Bond Solid

Phases in a Spin-1/2 Model with Ring Exchanges on a Four-Leg Triangular Ladder,” Physical Review

Letters, vol. 106, pp. 1–4, Apr. 2011.

[36] C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement

by local operations,” Physical Review A, vol. 53, pp. 2046–2052, Apr. 1996.

[37] K. G. Wilson, “The renormalization group: Critical phenomena and the Kondo problem,” Reviews of

Modern Physics, vol. 47, no. 4, pp. 773–840, 1975.

[38] S. R. White, “Density matrix formulation for quantum renormalization groups,” Physical Review Letters,

vol. 69, no. 19, pp. 2863–2866, 1992.

[39] S. R. White, “Density-matix algorithms for quantum renormalization groups,” Physical Review B,

vol. 48, no. 14, pp. 10345–10356, 1993.



74 A. H. L. Chan – MSc. Thesis

[40] C. Lanczos, “An Iteration Method for the Solution of the Eigenvalue Problem of Linear Differential

and Integral Operators,” Journal of Research of The National Bureau of Standards, vol. 45, no. 4,

pp. 225–282, 1950.

[41] A. N. Krylov, “On the numerical solution of the equation by which in technical questions frequencies

of small oscillations of material systems are determined,” Izvestiya Akademii Nauk SSSR, Otdelenie

Matematicheskikh i Estestvennykh Nauk, vol. 7, no. 4, pp. 491–539, 1931.
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