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Abstract

In this thesis, inferential methods for one-shot device testing data from accel-

erated life-test are developed. Due to constraints on time and budget, accelerated

life-tests are commonly used to induce more failures within a reasonable amount

of test-time for obtaining more lifetime information that will be especially useful

in reliability analysis. One-shot devices, which can be used only once as they get

destroyed immediately after testing, yield observations only on their condition and

not on their real lifetimes. So, only binary response data are observed from an

one-shot device testing experiment. Since no failure times of units are observed,

we use the EM algorithm for determining the maximum likelihood estimates of

the model parameters. Also, inference for the reliability at a mission time and the

mean lifetime at normal operating conditions are also developed.

The thesis proceeds as follows. Chapter 2 considers the exponential distribu-

tion with single-stress relationship and develops inferential methods for the model

parameters, the reliability and the mean lifetime. The results obtained by the

EM algorithm are compared with those obtained from the Bayesian approach. A

one-shot device testing data is analyzed by the proposed method and presented

as an illustrative example. Next, in Chapter 3, the exponential distribution with

multiple-stress relationship is considered and corresponding inferential results are

developed. Jackknife technique is described for the bias reduction in the developed

estimates. Interval estimation for the reliability and the mean lifetime are also
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discussed based on observed information matrix, jackknife technique, parametric

bootstrap method, and transformation technique. Again, we present an example

to illustrate all the inferential methods developed in this chapter. Chapter 4 con-

siders the point and interval estimation for the one-shot device testing data under

the Weibull distribution with multiple-stress relationship and illustrates the appli-

cation of the proposed methods in a study involving the development of tumors in

mice with respect to risk factors such as sex, strain of offspring, and dose effects

of benzidine dihydrochloride. A Monte Carlo simulation study is also carried out

to evaluate the performance of the EM estimates for different levels of reliability

and different sample sizes. Chapter 5 describes a general algorithm for the deter-

mination of the optimal design of an accelerated life-test plan for one-shot device

testing experiment. It is based on the asymptotic variance of the estimated relia-

bility at a specific mission time. A numerical example is presented to illustrate the

application of the algorithm. Finally, Chapter 6 presents some concluding remarks

and some additional research problems that would be of interest for further study.
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Chapter 1

Introduction

1.1 Motivation

The study of one-shot device from accelerated life-test (ALT) data is motivated

by the work of Fan et al. [19]. They developed the Bayesian approach for one-shot

device testing along with an accelerating factor. In spite of small sample sizes

in their simulation study, their Bayesian estimator incorporating normal prior

yields accurate inference on the model parameters, the reliability as well as the

mean lifetime under normal operating conditions. In their development, a strong

assumption that prior information on success rate is very reliable was made, which

means that the reliability estimates attained are based on the information that it

is close to the true value. For this purpose, in their simulation study, the prior

information was generated from a distribution which is around the true value and

with a small variability. Unfortunately, a reliable prior belief may not always

1



be available in practice and thus it becomes somewhat subjective. Furthermore,

Dunson and Dinse [14] pointed out that some parameter estimates are sensitive to

the selection of prior in case of small samples. Fan et al. [19] also made a similar

remark that the results were dominated by the prior distribution in the case of

zero-failure. We, therefore, adopt here the conventional method of analysis for such

data by finding maximum likelihood estimates (MLEs) through the EM algorithm.

In problems involving one-shot device testing data, the reliability of devices and

the mean lifetime at normal operating conditions are often of primary interest

rather than the model parameters themselves, and so we address the corresponding

estimation problems as well.

1.2 Accelerated Life-Test

Accelerated life-tests play an important role in engineering. Due to intense

global competition and high customer expectations, manufacturers are under pres-

sure to produce products of high reliability and with longer life. In such a situa-

tion, under a conventional life-test, there will be very few failures or even no failure

within a limited time under normal operating conditions. Thus, collection of suf-

ficient lifetime information of such highly reliable products becomes extremely

difficult. Therefore, it becomes necessary to draw inference about the relationship

between the lifetime of products and external stress factors. Consequenctly, ac-

celerated life-tests (ALTs) are commonly used by adjusting controllable factors in

order to induce rapid failures at high stress levels. This would result in reducing

2



experimental time as well as the cost of conducting the experiment, and at the

same time enable to collect more lifetime information within a limited period of

time. Temperature, humidity, pressure and voltage are often used as accelerating

factors.

ALTs are popular in engineering practice for many products and materials.

Trevisanello et al. [58] reported an ALT on high brightness light emitting diodes

by submitting the devices to high temperature and high direct current levels. Dur-

ing aging, degradation mechanism like light output decay was detected. They used

the time to reach the 70% of light output as the lifetime of the device and observed

a nearly exponential decay kinetic. Recently, Zhang and Ba [71] carried out an

ALT by increasing direct current levels to predict the service life of concrete in

a chloride environment. The time that elapsed before critical chloride concentra-

tion leading to reinforcement corrosion is defined as the lifetime of concrete in

their study. In addition, Meeker et al. [38] studied accelerated degradation data

on integrated-circuit (IC) devices and used the accelerated degradation model to

develop inference and prediction about its lifetime distribution at standard oper-

ating temperature. In their work, they have also mentioned many applications of

ALTs and described methods for analyzing such data. For statistical purposes,

Lu et al. [35] compared degradation analysis and traditional failure time analysis

in terms of asymptotic variances of estimators of a quantile of the lifetime dis-

tribution. Rodrigues et al. [53] presented two approaches based on the likelihood

ratio statistic and the posterior Bayes factor for comparing several exponential

3



accelerated life models.

Since it is necessary to extrapolate the failure data collected from an ALT from

high stress levels to normal operating conditions, a suitable model motivated by

physical justification is required, relating the lifetime of products to stress factors,

to draw inference on such characteristics as the reliability and the mean lifetime of

devices at normal operating conditions. In this regard, Nelson [43] classified ALTs

into three different types, which are as follows:

1. Constant-stress test

Each test item is subjected to a constant stress level, but stress level may

differ from item to item.

2. Step-stress test

Each test item undergoes a pattern of increasing stress levels for fixed period

of time. A test item initially starts at a pre-specified constant stress level for a

specified length of time. The stress levels are then increased and maintained

step by step at some pre-specified points of time during the experiment.

3. Progressive-stress test

Each test item is subjected to continuously increasing stress levels over time.

Nelson [43] also mentioned that the step-stress and progressive-stress tests are ad-

vanced techniques in ALTs. These approaches precipitate failures more quickly

for analysis. However, there is a principal disadvantage in these tests since the

assumed model must take properly into account the cumulative effect of expo-

4



sure at successive stress levels and that it must provide an estimate of lifetime

under constant stress. Since, in practice, it is very difficult to properly model the

acceleration, it becomes difficult to predict the lifetime under normal operating

conditions based on observations from accelerated levels. Relatively, constant-

stress test is easiest to conduct as well as to model for reliability estimation, and

hence is preferable over the step-stress and progressive-stress tests. We, therefore,

focus our attention here on the constant-stress test in this thesis.

1.3 Life-Stress Relationships

In ALTs, failure rate is required to relate to stress factors such that measure-

ments taken during the experiment can then be extrapolated back to the expected

performance under normal operating conditions. A curve representing the rela-

tionship between the failure rate and the stress factors is needed and a simple

model such as linear model may not suffice to describe the lifetime of products

against the stress factors. Wang and Kececioglu [64] and Pascual [50] presented

three common relationships between lifetime of products and stress factors, which

are as follows:

1. Log-linear relationship

It is commonly used in practice due to its mathematical convenience. It

shows the relative importance of stress factors in influencing the failure be-

havior, regardless of whether the model is correct or not. The parameter

θ(x) relates to a stress factor x in this case in the form
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θ(x) = exp(γ0 + γ1x); (1.1)

2. Inverse power law relationship

It is useful for describing the lifetime as a function of applied voltage. The

parameter θ(V ) relates to applied voltage V in the form

θ(V ) =
1

γ0V γ1
; (1.2)

3. Arrhenius accelerated relationship

Based on the Arrhenius Law for simple chemical-reaction rates, it is one of

the commonly used acceleration models that predicts the failure time varying

with temperature. The parameter θ(T ) relates to temperature T in degree

Celsius as follows:

θ(T ) = exp

(
γ0 + γ1

11605

T + 273.15

)
. (1.3)

In fact, lifetime distribution models with the log-linear relationships with covari-

ates are also often used in survival analysis.

1.4 Types of Censoring

For lifetime data analysis, a complete lifetime data in which all failure times are

collected from the experiment is the most preferable one as it would result in most

precise analysis. In reality, however, there will be difficulties in observing failure

6



times of all units under test. Such incomplete data frequently arise in life-tests

and are referred to as censored data. Depending on the nature and form of the

life-testing experiment, different forms of censoring may occur in the data.

1.4.1 Right Censoring

Due to constraints on time and cost, right censoring is commonly encountered

in life-testing experiments. Under this form of censoring, while some lifetimes will

be completely observed, others will be known only to be beyond some times. There

are two main types of right censoring, which are as follows:

1. Type-I (Time-censoring)

The life-test is terminated at a pre-fixed time, resulting in a fixed censoring

time and a random number of failures during the experimental period;

2. Type-II (Failure-censoring)

The life-test is terminated as soon as a pre-fixed number of failures have

been observed, resulting in a random censoring time and a fixed number of

failures during the experimental period.

Type-I censoring is quite practical as it restricts the duration of test to a pre-

set termination time. It, however, results in a random number of failures and

consequently may end up with ineffective inference due to the realization of very

few failures. In contrast, the number of failures is guaranteed (at a pre-fixed

number) under Type-II censoring and therefore assists in the planning adequate
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tests. However, the random termination time poses difficulties from managerial

point of view since the duration of the test is not known in advance in this case.

Since it is common to face right censored data in practice, many survival models

based on right censored data have been studied extensively in the literature. To

mention a few, for example, Dupuy [15] proposed likelihood ratio type tests to

detect change in a hazard regression model based on right-censored data. Emura

et al. [18] developed a goodness-of-fit test for Archimedean copula models based on

right censored sample. Zhao and Zhao [72] considered two samples in the presence

of right censoring and constructed confidence intervals for the ratio or difference

of two hazard functions by using smoothed empirical likelihood methods. Lin

et al. [32] presented a method for testing goodness-of-fit based on samples with

Type-II right censoring. Joarder et al. [25] studied statistical inferential methods

for Weibull distribution based on Type-I right censored samples.

1.4.2 Interval Censoring

In some situations, test items are inspected for failure at many time points

and one only knows that items failed in some intervals between two contiguous

inspections. Such lifetime data are said to be interval censored and arise naturally

when the test items are not constantly monitored. More specifically, if an item is

inspected at 100 hours and is still operating and then inspected at 200 hours but

is no longer operating, we only know that the failure occurred between 100 and

200 hours. In survival analysis, interval censoring occurs when the response times
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arise from a clinical trial or a longitudinal study in which there is a periodic follow-

up. Yu [69] proposed Bayesian MCMC method to analyze such interval censored

data from an AIDS cohort study and a population-based dementia study. Chen

et al. [10] presented a full likelihood approach based on the proportional hazards

frailty model for a bivariate current status data arising from a tumorigenicity

experiment. Finkelstein [20] studied proportional hazards regression model for

animal tumorigenicity study and breast cosmesis study when the available data

are interval censored.

1.5 One-Shot Device Testing Data

In this thesis, one-shot device testing data, which is an extreme case of interval

censoring, is studied. Since one-shot devices can be used only once and are de-

stroyed immediately after use, one can only know whether the failure time is either

before or after a specific time. Since the condition of a test device at a specific

inspection time is observed rather than its actual lifetime, binary data is observed

naturally from such experiments. They are also known as current status data in

survival analysis. As a typical example, Fan et al. [19] studied electro-explosive

devices and, in particular, developed inferential methods for their reliability. The

devices are detonated∗ by inducing a current to excite the inner powder, and they

∗In the case of electro-explosive devices, the success or failure is based on whether it was

successfully detonated or not; in biological systems, however, it is based on whether the system

died (sacrificed) or not, but in this thesis, we refer to this in all cases by ’detonation’.
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can not be re-used after detonation. No matter whether the detonation is suc-

cessful or not, the lifetime of devices can never be recorded. The lifetimes are

either left- or right-censored, with the lifetime being less than the inspection time

if the test outcome is a failure (resulting in left censoring) and the lifetime be-

ing more than the inspection time if the test outcome is a success (resulting in

right censoring). Yet another example of this type is in the study of reliability of

bombs and missiles faced by Australian Defence Organization. In this situation,

Yates and Mosleh [68] developed a Bayesian approach for the reliability estima-

tion. One-shot devices such as fire extinguishers and munitions have also been

discussed for maintenance and monitoring by Newby [46]. Morris [40] analyzed a

battery data from destructive life-tests in which the batteries were stored under

a mildly accelerated aging temperature and a relatively light load. In addition to

these situations, one-shot device data also arise naturally in tests of space shuttles,

military weapons and automobile air bags. Note that in all these scenarios, tested

devices can not be used any further since the test results in their destruction.

Suppose devices are placed in I testing conditions, wherein, for i = 1, 2, . . . , I,

Ki devices are subjected to J independent stress factors, {xij, j = 1, 2, . . . , J},

and under inspection at time ITi. In the i-th testing condition, number of failures,

ni, is observed. We assume that the lifetime of the units, {tik, i = 1, 2, . . . , I, k =

1, 2, . . . , Ki}, has a distribution with probability density function, f(t; θi), and

cumulative distribution function, F (t; θi), where the parameter, θi, is assumed to
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Table 1.1: Data on one-shot device testing at various stress levels collected at

different inspection times.

Testing Inspection Numbers of Numbers of Covariates

condition time devices failures Stress 1 · · · Stress J

1 IT1 K1 n1 x11 · · · x1J

2 IT2 K2 n2 x21 · · · x2J

...
...

...
...

...
...

I ITI KI nI xI1 · · · xIJ

relate to the stress levels in a log-linear form as

θi = exp

(
J∑
j=0

ajxij

)
. (1.4)

Note that xi0 = 1 for all i, corresponding to constant effect on the parameter in

the model. The data thus observed can be summarized as in Table 1.1.

For ALT, it is reasonable to make an assumption that aj > 0, since the accel-

erating factor are supposed to increase the failure rate thus decreasing the failure

time. But in biomedical studies, it is not necessary to have this restriction since

stress factors such as an increase in the dosage of medicine may sometimes help

prolong the survival time. So, we consider here a general situation that allows aj

to be negative as well.

For notational convenience, we denote z = {ITi, Ki, ni, xij, i = 1, 2, . . . , I, j =

1, 2, . . . , J} for the observed data and θ = {θi, i = 1, 2, . . . , I}. Then, the likelihood
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function based on this observed data is given by

L(θ; z) ∝
I∏
i=1

[F (ITi; θi)]
ni [1− F (ITi; θi)]

Ki−ni . (1.5)

1.6 EM Algorithm

Maximum likelihood method is commonly adopted in analyzing reliability data

due to its well-known optimality properties. The EM algorithm is a quite an use-

ful and powerful technique for numerically determining the MLEs in the presence

of missing data, even though the final estimates of the parameters are not in a

closed-form; see McLachlan and Krishnan [36] and Casella and Berger [8] for an

overview of this technique. The EM algorithm proceeds by alternating between

the expectation step (E-step) and the maximization step (M-step) in each itera-

tion. In the E-step, the expected log-likelihood of the complete data, conditional

on the observed data and the current parameters, is computed. In the M-step,

updated estimates of the parameters are computed by maximizing the expected

log-likelihood function. This process is repeated until convergence occurs to a

desired level of accuracy. Thus, two different likelihood problems are considered

in the EM algorithm, one involving an approximation of the missing data and

another involving the maximization of the corresponding likelihood function. The

problem that we are focusing here, namely, in analyzing an one-shot device testing

data, is an incomplete data problem, and so we solve it by first approximating the
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missing data and then using them to update the estimate of the parameter as the

solution to the complete data problem.

Given a likelihood function Lc(θ;x, z), where x is the observed data and z

represents the unobserved latent data, the MLEs are determined by the marginal

likelihood of the observed data Lc(θ;x). The EM algorithm seeks to find the MLEs

by iteratively applying the following two steps:

1. Calculate the expected value of the log-likelihood function, with respect to

the conditional distribution of z, given x, under the current estimate of the

parameter θ(m);

2. Find the next iterate of the parameter θ(m+1) by maximizing the quantity

E[log(Lc(θ;x, z)|θ(m), x)]

.

Much work has been done on the estimation of parameters in incomplete data

problems through the EM algorithm. For instance, Ng et al. [47] developed infer-

ence for the lognomal and Weibull distributions based on progressively censored

data. Kundu and Dey [30] and Nandi and Dewan [42] considered the Marshall-

Olkin bivariate Weibull distribution under random censoring using the EM algo-

rithm and analyzed a soccer data from UEFA Champions League. Chen et al. [10]

also presented the EM algorithm based on a proportional hazards frailty model

for analyzing a bivariate current status data arising from a tumorigenicity experi-
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ment. Scheike and Sun [54] presented the EM algorithm for the Cox proportional

regression model for right censored survival data. Chen and Lio [9] examined the

EM algorithm for generalized exponential distribution under progressively Type-I

interval censored data. Furthermore, the EM algorithm has been applied in a wide

variety of problems involving missing values; for example, in studies of competing

risks model [11], astroparticle physics studies [1], marine studies [41], and studies

of genetics, genomics and public health [31]. As mentioned before, under one-shot

device testing, one can observe only the condition of the devices at inspection

times rather than the real lifetimes. Thus, the lifetimes of the one-shot devices are

censored, in fact, on both sides, and consequently the EM algorithm becomes quite

appropriate for determining the MLEs of the model parameters, and to develop

subsequent likelihood inferential methods.

1.7 Scope of the Thesis

The rest of this thesis is organized as follows. In Chapters 2, 3 and 4, the EM

algorithm is proposed for different lifetime models. The E-step and the M-step are

developed for the problem under different considerations. Chapter 2 considers the

exponential distribution with single-stress relationship. Estimation of the model

parameters, the reliability, and the mean lifetime under a Bayesian approach are

also described and compared with those obtained from the EM algorithm. A one-

shot device testing data is analyzed to illustrate the proposed methods. Next, in

Chapter 3, the exponential distribution with multiple-stress relationship is consid-
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ered. Jackknife technique is described for bias reduction of the proposed estimates.

In addition to point estimation, confidence intervals for the reliability and the mean

lifetime are discussed based on four methods of variance estimation. Here again,

we present an example to illustrate all the inferential methods developed in this

chapter. Chapter 4 considers the point and interval estimation based on one-shot

device testing data under the Weibull distribution with multiple-stress relationship

and illustrates the proposed methods by using the data from a study of tumors in

mice induced by benzidine dihydrochloride. Simulation study is also carried out

to show the performance of the EM estimates for different levels of reliability and

different sample sizes in each chapter. Chapter 5 describes an algorithm for the

determination of the optimal accelerated life-test plan with an example. Chap-

ter 6 finally provides some concluding remarks and also points out some further

problems of interest.
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Chapter 2

Exponential Lifetime Distribution

with Single-Stress Model

2.1 Introduction

A number of Bayesian models for one-shot device testing data have been stud-

ied. Cai et al. [7] suggested a Bayesian proportional hazards model for analyzing

an uterine fibroid data from an epidemiological study. Fan et al. [19] developed

the Bayesian approach for one-shot device testing along with an accelerating fac-

tor of temperature, in which the failure time of the devices is assumed to follow

an exponential distribution. As mentioned before, the prior information on the

success rate is assumed to be very reliable in their development. That is, the reli-

ability estimates attained are based on the information that it is close to the true
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value. In addition, the prior information was generated from a distribution which

is around the true value and with a small variability in their simulation study. For

these reasons, their Bayesian estimates incorporating normal prior yields precise

inference on the model parameters, the reliability as well as the mean lifetime

under normal temperature, even when the sample sizes are small.

In this Chapter, the EM algorithm is, therefore, developed for finding the

MLEs of the model parameters, the reliability and the mean lifetime of devices

under normal temperature, and this method is then compared with the above

mentioned Bayesian approach. We show that the proposed method yields quite

reliable and efficient estimates, and demonstrate that the EM algorithm is quite

useful for analyzing such one-shot device testing data. Here, equal number of

devices is assumed at each testing condition, that is, K1 = K2 = · · · = KI = K.

2.2 Model Description

Consider a reliability testing experiment in which K devices are placed under

temperature xi and tested at time ITi, where i = 1, 2, . . . , I. It is worth not-

ing that a successful detonation occurs if its lifetime is beyond the inspection

time, whereas the lifetime will be before the inspection time if the detonation is

a failure. For each temperature xi, the number of failures ni is then recorded

at each inspection time ITi. We assume here that the true lifetimes tik, where

i = 1, 2, . . . , I, k = 1, 2, . . . , K, are independent and identically distributed expo-

nential random variables with probability density function (pdf) and cumulative
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distribution function (cdf) as

f(t) = λe−λt, t ≥ 0, (2.1)

and

F (t) = 1− e−λt, t ≥ 0, (2.2)

where λ > 0 is the failure rate, respectively. Here, we relate the parameter λ to

an accelerating factor of temperature xi through a log-linear link function of the

form

λi = α0e
α1xi , xi > 0. (2.3)

In the analysis of lifetime data, the hazard function h(t) plays an important

role and it is the instantaneous rate of failure time t, meaning the failure rate at

time t conditional on survival until time t or later, i.e.,

h(t)δt = Pr(t < T < t+ δt|T > t) =
f(t)δt

R(t)
, (2.4)

where R(t) = 1 − F (t). It follows that the hazard rate, under exponential distri-

bution, is then simply

h(t) =
f(t)

R(t)
= λ. (2.5)

Figure 2.1 presents a plot of the pdf, the reliability function (R(t) = 1−F (t)),

and the hazard function over time t for some choices of the failure rate λ. The

hazard function is constant over time, which means that the instantaneous failure

rate never changes. Moreover, the reliability drops rapidly as λ becomes larger.

The exponential distribution is the simplest model for analyzing lifetime data, and
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Figure 2.1: Plots of the exponential pdf, the reliability, and the hazard function

for different choices of failure rate.
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it possesses an important memoryless property, that is,

Pr(T > t+ s|T > s) = Pr(T > t), for all s, t ≥ 0.

The reliability function R(t) at time t and the mean lifetime E(T ) under normal

temperature x0 are given by

R(t) = e−λ0t = exp(−α0e
α1x0t), t ≥ 0, (2.6)

and

E(T ) =
1

λ0
=

1

α0eα1x0
. (2.7)

2.3 Point Estimation of Parameters of Interest

2.3.1 EM Algorithm based on an Iterative Formula

In the EM algorithm, the parameters will be estimated in the M-step while

the expected lifetimes will be approximated in the E-step. The failure rate is

related to an accelerating factor of temperature through a log-linear link function

in Eq. (2.3). The log-likelihood function of α0 and α1 based on the complete data

is given by

`c(α0, α1) =
I∑
i=1

K∑
k=1

(logα0 + α1xi − α0e
α1xitik)

= IK logα0 + α1KX − α0

I∑
i=1

(eα1xiT ∗i ), (2.8)

where X =
I∑
i=1

xi and T ∗i =
K∑
k=1

tik.
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In the maximization step, upon setting
∂`c(α0, α1)

∂α0

= 0 and
∂`c(α0, α1)

∂α1

= 0,

we obtain the estimates of the parameters α0 and α1 as solutions of the equations

α0 =
IK

I∑
i=1

(eα1xiT ∗i )

(2.9)

and

X

I
=

I∑
i=1

(xiT
∗
i e

α1xi)

I∑
i=1

(T ∗i e
α1xi)

. (2.10)

For the solution of α1 from Eq. (2.10), we adopt the iterative formula

α
(l+1)
1 = x−1I log



I−1∑
i=1

[
(X − Ixi)T ∗i eα

(l)
1 xi
]

(IxI −X)T ∗I

 . (2.11)

In the expectation step, the mean lifetime E[T ∗i |λi, z] under the temperature

xi (needed for solving the above equations) can be obtained as follows:

E[T ∗i |λi, z] =
K∑
k=1

E[Tik|λi, z]

=

ni
∫ ITi

0

tλie
−λitdt∫ ITi

0

λie
−λitdt

+

(K − ni)
∫ ∞
ITi

tλie
−λitdt∫ ∞

ITi

λie
−λitdt


=

[
ni

(
1

λi
− (ITi)e

−λi(ITi)

1− e−λi(ITi)

)
+ (K − ni)

(
ITi +

1

λi

)]
. (2.12)

In the above expression, the first term accounts for all devices that failed in the

test resulting in lifetimes that are before the inspection times, which corresponds
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to left censoring. On the other hand, the second term accounts for all devices that

detonated successfully resulting in lifetimes that are beyond the inspection times,

which corresponds to right censoring.

Suppose the estimates of the parameters α0 and α1 at the m-th step are α
(m)
0

and α
(m)
1 , respectively. Then, the (m + 1)-th step of the EM algorithm proceeds

as follows:

1. Compute E[T ∗i |λi, z] in Eq. (2.12) by using α
(m)
0 and α

(m)
1 , for i = 1, 2, . . . , I;

2. Starting with α
(m)
1 , for fixed E[T ∗i |λi, z] (i = 1, 2, . . . , I), find α

(m+1)
1 itera-

tively from Eq. (2.11);

3. Given α
(m+1)
1 , compute α

(m+1)
0 from Eq. (2.9);

4. Repeat Steps 1-3 by using α
(m+1)
0 and α

(m+1)
1 , until convergence occurs to a

desired level of accuracy.

Given the estimates of α0 and α1, denoted by α̂0 and α̂1, due to the invariance

property of the maximum likelihood estimates that the estimate of a function

is simply the function evaluated at the MLEs of the model parameters, we can

therefore plug-in those estimates into the corresponding functions to obtain infer-

ence on the reliability R̂(t) at time t and the mean lifetime Ê(T ) under normal

temperature of 25◦C as follows:

R̂(t) = exp(−α̂0e
25α̂1t) (2.13)

and

Ê(T ) =
1

α̂0e25α̂1
. (2.14)
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2.3.2 Bayesian Approach

In the Bayesian approach, the parameter itself is thought to be a random

quantity whose variation can be described by a prior distribution. A sample is

taken from the population and the distribution is updated with this sample. We

describe here the inference on the reliability of the electro-explosive devices through

the Bayesian approach, as developed by Fan et al. [19].

Let pi denote the associated survival probability under temperature xi at time

ITi. We then have

pi = 1− F (ITi|λi) = exp(−λi(ITi)) = exp(−α0e
α1xi(ITi)). (2.15)

Now, given the data z, the likelihood function of α0 and α1 is given by

L(α0, α1|z) =
∏I

i=1 p
K−ni
i (1− pi)ni

=
∏I

i=1 exp(−α0(K − ni)eα1xi(ITi)) {1− exp(−α0e
α1xi(ITi))}ni .

(2.16)

Let π(α0, α1) be the joint prior density of (α0, α1). Then, given the data z, the

joint posterior density of (α0, α1) is given by

π(α0, α1|z) =
L(α0, α1|z)π(α0, α1)∫ ∫

L(α0, α1|z)π(α0, α1)dα0dα1

, (2.17)

where L(α0, α1|z) is the likelihood function of α0 and α1. Since the denomina-

tor in the above equation is not in closed-form, the Markov Chain Monte Carlo

(MCMC) method is used to generate approximate posterior samples of (α0, α1),
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say (α
(r)
0 , α

(r)
1 ), r = 1, 2, . . . , R, and the marginal sample means can then be used

as approximate Bayesian point estimates of α0 and α1, given by

α̂0 =
1

R

R∑
r=1

α
(r)
0 (2.18)

and

α̂1 =
1

R

R∑
r=1

α
(r)
1 . (2.19)

Then, the reliability at time t under normal temperature of 25◦C can be readily

estimated as

R̂(t) =
1

R

R∑
r=1

exp(−α(r)
0 e25α

(r)
1 t). (2.20)

In analogous manner, we can estimate the mean lifetime under normal temperature

of 25◦C by

Ê(T ) =
1

R

R∑
r=1

1

α
(r)
0 e25α

(r)
1

. (2.21)

In the choice of prior distribution, Fan et al. [19] suggested the use of normal

prior in their Bayesian method. This prior information is appropriate to devices

with moderate to high reliabilities. The joint prior density of (α0, α1) is given by

π(α0, α1|{xi, ITi, i = 1, 2, . . . , I}) ∝

{
I∑
i=1

[exp(−α0e
α1xi(ITi))− p̂i]2

}−I/2
,

(2.22)

where p̂i represents the prior belief of the success rate pi. Consequently, it results

in the joint posterior density of (α0, α1) as

π(α0, α1|z) ∝
I∏
i=1

L(α0, α1|z)

{
I∑
i=1

[exp(−α0e
α1xi(ITi))− p̂i]2

}−I/2
. (2.23)

It is worth noting here that the prior belief p̂i was supposed in Fan et al. [19]

to be quite reliable to the true pi, where p̂i are generated from a Beta(α∗i , β
∗
i )
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distribution with α∗i and β∗i being selected so that E(p̂i) = pi and var(p̂i) = c2,

where c2 specifies the precision of the belief. Given c2, we then have

α∗i = pi

(
pi(1− pi)

c2
− 1

)
(2.24)

and

β∗i = (1− pi)
(
pi(1− pi)

c2
− 1

)
. (2.25)

Here, we also propose another prior information for incorporating into the

Bayesian approach. Since we know the number of failures at each time and each

temperature, the prior belief can be viewed as

p̃i =
K − ni
K

= 1− ni
K
. (2.26)

Though the prior belief, p̃i, will not be reliable in the case of small sample sizes, it

would give us a better understanding of the importance of the prior belief to the

Bayesian approach in the ensuing simulation study.

2.4 Illustrative Example

Fan et al. [19] presented a one-shot device testing data. There were 30 devices

tested at temperatures {35, 45, 55} each, of which 10 units were detonated at times

{10, 20, 30} each. The number of failures observed is summarized in Table 2.1.

There were in all 48 failures out of a total of 90 devices that were tested in this

one-shot device testing experiment. We now use these one-shot device testing

data to illustrate the proposed EM algorithm method and the Bayesian approach
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Table 2.1: The number of failures recorded under temperatures 35, 45, 55 (in ◦C)

at inspection times 10, 20, 30, respectively, in a one-shot device testing.

Testing Inspection Numbers of Numbers of Stress factor

condition time devices failures temperature (◦C)

1 10 10 3 35

2 20 10 3 35

3 30 10 7 35

4 10 10 1 45

5 20 10 5 45

6 30 10 7 45

7 10 10 6 55

8 20 10 7 55

9 30 10 9 55
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Table 2.2: Point estimates for the model parameters, the reliabilities at time t =

{10, 20, 30}, and the mean lifetime at normal temperature of 25◦C for the data

presented in Table 2.1.

α̂0 α̂1 R̂(10) R̂(20) R̂(30) Ê(T )

EM algorithm 0.0049 0.0473 0.8530 0.7277 0.6208 62.9179

Bayesian with p̃i 0.0084 0.0392 0.8236 0.6803 0.5635 55.3268

with normal prior and attainable prior belief p̃ij, as discussed in Section 2. The

estimates α̂0, α̂1, R̂(10), R̂(20), R̂(30) and Ê(T ) obtained by these two methods are

all presented in Table 2.2.

Table 2.2 shows that the estimates of the model parameters by the EM algo-

rithm and the Bayesian approach are slightly different, but the estimates of the

reliabilities at mission times (time points in the future at which we are interested

in the reliability of the unit) t = {10, 20, 30} are close. Also, the mean lifetime

obtained by the EM algorithm is greater than that obtained from the Bayesian

approach.

2.5 Simulation Results

In this section, we investigate the performance of the EM algorithm and the

Bayesian method incorporated with the prior beliefs p̂i generated from a beta dis-

tribution and p̃i determined from the data [See Eq. (2.26)]. Under each tempera-
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ture {35◦C, 45◦C, 55◦C}, K devices are tested at each inspection time {10, 20, 30}.

Note that the total number of devices tested is therefore 9 ×K. All methods are

examined under 12 conditions: choices of (α0, α1) = (0.008, 0.05) for low reliabil-

ity, (α0, α1) = (0.004, 0.05) for moderate reliability, and (α0, α1) = (0.001, 0.05)

for high reliability when K = 10 (small sample size), K = 50 (moderate sample

size), and K = 100 (large sample size) based on 10,000 Monte Carlo simulations.

Moreover, the setting of (α0, α1) = (0.001, 0.06), (0.004, 0.06), (0.008, 0.06) in large

sample size K = 100 shows the change of performance of the estimates when the

accelerating factor has more influence on the reliability.

Given (α0, α1) and K, at each (xi, ITi), where i = 1, 2, . . . , 9, K actual life-

times were generated from Exp(λi), where λi = α0e
α1xi , of which the number of

failures with lifetimes before the inspection time ITi was recorded as ni. Then,

we determined the parameter estimate (α̂0, α̂1), and then used it to estimate the

reliabilities (R̂(10), R̂(20), R̂(30)) at times t = {10, 20, 30} and the mean lifetime

Ê(T ), by using the EM algorithm with an initial value of (0.001, 0). The estimates

from the Bayesian approach were determined next. The MCMC method was used

to simulate the posterior distribution, in which the Metropolis-Hastings algorithm

by using lognormal distribution for (α0, α1) was performed to simulate a sequence

of 100,000 random variables iteratively. To approximate the posterior distribu-

tion of (α0, α1), a sample of size 990 was obtained by discarding the first 1,000

iterations and then choosing 1 sample in every 100 iterations so as to reduce the

correlation between the iterated samples. With the precision of the prior belief
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c2 = 0.01 for low and moderate reliabilities and c2 = 0.001 for high reliability, the

prior belief p̂i were generated from the Beta (α∗i , β
∗
i ) distribution. Also, an initial

value of (α
(0)
0 , α

(0)
1 ) was set for (α0, α1). On the other hand, the other prior belief p̃i

was calculated from the data directly by using Eq. (2.26). The estimates obtained

from the EM algorithm were taken in this case as the initial value of (α
(0)
0 , α

(0)
1 ). In

both cases under the Bayesian approach, the standard deviations of the lognormal

distribution for α
(r)
0 and α

(r)
1 were taken to be 0.001 and 0.01, respectively.

To compare the methods based on the EM algorithm and the Bayesian ap-

proach in the case of small, moderate and large sample sizes, we computed the

bias and mean square errors (MSE) of the estimates of the parameters and these

are presented in Tables 2.3 to 2.11. In general, we note that, for both methods, the

bias and MSE both become small when the sample size increases. Moreover, the

MSE of the estimate of reliability increases with time due to the fact that fewer

observations will be observed in this case. Except for the case of the estimation of

the mean lifetime Ê(T ), the MSE of the estimates obtained from the EM algorithm

is usually smaller than those obtained from the Bayesian approach incorporated

with p̃i, but greater than those obtained from the Bayesian approach incorporated

with p̂i. In most cases, the Bayesian estimates with p̂i yields, as expected, estimates

that are close to the true parameter values with small MSE.

Tables 2.3 to 2.8 show that the estimates based on the Bayesian approach with

p̂i and the EM algorithm are both quite good even in the case of small samples.

The difference between the values of the MSE of these two is small for the cases of
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moderate and low reliabilities. When the product is of high reliability, the Bayesian

approach with p̂i provides more accurate estimates than the EM algorithm. Also,

the estimation based on the Bayesian method with p̃i is not satisfactory in this

case since the information used is not quite reliable in the case of small sample

sizes, and so the estimates obtained by this method are far from the true parameter

values. Furthermore, a comparison of the Bayesian approach by using p̂i and p̃i

shows that the precision of the estimates in this approach depends critically on a

reliable prior belief. Therefore, without a proper prior belief with precision, it may

not be good to adopt estimation based on the Bayesian method. In addition, the

estimation based on all methods are quite similar and satisfactory when the sample

size is sufficiently large. Moreover, the EM algorithm provides the most precise

estimation for low, moderate and even high reliabilities. It is worth noting that,

with an accurate prior belief p̃i, the estimation based on the Bayesian approach

is significantly improved in the cases of moderate and large sample sizes since in

this case p̃i converges quickly to the true parameter values, thus becoming quite

reliable.

We also observe that the EM algorithm is generally not suitable for the estima-

tion of the mean failure time. The mean lifetime obtained from the EM algorithm

is always an overestimate of the true mean lifetime. In the case of small sam-

ple sizes, except the Bayesian method with a reliable p̂i, the standard deviations

of estimates from the other two methods for high reliability situation is unduly

large. From the simulation study, we observe that for moderate and large sample
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Table 2.3: Values of bias and mean square errors of the estimates of the model

parameters in the case of low reliability for different sample sizes.

Bias

α0 = 0.008 EM algorithm Bayesian with p̂i Bayesian with p̃i

K = 10 2.673E-03 4.768E-03 8.492E-03

K = 50 4.197E-04 1.472E-03 1.198E-03

K = 100 2.013E-04 8.005E-04 5.756E-04

α1 = 0.05 EM algorithm Bayesian with p̂i Bayesian with p̃i

K = 10 1.803E-03 -3.863E-03 -4.248E-03

K = 50 4.003E-04 -1.362E-03 -8.488E-04

K = 100 2.293E-04 -7.368E-04 -4.043E-04

MSE

α0 = 0.008 EM algorithm Bayesian with p̂i Bayesian with p̃i

K = 10 1.131E-04 8.751E-05 3.293E-04

K = 50 1.015E-05 1.172E-05 1.375E-05

K = 100 4.688E-06 5.302E-06 5.574E-06

α1 = 0.05 EM algorithm Bayesian with p̂i Bayesian with p̃i

K = 10 3.666E-04 1.576E-04 8.506E-04

K = 50 6.425E-05 5.221E-05 6.750E-05

K = 100 3.263E-05 2.932E-05 3.406E-05
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Table 2.4: Values of bias of the estimates of the reliabilities and the mean lifetime

in the case of low reliability for different sample sizes.

Bias

R(10) = 0.756 EM algorithm Bayesian with p̂i Bayesian with p̃i

K = 10 -7.470E-03 -2.909E-02 -4.129E-02

K = 50 -1.135E-03 -1.083E-02 -7.503E-03

K = 100 -4.812E-04 -6.070E-03 -3.709E-03

R(20) = 0.572 EM algorithm Bayesian with p̂i Bayesian with p̃i

K = 10 -4.054E-03 -3.706E-02 -4.861E-02

K = 50 -3.939E-04 -1.419E-02 -9.293E-03

K = 100 -6.232E-05 -7.973E-03 -4.615E-03

R(30) = 0.433 EM algorithm Bayesian with p̂i Bayesian with p̃i

K = 10 3.049E-03 -3.513E-02 -4.214E-02

K = 50 1.033E-03 -1.371E-02 -8.294E-03

K = 100 6.796E-04 -7.709E-03 -4.125E-03

E(T ) = 35.81 EM algorithm Bayesian with p̂i Bayesian with p̃i

K = 10 3.883E+00 -1.332E+00 -6.267E-02

K = 50 7.229E-01 -4.684E-01 5.202E-02

K = 100 3.798E-01 -2.400E-01 3.656E-02
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Table 2.5: Values of mean square errors of the estimates of the reliabilities and the

mean lifetime in the case of low reliability for different sample sizes.

MSE

R(10) = 0.756 EM algorithm Bayesian with p̂i Bayesian with p̃i

K = 10 7.246E-03 3.982E-03 1.021E-02

K = 50 1.323E-03 1.185E-03 1.463E-03

K = 100 6.657E-04 6.412E-04 7.075E-04

R(20) = 0.572 EM algorithm Bayesian with p̂i Bayesian with p̃i

K = 10 1.506E-02 7.538E-03 1.797E-02

K = 50 2.969E-03 2.531E-03 3.175E-03

K = 100 1.510E-03 1.410E-03 1.578E-03

R(30) = 0.433 EM algorithm Bayesian with p̂i Bayesian with p̃i

K = 10 1.846E-02 8.328E-03 1.915E-02

K = 50 3.780E-03 3.076E-03 3.922E-03

K = 100 1.934E-03 1.757E-03 1.990E-03

E(T ) = 35.81 EM algorithm Bayesian with p̂i Bayesian with p̃i

K = 10 3.159E+02 7.316E+01 2.241E+02

K = 50 4.077E+01 2.908E+01 3.967E+01

K = 100 1.993E+01 1.692E+01 1.984E+01
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Table 2.6: Values of bias and mean square errors of the estimates of the model

parameters in the case of moderate reliability for different sample sizes.

Bias

α0 = 0.004 EM algorithm Bayesian with p̂i Bayesian with p̃i

K = 10 1.604E-03 2.883E-03 5.545E-03

K = 50 3.355E-04 1.322E-03 8.403E-04

K = 100 1.558E-04 5.341E-04 3.885E-04

α1 = 0.05 EM algorithm Bayesian with p̂i Bayesian with p̃i

K = 10 1.801E-03 -5.019E-03 -6.276E-03

K = 50 9.101E-05 -3.532E-03 -1.452E-03

K = 100 6.277E-05 -1.187E-03 -6.891E-04

MSE

α0 = 0.004 EM algorithm Bayesian with p̂i Bayesian with p̃i

K = 10 3.794E-05 2.972E-05 1.313E-04

K = 50 3.505E-06 6.399E-06 4.897E-06

K = 100 1.482E-06 1.761E-06 1.773E-06

α1 = 0.05 EM algorithm Bayesian with p̂i Bayesian with p̃i

K = 10 4.064E-04 1.612E-04 4.168E-04

K = 50 7.642E-05 8.308E-05 7.795E-05

K = 100 3.691E-05 3.314E-05 3.749E-05
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Table 2.7: Values of bias of the estimates of the reliabilities and the mean lifetime

in the case of moderate reliability for different sample sizes.

Bias

R(10) = 0.870 EM algorithm Bayesian with p̂i Bayesian with p̃i

K = 10 -5.846E-03 -2.166E-02 -3.319E-02

K = 50 -1.905E-03 -9.001E-03 -7.023E-03

K = 100 -8.761E-04 -4.992E-03 -3.366E-03

R(20) = 0.756 EM algorithm Bayesian with p̂i Bayesian with p̃i

K = 10 -6.931E-03 -3.444E-02 -5.066E-02

K = 50 -2.703E-03 -1.433E-02 -1.123E-02

K = 100 -1.233E-03 -8.145E-03 -5.404E-03

R(30) = 0.658 EM algorithm Bayesian with p̂i Bayesian with p̃i

K = 10 -5.031E-03 -4.106E-02 -5.798E-02

K = 50 -2.742E-03 -1.703E-02 -1.340E-02

K = 100 -1.232E-03 -9.934E-03 -6.470E-03

E(T ) = 71.63 EM algorithm Bayesian with p̂i Bayesian with p̃i

K = 10 1.171E+01 -2.969E+00 5.613E-01

K = 50 1.569E+00 -1.894E-01 -2.205E-01

K = 100 7.859E-01 -7.248E-01 -6.729E-02
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Table 2.8: Values of mean square errors of the estimates of the reliabilities and the

mean lifetime in the case of moderate reliability for different sample sizes.

MSE

R(10) = 0.870 EM algorithm Bayesian with p̂i Bayesian with p̃i

K = 10 3.237E-03 1.794E-03 5.054E-03

K = 50 6.093E-04 6.857E-04 6.867E-04

K = 100 2.907E-04 2.826E-04 3.097E-04

R(20) = 0.756 EM algorithm Bayesian with p̂i Bayesian with p̃i

K = 10 9.102E-03 4.792E-03 1.275E-02

K = 50 1.810E-03 1.961E-03 1.992E-03

K = 100 8.719E-04 8.302E-04 9.183E-04

R(30) = 0.658 EM algorithm Bayesian with p̂i Bayesian with p̃i

K = 10 1.464E-02 7.289E-03 1.853E-02

K = 50 3.034E-03 3.169E-03 3.264E-03

K = 100 1.473E-03 1.375E-03 1.534E-03

E(T ) = 71.63 EM algorithm Bayesian with p̂i Bayesian with p̃i

K = 10 2.106E+03 3.360E+02 1.262E+03

K = 50 2.246E+02 1.930E+02 2.076E+02

K = 100 1.046E+02 8.440E+01 1.016E+02
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Table 2.9: Values of bias and mean square errors of the estimates of the model

parameters in the case of high reliability for different sample sizes.

Bias

α0 = 0.001 EM algorithm Bayesian with p̂i Bayesian with p̃i

K = 10 1.663E-03 5.626E-04 8.680E-03

K = 50 2.212E-04 3.209E-04 6.794E-04

K = 100 1.168E-04 2.364E-04 3.234E-04

α1 = 0.05 EM algorithm Bayesian with p̂i Bayesian with p̃i

K = 10 3.418E-03 -4.257E-03 -2.086E-02

K = 50 4.863E-04 -2.911E-03 -4.396E-03

K = 100 1.836E-04 -2.249E-03 -2.321E-03

MSE

α0 = 0.001 EM algorithm Bayesian with p̂i Bayesian with p̃i

K = 10 4.371E-05 6.355E-06 3.813E-04

K = 50 8.634E-07 3.543E-07 1.831E-06

K = 100 3.408E-07 2.241E-07 5.375E-07

α1 = 0.05 EM algorithm Bayesian with p̂i Bayesian with p̃i

K = 10 1.295E-03 9.420E-05 1.491E-03

K = 50 2.058E-04 6.335E-05 2.145E-04

K = 100 1.073E-04 4.918E-05 1.105E-04
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Table 2.10: Values of bias of the estimates of the reliabilities and the mean lifetime

in the case of high reliability for different sample sizes.

Bias

R(10) = 0.966 EM algorithm Bayesian with p̂i Bayesian with p̃i

K = 10 -6.527E-03 -5.224E-03 -3.402E-02

K = 50 -1.239E-03 -3.481E-03 -6.163E-03

K = 100 -7.452E-04 -2.631E-03 -3.246E-03

R(20) = 0.933 EM algorithm Bayesian with p̂i Bayesian with p̃i

K = 10 -1.161E-02 -9.881E-03 -6.193E-02

K = 50 -2.248E-03 -6.611E-03 -1.162E-02

K = 100 -1.366E-03 -5.003E-03 -6.142E-03

R(30) = 0.901 EM algorithm Bayesian with p̂i Bayesian with p̃i

K = 10 -1.545E-02 -1.402E-02 -8.476E-02

K = 50 -3.051E-03 -9.416E-03 -1.642E-02

K = 100 -1.874E-03 -7.134E-03 -8.717E-03

E(T ) = 286.50 EM algorithm Bayesian with p̂i Bayesian with p̃i

K = 10 3.326E+02 -1.209E+01 8.447E+01

K = 50 2.486E+01 -7.977E+00 -1.855E+00

K = 100 1.161E+01 -6.161E+00 -1.642E+00
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Table 2.11: Values of mean square errors of the estimates of the reliabilities and

the mean lifetime in the case of high reliability for different sample sizes.

MSE

R(10) = 0.966 EM algorithm Bayesian with p̂i Bayesian with p̃i

K = 10 9.926E-04 1.014E-04 2.793E-03

K = 50 1.438E-04 5.882E-05 1.990E-04

K = 100 7.280E-05 4.223E-05 8.840E-05

R(20) = 0.933 EM algorithm Bayesian with p̂i Bayesian with p̃i

K = 10 3.457E-03 3.655E-04 9.083E-03

K = 50 5.297E-04 2.156E-04 7.205E-04

K = 100 2.698E-04 1.555E-04 3.246E-04

R(30) = 0.901 EM algorithm Bayesian with p̂i Bayesian with p̃i

K = 10 6.809E-03 7.422E-04 1.677E-02

K = 50 1.098E-03 4.446E-04 1.469E-03

K = 100 5.627E-04 3.220E-04 6.708E-04

E(T ) = 286.50 EM algorithm Bayesian with p̂i Bayesian with p̃i

K = 10 9.106E+06 3.760E+03 6.143E+06

K = 50 1.457E+04 2.859E+03 1.106E+04

K = 100 6.244E+03 2.259E+03 5.458E+03
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Table 2.12: Values of bias and mean square errors of the estimates of the model

parameters, the reliabilities, and the mean lifetime in the case of high reliability

with α1 = 0.06 for large sample sizes.

Bias

EM algorithm Bayesian with p̂i Bayesian with p̃i

α0 = 0.001 1.000E-04 1.000E-04 2.000E-04

α1 = 0.06 2.000E-04 -1.400E-03 -1.600E-03

R(10) = 0.956 -5.726E-04 -2.073E-03 -2.873E-03

R(20) = 0.914 -9.659E-04 -3.866E-03 -5.266E-03

R(30) = 0.874 -1.296E-03 -5.396E-03 -7.396E-03

E(T ) = 223.13 6.510E+00 -2.870E+00 -8.700E-01

MSE

EM algorithm Bayesian with p̂i Bayesian with p̃i

α0 = 0.001 2.600E-07 1.000E-07 2.900E-07

α1 = 0.06 7.229E-05 2.900E-05 7.481E-05

R(10) = 0.956 7.954E-05 3.794E-05 9.289E-05

R(20) = 0.914 2.933E-04 1.382E-04 3.340E-04

R(30) = 0.874 5.970E-04 2.819E-04 6.797E-04

E(T ) = 223.13 2.417E+03 8.504E+02 2.199E+03
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sizes, the mean lifetime is estimated well by all the methods in low, moderate and

even high reliability situations, but the estimation based on the EM algorithm

is less efficient than that based on the Bayesian method with p̂i and p̃i in most

situations considered. On the other hand, when α1 is changed from 0.05 to 0.06,

Table 2.12 shows that the performance of all methods are quite similar to that in

Tables 2.9, 2.10 and 2.11.

To conclude, the EM algorithm is preferable for the estimation of the model

parameters and the reliability, while the Bayesian method with p̃i is better for

the estimation of the mean lifetime in moderate and large sample sizes. In small

sample size, the Bayesian method with a reliable prior belief provides the best

estimation. If a reliable prior belief is unavailable, the EM algorithm is an useful

alternative approach for the estimation of the parameters as well as the reliability.

But, for the estimation of the mean lifetime, the Bayesian approach with p̃i seems

to be a better choice.

2.6 Concluding Remarks

In this Chapter, we have developed the EM algorithm for one-shot device

testing with an accelerating factor of temperature. Fan et al. [19] proposed the

Bayesian approach incorporating a reliable prior belief p̂i for such a testing proce-

dure in case of small sample sizes. Unfortunately, the reliable prior belief may not

always be available in practice and thus it becomes somewhat subjective. Even

though a reasonable and common prior belief, p̃i = 1 − ni/K, is available in the
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data, it is not reliable in the case of small sample sizes. We have compared the EM

algorithm method with the Bayesian approach using the two priors through Monte

Carlo simulations. The simulation results suggest that the EM algorithm is gener-

ally better for the estimation of the model parameters and the reliability since the

Bayesian method without a reliable prior belief may not provide accurate estima-

tion. For the estimation of the mean lifetime, however, the EM algorithm usually

results in overestimation while the Bayesian method incorporating a reliable belief

performs well in this case.

The estimates by the EM algorithm are not attainable in the situation when

ni = 0 for all i = 1, 2, 3, . . . , I; that is, in the case when all devices tested in

higher temperatures are successfully detonated. In such a situation, we obtain no

information on the reliability. For this reason, the EM algorithm does not work

well for devices with very high reliability. For avoiding the situation of no failure

occurring in the case of very high reliability, one may either use a much larger

sample size or choose to shift the inspection time further to the right.
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Chapter 3

Exponential Lifetime Distribution

with Multiple-Stress Model

3.1 Introduction

In the preceding Chapter, a single-stress relationship under exponential dis-

tribution has been discussed. As opposed to a single-stress test by using a high

stress level so as to attain the aging within a limited time, some ALTs involve

two or more stress factors. For example, Morris [40] analyzed a battery data from

destructive life-tests in which both mildly high temperature and light load were

applied as stress. Multiple-stress ALTs would enable us to attain adequate fail-

ure data in a relatively short period of time without requiring any of the stress

factors to be set at very high levels. If maintaining a stress factor at high stress
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level for testing purposes is expensive, one could introduce several stress factors

set at slightly elevated stress levels causing more devices to fail than would under

a single-stress test. For this reason, multiple-stress models are better suited for

the prediction of lifetimes of electronic products, subjected to electrical, thermal

and mechanical stresses; see, for example, [4], [6], [48], [57], [60], [61], and [67].

3.2 Model Description

Here, we assume that the devices subjected to J types of stress factors under

the i-th testing condition have a failure rate λi that is expressed through a log-

linear link function

λi = exp

(
J∑
j=0

ajxij

)
, (3.1)

where xi0 ≡ 1 and xij is the level of the j-th stress under the i-th testing condition.

Let us denote a = {aj, j = 0, 1, . . . , J} and xi = {xij, j = 0, 1, . . . , J}. The

corresponding pdf and cdf of the lifetime of the devices, under the exponential

lifetime distribution, are obtained to be

f(t;xi) = exp

(
J∑
j=0

ajxij

)
exp

(
−t exp

(
J∑
j=0

ajxij

))
, t ≥ 0, (3.2)

and

F (t;xi) = 1− exp

(
−t exp

(
J∑
j=0

ajxij

))
, t ≥ 0, (3.3)

respectively.

Then, the reliability at time t and the mean lifetime under normal operating
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conditions x0 = {x0j, j = 0, 1, . . . , J} are given by

R(t;x0) = 1− F (t;x0) = exp

(
−t exp

(
J∑
j=0

ajx0j

))
, t ≥ 0, (3.4)

and

E(T ) =
1

λ0
= exp

(
−

J∑
j=0

ajx0j

)
, (3.5)

respectively.

3.3 Point Estimation of Parameters of Interest

3.3.1 EM Algorithm Based on One-Step Newton-Raphson

Method

Consider the log-likelihood function of the complete data (along with the con-

ditional expectation) given by

`c =
I∑
i=1

Ki∑
k=1

(
J∑
j=0

ajxij − tik exp

(
J∑
j=0

ajxij

))

=
I∑
i=1

(
Ki

J∑
j=0

ajxij

)
−

I∑
i=1

((
Ki∑
k=1

tik

)
exp

(
J∑
j=0

ajxij

))
. (3.6)

Let us denote (K, IT ,a′,x) = {(Ki, ITi, a
′
j,xi), i = 1, 2, ..., I}, where a′j are the

current estimates in the E-step. The expected log-likelihood function of the com-

plete data is then obtained as

Q(a|a′) = E(`c|K, IT ,a′,x)

=
I∑
i=1

(
Ki

J∑
j=0

ajxij

)
−

I∑
i=1

(
KiT

∗
i exp

(
J∑
j=0

ajxij

))
. (3.7)
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In the M-step, to update estimates of the parameters, for j = 0, 1, ..., J, the fol-

lowing first-order derivative with respect to aj to maximize the quantity Q(a|a′)

in Eq. (3.7) is then obtained as

∂Q(a|a′)
∂aj

=
I∑
i=1

Kixij −
I∑
i=1

(
KixijT

∗
i exp

(
J∑
j=0

ajxij

))
. (3.8)

Since the lifetimes of the devices tik are censored, the conditional expectation

in the E-step is straightforward and is obtained as follows:

T ∗i =E(Tik|K, IT ,a′,x)

=

ni

∫ ITi

0

tλ′i exp (−λ′it) dt

Ki

∫ ITi

0

λ′i exp (−λ′it) dt
+

(Ki − ni)
∫ ∞
ITi

tλ′i exp (−λ′it) dt

Ki

∫ ∞
ITi

λ′i exp (−λ′it) dt

=

(
ni
Ki

)
1− exp(−λ′iITi)− λ′iITi exp(−λ′iITi)

λ′i(1− exp(−λ′iITi))

+

(
1− ni

Ki

)
exp(−λ′iITi) + λ′iITi exp(−λ′iITi)

λ′i exp(−λ′iITi)

=
1

λ′i
+ ITi −

(
niITi

Ki(1− exp(−λ′iITi)

)
, (3.9)

where λ′i = exp

(
J∑
j=0

a′jxij

)
.

For finding the MLEs in every M-step, we need to set the first derivatives in

Eq. (3.8) to 0 and solve the system of equations. Since there is no closed-form

solution for these equations, the Newton-Raphson method is usually employed for

finding the solution to this system of equations at each M-step, but this could result

in very intensive computation. For this reason, instead of implementing the usual

Newton-Raphson method ([23],[42],[47]), the one-step Newton-Raphson method

could be used and is as follows. The EM algorithm based on one-step Newton-
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Raphson method, described by McLachlan and Krishnan [36], is often adopted for

the determination of the MLEs due to its convenience as it helps in reducing the

amount of computation and also assists in accelerating the convergence of the EM

algorithm.

In a longitudinal study involving Cox model, while using the EM algorithm,

Wulfsohn and Tsiatis [65] adopted the one-step Newton-Raphson method for esti-

mating a parameter that has no closed-form in the M-step. In the present situation,

let us denote

I =

[
∂Q(a|a′)
∂a0

∂Q(a|a′)
∂a1

· · · ∂Q(a|a′)
∂aJ

]T
a=a′

, (3.10)

X =

[
a′0 a′1 · · · a′J

]
, (3.11)

and

J = −



∂2Q(a|a′)
∂a20

∂2Q(a|a′)
∂a0∂a1

· · · ∂2Q(a|a′)
∂a0∂aJ

∂2Q(a|a′)
∂a1∂a0

∂2Q(a|a′)
∂a21

· · · ∂2Q(a|a′)
∂a1∂aJ

...
...

...

∂2Q(a|a′)
∂aJ∂a0

∂2Q(a|a′)
∂aJ∂a1

· · · ∂2Q(a|a′)
∂a2J


a=a′

, (3.12)

where

∂2Q(a|a′)
∂ap∂aq

= −
I∑
i=1

(
KixipxiqT

∗
i exp

(
J∑
j=0

ajxij

))
, p, q = 0, 1, ..., J. (3.13)

Then, we get the updated parameters as

X̂ = J−1I + XT . (3.14)
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3.3.2 The Choice of Initial Guess for the EM Algorithm

The most challenging part of this approach is the choice of initial values for

the parameters since the data is of binary form. The iterations are less likely to

converge if the initial values are not chosen carefully. Method of moments is a

common method to provide the initial values for the parameters, but this would

require information on the actual lifetimes of devices which we do not have in the

present setting of one-shot device testing data. Instead, due to the log-linear form

of the covariates, the initial values can be obtained by the least-squares method

as

X̂ =
(
ATA

)−1
ATY(0), (3.15)

where

Y(0) =

[
log
(
λ
(0)
1

)
log
(
λ
(0)
2

)
· · · log

(
λ
(0)
I

) ]T
, (3.16)

λ
(0)
i = −

log

(
1− ni

Ki

)
ITi

, i = 1, 2, ..., I, (3.17)

and

A =



1 x11 · · · x1J

1 x21 · · · x2J

...
...

...

1 xI1 · · · xIJ


. (3.18)

In this case, when ni = 0 or Ki, an adjustment is needed in the above expression

and we do this by replacing ni = 0 with ni =
1

10Ki

and ni = Ki with ni =

Ki −
1

10Ki

for the initial values of the parameters.
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Again, given the normal stress levels x0 = {x0j, j = 0, 1, ..., J} and the MLEs

of the model parameter â = {âj, j = 0, 1, ..., J}, the MLEs of the reliability at a

mission time t and the mean lifetime, under the assumption of exponentiality for

the lifetimes, are given by

R̂(t;x0) = exp

(
−t exp

(
J∑
j=0

âjx0j

))
(3.19)

and

Ê(T ) = exp

(
−

J∑
j=0

âjx0j

)
, (3.20)

respectively.

3.3.3 Jackknife Method for Bias Reduction

Since the MLEs of the parameters tend to be biased in this case, we propose

bias-corrected estimation by using the jackknife technique. Jackknife method is

a systematic re-sampling technique, omitting one observation at a time from the

original sample, commonly employed for reducing the bias in the estimation. This

method is useful not only for the estimation of model parameters but also for the

estimation of the reliability at a specific mission time and the mean lifetime of the

devices. In the case of one-shot device testing data, there is an advantage since

the calculation would not take much time for the jackknife technique. Following

the jackknife method presented in [12], suppose the MLE of interest θ̂ is obtained

from the original data. For i = 1, 2, ..., I, a device failed in the testing experiment

at inspection time ITi is deleted from the data, and so both ni and Ki are reduced
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by 1. Then, the MLE of θ based on the reduced data is obtained, and denoted by

θ̂
(−i)
F . Similarly, for the cases when a device tested successfully at inspection time

ITi is deleted from the data, the MLE of θ based on the reduced data (by reducing

only Ki by 1) is also obtained, and denoted by θ̂
(−i)
S .

Let N =
I∑
i=1

Ki. Then, the jackknifed bias of the estimator is then given by

bias(θ̂) = −N − 1

N

I∑
i=1

(
ni(θ̂ − θ̂(−i)F ) + (Ki − ni)(θ̂ − θ̂(−i)S )

)
. (3.21)

From the above expression, we note that it is not necessary to compute θ̂
(−i)
F when

ni = 0. Hence, the jackknifed estimator of θ is simply

θ̂JK = θ̂ − bias(θ̂) = Nθ̂ − (N − 1)
¯̂
θ, (3.22)

where

¯̂
θ =

∑I
i=1

(
niθ̂

(−i)
F + (Ki − ni)θ̂(−i)S

)
N

. (3.23)

It is important to mention that the jackknifed estimates of the reliability and the

mean lifetime could be outside the range of their supports when the sample size

is small. In this case, therefore, the estimates need to be corrected suitably at the

lower and upper ends.

3.4 Interval Estimation of Parameters of Inter-

est

In addition to the point estimation, we also examine three different confidence

intervals for the parameters of interest constructed by using the asymptotic prop-
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erties of MLEs, the jackknife method, and the parametric bootstrap method. Fur-

thermore, a transformation technique is also suggested which is particularly useful

when the distribution of the underlying pivoting quantity is skewed. The effi-

ciency of these confidence intervals are then assessed by means of Monte Carlo

simulations.

3.4.1 Use of Observed Fisher Information Matrix

When the EM algorithm is employed for finding the MLEs based on censored

data, in order to extract the observed information matrix for the calculation of

the asymptotic variance-covariance matrix of the MLEs, the Missing Information

Principle developed by Louis [34] is commonly used. The observed information

matrix requires the complete information matrix as well as the missing information

matrix. These matrices are given by

Icomplete = −E
[
∂2(`c(θ))

∂θ2

]
(3.24)

and

Imissing = −
I∑
i=1

Ki∑
k=1

E

[
∂2(log(f(tik|z,θ)))

∂θ2

]
, (3.25)

respectively. Using these, we will then obtain the observed information matrix as

Iobs = Icomplete − Imissing. (3.26)

Ng et al. [47] and Nandi and Dewan [42] used this method for deriving the Fisher in-

formation matrix under different censoring schemes. On the other hand, following
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the work of Dempster et al. [13], a direct method for deriving the Fisher infor-

mation matrix was developed by Oakes [49]. Friedl and Kauermann [22] adopted

this direct procedure for computing the asymptotic variance-covariance matrix of

the MLEs in generalized linear models with random effects. Since, for the case

when all lifetimes are censored, the observed Fisher information matrix based on

the observed likelihood function is identical to the observed information matrix

obtained by the Missing Information Principle, we determine here the observed

Fisher information matrix by using the log-likelihood function of observed data.

Result 3.1. Suppose the lifetime distribution has a probability density function

f(t;θ) and a cumulative distribution function F (t;θ). For the case when all life-

times are censored, the observed Fisher information matrix based on the observed

likelihood function is identical to the observed information matrix obtained by the

Missing Information Principle.

Proof: Given a data with a sequence of inspection times 0 < IT1 < IT2 < · · · <

ITI−1 and the corresponding numbers of failures in each time slot, {n1, n2, . . . , nI},

and K observed failure times, tk, k = 1, 2, . . . , K, the log-likelihood function is then

given by

`(θ) =n1 logF (IT1;θ) +
I−1∑
i=2

ni log(F (ITi;θ)− F (ITi−1;θ))

+ nI log(1− F (ITI−1;θ)) +
K∑
k=1

log(f(tk;θ)) + constant, (3.27)

where n1, n2, . . . , nI and t1, t2, . . . , tK are random variables.
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On the other hand, the log-likelihood function for complete data is given by

`complete =
I∑
i=1

ni∑
j=1

log(f(tj;θ)) +
K∑
k=1

log(f(tk;θ)) + constant, (3.28)

while the log-likelihood function of conditional distribution for missing data is

given by

`missing =

n1∑
j=1

(log(f(tj;θ))− log(F (IT1;θ)))

+
I−1∑
i=2

ni∑
j=1

(log(f(tj;θ))− log(F (ITi;θ)− F (ITi−1;θ)))

+

nI∑
j=1

(log(f(tj;θ))− log(1− F (ITI−1;θ))) + constant

=
I∑
i=1

ni∑
j=1

log(f(tj;θ))−
n1∑
j=1

log(F (IT1;θ))

−
I−1∑
i=2

ni∑
j=1

log(F (ITi;θ)− F (ITi−1;θ))

−
nI∑
j=1

log(1− F (ITI−1;θ)) + constant. (3.29)

It should be noted that tj in Eqs. (3.28) and (3.29) are also random variables,

but the terms of log(f(tj;θ)) have canceled out by the Missing Information Prin-

ciple. Hence, the observed log-likelihood function is obtained from the Missing

Information Principle as follows:

`obs =n1 logF (IT1;θ) +
I−1∑
i=2

ni log(F (ITi;θ)− F (ITi−1;θ))

+ nI log(1− F (ITI−1;θ)) +
K∑
k=1

log(f(tk;θ)) + constant, (3.30)

where t1, t2, . . . , tK are random variables. Therefore, for the case when all lifetimes

are censored, the terms of
K∑
k=1

log(f(tk;θ)) in Eqs. (3.27) and (3.30) disappear.
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Moreover, it is easy to show that the observed information matrix from the Missing

Information Principle is different from the Fisher information matrix based on the

observed likelihood function, but is identical to the observed Fisher information

matrix based on the observed likelihood function.

From the above, we also note that the observed log-likelihood function from

the Missing Information Principle is a mixture of Fisher information and observed

Fisher information. The observed numbers of failures are used for n1, n2, . . . , nI in

the part of censored data, and in contrast we take expectations E

[
∂2log(f(tk;θ))

∂θ2

]
in the part of observed data.

For the case of one-shot device testing data, due to the fact that all failure

times are censored, the observed information matrix by Missing Information Prin-

ciple is identical to the observed Fisher information matrix obtained from the

log-likelihood function conditional on z. The observed log-likelihood function is

given by

` =
I∑
i=1

[
ni log

(
1− e−ITiλi

)
− (Ki − ni) (ITiλi)

]
. (3.31)

We then have the observed Fisher information matrix corresponding to the model

parameters as

Iobs =

(
− ∂2`

∂ap∂aq

)
(p,q)

, (3.32)
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where

∂2`

∂ap∂aq
=

I∑
i=1

nixipxiqλiITie
−λiITi(1− λiITi − e−λiITi)

(1− e−λiITi)2

−
I∑
i=1

(Ki − ni)xipxiqλiITi. (3.33)

The asymptotic variance-covariance matrix of the MLEs of the model parameters,

V, can be obtained by inverting the observed Fisher information matrix Iobs of the

MLEs of the model parameters.

Furthermore, we can use the delta method along with this information matrix

to find the variance of the estimates of the reliability at mission time t and the

mean lifetime at stress level x0. From Eqs. (3.19) and (3.20), we have

∂R(t;x0)

∂aj
= −tλ0xj exp (−tλ0) (3.34)

and

∂E(T )

∂aj
= −xjE(T ). (3.35)

Now, defining

PR =

[
∂R̂(t;x0)

∂a0
, ...,

∂R̂(t;x0)

∂aJ

]T
a=a′

(3.36)

and

PE(T) =

[
∂Ê(T )

∂a0
, ...,

∂Ê(T )

∂aJ

]T
a=a′

, (3.37)

we have the corresponding variances of the estimates of the reliability at mission

time t and the mean lifetime at stress level x0 to be

VR = PR
TVPR (3.38)
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and

VE(T) = PE(T)
TVPE(T). (3.39)

Consequently, an approximate 100(1− α)% confidence interval for the parameter

θ is given by (
θ̂ − z1−α

2
se(θ̂), θ̂ + z1−α

2
se(θ̂)

)
, (3.40)

where z1−α
2

is the 1− α
2

normal quantile and se(θ̂) is the standard error of θ̂. In the

confidence intervals for reliability, the lower and upper bounds are not guaranteed

to be bounded between 0 and 1. Therefore, a correction is necessary wherein we set

the lower bound to be at least 0 and the upper bound to be at most 1. Similarly, a

correction is also necessary on the confidence interval for the mean lifetime wherein

we set the lower bound to be at least 0.

3.4.2 Use of Jackknife Technique

Due to the non-linear form of the quantities of the reliability and the mean

lifetime, re-sampling technique is used for the computation of the standard errors

of the estimates, which are then subsequently used in the construction of confi-

dence intervals. It is important to mention here that the jackknife technique has

been used for variance estimation in some other contexts as well; for example, Gini

index [12] and harmonic mean of rate-based metric [51] have been investigated in

this manner. Now, we consider the variance estimation of the MLE of a parameter

of interest by using the jackknife technique. As we described before, the jack-

knifed point estimator, based on the reduced data, produces a set of MLEs of the
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parameter. From this set of estimates, the jackknifed variance can be calculated

as

v̂JK =
N − 1

N

I∑
i=1

{
ni

(
θ̂
(−i)
F − ¯̂

θ
)2

+ (Ki − ni)
(
θ̂
(−i)
S − ¯̂

θ
)2}

. (3.41)

Hence, given the bias-corrected estimate θ̂JK , the 100(1−α)% confidence interval

for θJK is then given by

(
θ̂JK − z1−α

2

√
v̂JK , θ̂JK + z1−α

2

√
v̂JK

)
. (3.42)

As before, we may have to do corrections on the jackknifed confidence intervals

for the reliability at mission time and the mean lifetime, if necessary.

3.4.3 Use of Parametric Bootstrap Method

Instead of using the jackknife technique on reduced data by deleting one ob-

servation at a time, a set of parametric bootstrap data can be generated according

to the supposed parametric model based on the original data, and then these data

could be used to determine the estimate of the parameter. By repeatedly per-

forming bootstrap simulations, the corresponding distribution of the estimate can

be approximated. The confidence interval can then be constructed based on the

empirical distribution of the estimate of the parameter. Since the lifetime distri-

bution of the devices is assumed to be exponential, the confidence interval for the

parameter of interest can be constructed by the parametric bootstrap method as

follows:

1. Find âj from the original data, where j = 0, 1, ..., J ;

57



2. Obtain bootstrap samples {n∗i , i = 1, 2, ..., I} based on {âj, j = 0, 1, ..., J}

and the other observed data {K, IT ,x};

3. Find the bootstrap estimate of θ based on the bootstrap sample {n∗i , i =

1, 2, ..., I}, denoted by θ̂b;

4. Repeat Steps 2 and 3 B times to obtain the bootstrap estimates θ̂b, b =

1, 2, ..., B;

5. Sort the bootstrap estimates θ̂b in ascending order, denoted by θ̂[b], b =

1, 2, ..., B.

Then, the 100(1−α)% parametric bootstrap confidence interval for the parameter

θ is given by (
θ̂[

α
2
(B+1)], θ̂[(1−

α
2 )(B+1)]

)
. (3.43)

It should be mentioned that the bootstrap method does not require any correction.

3.4.4 Use of Transformation Method

To avoid performing corrections involved in the asymptotic and jackknife con-

fidence intervals when the sample size is small, a transformation technique can be

suggested which is particularly useful when the distribution for the corresponding

pivotal quantity is skewed. In this connection, Meeker and Escobar [37] used the

logit (log-odds) transformation for approximating the confidence intervals for the

reliability, and the normal approximation for the log of the mean lifetime, which
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ensures that the bounds for the reliability always fall between 0 and 1, and also

avoids having lower bound for the mean lifetime to be negative.

For the reliability approximation, the log-odds of the estimated reliability

g1 = log

(
R̂(t)

1− R̂(t)

)
(3.44)

is assumed to be normally distributed. By the delta method, we then have

ŝe(g1) =
ŝe(R̂(t))

R̂(t)(1− R̂(t))
, (3.45)

where ŝe(R̂(t)) is the estimated standard deviation of R̂(t), and that ĝ1 is then

normally distributed with mean g1 and standard deviation se(g1) which is esti-

mated by Eq. (3.45). Consequently, the 100(1 − α)% confidence interval for the

log-odds of the reliability g1 is

(
ĝ1 − z1−α

2
ŝe(g1), ĝ1 + z1−α

2
ŝe(g1)

)
. (3.46)

By inverting the above interval, we obtain the approximate 100(1−α)% confidence

interval for the reliability as(
R̂(t)

R̂(t) + (1− R̂(t))S(t)
,

R̂(t)

R̂(t) + (1− R̂(t))/S(t)

)
, (3.47)

where

S(t) = exp

{
z1−α

2

ŝe(R̂(t))

R̂(t)(1− R̂(t))

}
. (3.48)

Similarly, the distribution of Ê(T ) may be highly shewed when sample size is

small or moderate. Pulcini [52] mentioned that, for constructing confidence inter-

vals for mean lifetime, the normal approximation for the distribution of log(Ê(T ))
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should be used, rather than for the distribution of Ê(T ), and that it would avoid

the lower bound being negative. Bishop et al. [5] also pointed out that if log(Ê(T ))

is asymptotically normally distributed, the distribution of

g2 =
log(Ê(T ))− log(E(T ))

ŝe(Ê(T ))/Ê(T )
(3.49)

is then asymptotically standard normal. This yields an approximate 100(1− α)%

confidence interval for the mean lifetime as(
Ê(T ) exp

(
−z1−α

2
ŝe(Ê(T ))

Ê(T )

)
, Ê(T ) exp

(
z1−α

2
ŝe(Ê(T ))

Ê(T )

))
. (3.50)

With the assumption of exponential distribution and the log-linear link func-

tion, it is observed that

log(Ê(T )) = −
J∑
j=0

âjx0j, (3.51)

the sum of the MLEs of the model parameters in a linear form. Due to the

asymptotic normality of the MLEs âj, we have log(Ê(T )) also to be approximately

normally distributed and so confidence intervals for the mean lifetime of devices

based on the log-transformation would work well in terms of coverage probability.

3.5 Illustrative Example

In this section, we present a numerical example to illustrate all the methods

of inference developed in the preceding sections. Consider the following scenario

wherein 10 one-shot devices were subjected to 2 types of stress factors, each of

which were at 2 different levels, and observed at 3 pre-specified inspection times.
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Therefore, there were 120 devices in total placed under 12 different conditions in

the experiment. The data collected are summarized in Table 3.1.

The point and the interval estimation of the parameters of interest were then

found by the methods developed in the preceding sections, and the obtained re-

sults are presented in Table 3.2. Table 3.2 shows that, except in the case of

estimation of the mean lifetime, the EM estimates are quite close to the jackknifed

estimates of the parameters, and the bootstrap method yields confidence inter-

vals that are quite similar to the asymptotic confidence intervals as well as the

jackknifed confidence intervals. Moreover, the confidence intervals from the trans-

formation approach (logit for reliability and log for mean lifetime) are closer to

the bootstrap confidence intervals than the asymptotic confidence intervals. Based

on the model, the expected number of failures for each testing condition can be

computed, which are listed in Table 3.1. To test the suitability of the exponential

model for the observed data, we employed the bootstrap method to approximate

the p-value of the distance-based test statistic. For this purpose, we generated

100,000 samples from the exponential model with the estimates (-6.4573, 0.0340,

0.0301) as the true parameters. The test statistic for each bootstrap sample is

then computed. Finally, the proportion of the test statistics from the bootstrap

samples exceeding the value for the above data is calculated as the approximate

p-value. The distance-based test statistic K = maxi |ni − n̂i|, which measures the

absolute distance between the observed and the expected number of failures at

each testing condition and takes the maximum, is used as a discrepancy measure
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Table 3.1: Data on 120 one-shot devices subjected to 2 types of stress factors and

observed at 3 inspection times.

Testing condition(i) (ITi) (Ki) (ni) (n̂i) (xi1) (xi2)

1 2 10 0 1.54 55 70

2 2 10 4 3.38 55 100

3 2 10 4 3.71 85 70

4 2 10 7 6.81 85 100

5 5 10 4 3.42 55 70

6 5 10 7 6.44 55 100

7 5 10 8 6.86 85 70

8 5 10 8 9.43 85 100

9 8 10 3 4.88 55 70

10 8 10 9 8.08 55 100

11 8 10 9 8.43 85 70

12 8 10 10 9.90 85 100
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Table 3.2: Point estimates and 95% confidence intervals for the reliabilities at time

t = {10, 30, 60} and the mean lifetime at normal conditions x0 = (25, 35) for the

data presented in Table 3.1.

Estimates a0 a1 a2

EM -6.4573 0.0340 0.0301

JK -6.2788 0.0327 0.0289

R(10) R(30) R(60) E(T )

EM 0.9001 0.7293 0.5319 95.034

JK 0.9110 0.7446 0.5295 59.637

95% CIs a0 a1 a2

FI (-8.510, -4.405) (0.016, 0.052) (0.012, 0.048)

JK (-8.555, -4.003) (0.014, 0.052) (0.010, 0.048)

BT (-9.019, -4.423) (0.017, 0.055) (0.013, 0.051)

R(10) R(30) R(60) E(T )

FI (0.778, 1) (0.433, 1) (0.100, 0.964) (0, 217.38)

JK (0.785, 1) (0.436, 1) (0.073, 0.986) (0, 202.88)

BT (0.694, 0.979) (0.334, 0.938) (0.112, 0.880) (27.37, 468.04)

LOGIT (0.699, 0.972) (0.375, 0.924) (0.167, 0.866) -

LOG - - - (26.23, 344.35)
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for evaluating the fit of the assumed exponential model to the observed data. We

find in this case K = 1.8779 and the corresponding approximate p-value to be

0.8465, which gives very strong evidence towards the exponential distributional

assumption made in our analysis.

3.6 Simulation Results

We carried out Monte Carlo simulation studies of size 10,000 to examine the

proposed methods of point estimation as well as variance estimation of the esti-

mates, and also for the estimates of the reliability at different mission times and

the mean lifetime, for different sample sizes and levels of reliability. We considered

the devices to have exponential lifetimes, subjected to two types of stress factors at

two different conditions each, and tested at three different inspection times. Thus,

in total, there were 12 testing conditions in the experiment. The stresses were

taken as x1 = {55, 80} and x2 = {70, 100}, and the inspection times were taken as

IT = {2, 5, 8}. To estimate the true coefficients of the level of reliability taken to be

a0 = {−6.5,−6,−5.5} and the stress factors (a1, a2) = (0.03, 0.03), from different

sample sizes K = {10, 50, 100, 200}, the number of failures in each testing condition

was generated from the Binomial (K, 1− exp(−IT exp(
∑2

j=0 ajxj))) distribution.

Then, the estimation of the reliability at normal stress level of x0 = (25, 35) and at

mission times t = {10, 30, 60} were studied. In Tables 3.3 to 3.20, we present the

simulated values of bias, mean square errors (MSE), coverage probabilities (CP)

of 95% confidence intervals of some parameters of interest, and the corresponding
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average widths (AW). For the parametric bootstrap confidence intervals, we used

the bootstrap sample size B as 999.

From these tables, we observe that as the sample size gets larger, the bias and

the MSE both decrease and the confidence intervals become narrower and the CP

also gets closer to the nominal level. Moreover, precise point estimation of the

parameters and the mean lifetime are achieved by using the jackknife technique.

On the other hand, the jackknife technique provides accurate point estimates of the

reliability for short period, but not for long period in low reliability (see Table 3.4).

In the variance estimation, all the proposed methods produce proper confidence

intervals for the model parameters with desired CP even in the case of small sample

sizes. Moreover, in terms of AW, the asymptotic confidence interval by the logit-

transformation produces the narrowest width with satisfactory CP in most of the

considered situations.

When the sample size is not large, the CP of the asymptotic confidence intervals

and the jackknife confidence intervals for the reliability at mission time and the

mean lifetime are deflated. The reason is that both these confidence intervals

require normal distribution, but due to the highly non-linear form of the reliability

function and the mean lifetime, these distributions, however, are skewed in the case

of small sample sizes. Figure 3.1 shows the skewed nature of the distribution of the

MLEs of the reliability at mission time 10 obtained by one-step Newton-Raphson

method for a sample of size 10, and the very nearly symmetric shape when the

sample size is increased to 50. Hence, the bootstrap method is an appropriate
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Table 3.3: Values of bias of the estimates of the parameters a0, a1, a2, R(10),

R(30), R(60), and E(T ) for various sample sizes in the case of low reliability.

Bias in case of low reliability K = 10 K = 50 K = 100 K = 200

a0 = −5.5 EM estimate -1.469e-1 -3.723e-2 -8.588e-3 -4.201e-3

Jackknife estimate 6.945e-2 -6.274e-3 6.346e-3 3.166e-3

a1 = 0.03 EM estimate 1.115e-3 2.565e-4 8.437e-5 3.875e-5

Jackknife estimate -5.234e-4 1.616e-5 -3.183e-5 -1.854e-5

a2 = 0.03 EM estimate 1.241e-3 3.014e-4 6.464e-5 3.977e-5

Jackknife estimate -4.646e-4 6.088e-5 -5.146e-5 -1.757e-5

R(10) = 0.781 EM estimate -1.834e-2 -2.672e-3 -2.348e-3 -1.279e-3

Jackknife estimate -4.346e-3 7.206e-4 -6.218e-4 -4.107e-4

R(30) = 0.476 EM estimate 6.565e-3 3.028e-3 -4.677e-4 -3.599e-4

Jackknife estimate -8.765e-3 1.277e-3 -1.283e-3 -7.415e-4

R(60) = 0.227 EM estimate 5.028e-2 1.358e-2 4.851e-4 2.429e-3

Jackknife estimate 2.858e-3 1.789e-3 -1.250e-3 -6.541e-4

E(T ) = 40 EM estimate 1.809e1 2.811e0 1.079e0 5.351e-1

Jackknife estimate -1.028e1 -8.362e-3 -2.145e-1 -9.198e-2
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Table 3.4: Values of mean square errors of the estimates of the parameters a0,

a1, a2, R(10), R(30), R(60), and E(T ) for various sample sizes in the case of low

reliability.

MSE in case of low reliability K = 10 K = 50 K = 100 K = 200

a0 = −5.5 EM estimate 1.427e0 2.509e-1 1.185e-1 6.091e-2

Jackknife estimate 1.252e0 2.446e-1 1.174e-1 6.062e-2

a1 = 0.03 EM estimate 1.054e-4 1.798e-5 8.868e-6 4.415e-6

Jackknife estimate 9.159e-5 1.756e-5 8.778e-6 4.393e-6

a2 = 0.03 EM estimate 1.043e-4 1.794e-5 8.605e-6 4.460e-6

Jackknife estimate 8.995e-5 1.749e-5 8.522e-6 4.438e-6

R(10) = 0.781 EM estimate 1.867e-2 3.437e-3 1.649e-3 8.496e-4

Jackknife estimate 1.901e-2 3.409e-3 1.638e-3 8.465e-4

R(30) = 0.476 EM estimate 4.403e-2 1.070e-2 5.297e-3 2.772e-3

Jackknife estimate 5.549e-2 1.129e-2 5.447e-3 2.812e-3

R(60) = 0.227 EM estimate 4.436e-2 1.002e-2 4.834e-3 2.509e-3

Jackknife estimate 5.098e-2 1.048e-2 4.976e-3 2.547e-3

E(T ) = 40 EM estimate 5.313e3 1.981e2 8.028e1 3.879e1

Jackknife estimate 7.613e2 1.583e2 7.285e1 3.700e1
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Table 3.5: Values of coverage probabilities of 95% confidence intervals for the

parameters a0, a1, and a2 for various sample sizes in the case of low reliability.

CP of 95% CI in case of low reliability K = 10 K = 50 K = 100 K = 200

a0 = −5.5 Asymptotic CI 0.954 0.948 0.954 0.949

Jackknife CI 0.959 0.951 0.956 0.949

Bootstrap CI 0.937 0.944 0.952 0.950

a1 = 0.03 Asymptotic CI 0.950 0.949 0.948 0.948

Jackknife CI 0.965 0.955 0.949 0.949

Bootstrap CI 0.933 0.947 0.948 0.947

a2 = 0.03 Asymptotic CI 0.952 0.949 0.953 0.950

Jackknife CI 0.967 0.953 0.954 0.950

Bootstrap CI 0.935 0.946 0.951 0.949
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Table 3.6: Values of coverage probabilities of 95% confidence intervals for the

parameters R(10), R(30), R(60), and E(T ) for various sample sizes in the case of

low reliability.

CP of 95% CI in case of low reliability K = 10 K = 50 K = 100 K = 200

R(10) = 0.781 Asymptotic CI 0.886 0.928 0.946 0.945

Jackknife CI 0.871 0.925 0.945 0.945

Bootstrap CI 0.939 0.945 0.952 0.949

CI by LOGIT 0.967 0.950 0.954 0.950

R(30) = 0.476 Asymptotic CI 0.856 0.923 0.945 0.943

Jackknife CI 0.834 0.919 0.943 0.943

Bootstrap CI 0.939 0.945 0.952 0.949

CI by LOGIT 0.968 0.953 0.956 0.951

R(60) = 0.227 Asymptotic CI 0.825 0.916 0.935 0.939

Jackknife CI 0.797 0.904 0.927 0.935

Bootstrap CI 0.939 0.945 0.952 0.949

CI by LOGIT 0.951 0.949 0.956 0.951

E(T ) = 40 Asymptotic CI 0.905 0.941 0.949 0.945

Jackknife CI 0.877 0.929 0.940 0.942

Bootstrap CI 0.939 0.945 0.952 0.949

CI by LOG 0.952 0.948 0.954 0.949
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Table 3.7: Values of average widths of 95% confidence intervals for the parameters

a0, a1, and a2 for various sample sizes in the case of low reliability.

AW of 95% CI in case of low reliability K = 10 K = 50 K = 100 K = 200

a0 = −5.5 Asymptotic CI 4.493e0 1.935e0 1.362e0 9.616e-1

Jackknife CI 4.830e0 1.958e0 1.370e0 9.648e-1

Bootstrap CI 5.051e0 1.971e0 1.377e0 9.679e-1

a1 = 0.03 Asymptotic CI 3.616e-2 1.585e-2 1.118e-2 7.896e-3

Jackknife CI 3.784e-2 1.598e-2 1.122e-2 7.912e-3

Bootstrap CI 3.846e-2 1.605e-2 1.127e-2 7.943e-3

a2 = 0.03 Asymptotic CI 3.616e-2 1.585e-2 1.118e-2 7.896e-3

Jackknife CI 3.784e-2 1.598e-2 1.122e-2 7.912e-3

Bootstrap CI 3.844e-2 1.604e-2 1.127e-2 7.939e-3
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Table 3.8: Values of average widths of 95% confidence intervals for the parameters

R(10), R(30), R(60), and E(T ) for various sample sizes in the case of low reliability.

AW of 95% CI in case of low reliability K = 10 K = 50 K = 100 K = 200

R(10) = 0.781 Asymptotic CI 4.771e-1 2.259e-1 1.603e-1 1.132e-1

Jackknife CI 4.722e-1 2.268e-1 1.607e-1 1.134e-1

Bootstrap CI 5.035e-1 2.276e-1 1.613e-1 1.138e-1

CI by LOGIT 4.820e-1 2.248e-1 1.600e-1 1.132e-1

R(30) = 0.476 Asymptotic CI 7.243e-1 4.011e-1 2.883e-1 2.053e-1

Jackknife CI 7.194e-1 4.043e-1 2.896e-1 2.058e-1

Bootstrap CI 7.075e-1 3.891e-1 2.844e-1 2.042e-1

CI by LOGIT 6.904e-1 3.817e-1 2.808e-1 2.025e-1

R(60) = 0.227 Asymptotic CI 6.145e-1 3.756e-1 2.731e-1 1.949e-1

Jackknife CI 5.920e-1 3.747e-1 2.751e-1 1.957e-1

Bootstrap CI 6.910e-1 3.689e-1 2.688e-1 1.935e-1

CI by LOGIT 7.495e-1 3.777e-1 2.719e-1 1.945e-1

E(T ) = 40 Asymptotic CI 1.526e2 5.152e1 3.463e1 2.408e1

Jackknife CI 1.371e2 5.269e1 3.500e1 2.421e1

Bootstrap CI 4.918e2 5.790e1 3.667e1 2.479e1

CI by LOG 5.479e7 5.463e1 3.564e1 2.442e1
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Table 3.9: Values of bias of the estimates of the parameters a0, a1, a2, R(10), R(30),

R(60), and E(T ) for various sample sizes in the case of moderate reliability.

Bias in case of moderate reliability K = 10 K = 50 K = 100 K = 200

a0 = −6 EM estimate -1.403e-1 -2.550e-2 -1.246e-2 -5.887e-3

Jackknife estimate 1.493e-2 -1.180e-3 6.198e-4 6.070e-4

a1 = 0.03 EM estimate 1.019e-3 1.797e-4 7.488e-5 3.168e-5

Jackknife estimate -7.658e-5 -8.658e-6 -1.740e-5 -1.415e-5

a2 = 0.03 EM estimate 9.713e-4 1.743e-4 9.718e-5 5.126e-5

Jackknife estimate -1.254e-4 -1.393e-5 4.841e-6 -5.421e-6

R(10) = 0.861 EM estimate -1.495e-2 -3.020e-3 -1.570e-3 -7.920e-4

Jackknife estimate -9.955e-5 1.944e-6 -5.905e-5 -3.726e-5

R(30) = 0.638 EM estimate -1.065e-2 -2.703e-3 -1.495e-3 -7.949e-4

Jackknife estimate -2.937e-3 -1.572e-4 -1.505e-4 -1.047e-4

R(60) = 0.407 EM estimate 1.981e-2 3.815e-3 1.802e-3 8.057e-4

Jackknife estimate 1.044e-3 -9.586e-5 -1.249e-4 -1.513e-4

E(T ) = 67 EM estimate 2.806e1 4.197e0 2.046e0 9.712e-1

Jackknife estimate -1.362e1 -3.183e-1 -7.204e-2 -5.567e-2
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Table 3.10: Values of mean square errors of the estimates of the parameters a0, a1,

a2, R(10), R(30), R(60), and E(T ) for various sample sizes in the case of moderate

reliability.

MSE in case of moderate reliability K = 10 K = 50 K = 100 K = 200

a0 = −6 EM estimate 1.330e0 2.382e-1 1.192e-1 5.777e-2

Jackknife estimate 1.198e0 2.339e-1 1.182e-1 5.752e-2

a1 = 0.03 EM estimate 9.029e-5 1.638e-5 8.157e-6 4.064e-6

Jackknife estimate 8.223e-5 1.612e-5 8.097e-6 4.050e-6

a2 = 0.03 EM estimate 9.114e-5 1.650e-5 8.228e-6 4.044e-6

Jackknife estimate 8.318e-5 1.624e-5 8.162e-6 4.027e-6

R(10) = 0.861 EM estimate 9.343e-3 1.574e-3 7.776e-4 3.752e-4

Jackknife estimate 8.563e-3 1.530e-3 7.660e-4 3.723e-4

R(30) = 0.638 EM estimate 3.340e-3 7.263e-3 3.710e-3 1.820e-3

Jackknife estimate 3.920e-3 7.461e-3 3.758e-3 1.831e-3

R(60) = 0.407 EM estimate 4.631e-2 1.128e-3 5.886e-3 2.920e-3

Jackknife estimate 5.919e-2 1.204e-3 6.088e-3 2.970e-3

E(T ) = 67 EM estimate 8.748e3 5.138e2 2.292e2 1.048e2

Jackknife estimate 1.478e3 4.172e2 2.075e2 9.982e1
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Table 3.11: Values of coverage probabilities of 95% confidence intervals for the

parameters a0, a1, and a2 for various sample sizes in the case of moderate reliability.

CP of 95% CI in case of moderate reliability K = 10 K = 50 K = 100 K = 200

a0 = −6 Asymptotic CI 0.953 0.953 0.950 0.953

Jackknife CI 0.961 0.954 0.952 0.953

Bootstrap CI 0.939 0.950 0.949 0.953

a1 = 0.03 Asymptotic CI 0.951 0.950 0.950 0.951

Jackknife CI 0.965 0.952 0.952 0.952

Bootstrap CI 0.939 0.948 0.949 0.952

a2 = 0.03 Asymptotic CI 0.949 0.952 0.949 0.952

Jackknife CI 0.965 0.955 0.949 0.953

Bootstrap CI 0.939 0.950 0.948 0.952
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Table 3.12: Values of coverage probabilities of 95% confidence intervals for the

parameters R(10), R(30), R(60), and E(T ) for various sample sizes in the case of

moderate reliability.

CP of 95% CI in case of moderate reliability K = 10 K = 50 K = 100 K = 200

R(10) = 0.861 Asymptotic CI 0.884 0.936 0.940 0.949

Jackknife CI 0.861 0.929 0.938 0.948

Bootstrap CI 0.938 0.952 0.948 0.952

CI by LOGIT 0.961 0.953 0.951 0.953

R(30) = 0.638 Asymptotic CI 0.872 0.934 0.940 0.948

Jackknife CI 0.849 0.930 0.937 0.948

Bootstrap CI 0.938 0.952 0.948 0.952

CI by LOGIT 0.969 0.956 0.953 0.953

R(60) = 0.407 Asymptotic CI 0.849 0.931 0.937 0.946

Jackknife CI 0.817 0.923 0.934 0.945

Bootstrap CI 0.938 0.952 0.948 0.952

CI by LOGIT 0.959 0.958 0.952 0.953

E(T ) = 67 Asymptotic CI 0.901 0.941 0.944 0.948

Jackknife CI 0.878 0.925 0.938 0.947

Bootstrap CI 0.938 0.952 0.948 0.952

CI by LOG 0.952 0.953 0.950 0.953
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Table 3.13: Values of average widths of 95% confidence intervals for the parameters

a0, a1, and a2 for various sample sizes in the case of moderate reliability.

AW of 95% CI in case of moderate reliability K = 10 K = 50 K = 100 K = 200

a0 = −6 Asymptotic CI 4.356e0 1.904e0 1.343e0 9.484e-1

Jackknife CI 4.572e0 1.922e0 1.349e0 9.506e-1

Bootstrap CI 4.672e0 1.931e0 1.355e0 9.539e-1

a1 = 0.03 Asymptotic CI 3.616e-2 1.585e-2 1.118e-2 7.896e-3

Jackknife CI 3.784e-2 1.598e-2 1.122e-2 7.912e-3

Bootstrap CI 3.846e-2 1.605e-2 1.127e-2 7.943e-3

a2 = 0.03 Asymptotic CI 3.616e-2 1.585e-2 1.118e-2 7.896e-3

Jackknife CI 3.784e-2 1.598e-2 1.122e-2 7.912e-3

Bootstrap CI 3.844e-2 1.604e-2 1.127e-2 7.939e-3
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Table 3.14: Values of average widths of 95% confidence intervals for the parameters

R(10), R(30), R(60), and E(T ) for various sample sizes in the case of moderate

reliability.

AW of 95% CI in case of moderate reliability K = 10 K = 50 K = 100 K = 200

R(10) = 0.861 Asymptotic CI 3.279e-1 1.532e-1 1.079e-1 7.607e-2

Jackknife CI 3.150e-1 1.533e-1 1.079e-1 7.608e-2

Bootstrap CI 3.668e-1 1.558e-1 1.090e-1 7.659e-2

CI by LOGIT 3.623e-1 1.556e-1 1.088e-1 7.641e-2

R(30) = 0.638 Asymptotic CI 6.502e-1 3.321e-1 2.367e-1 1.680e-1

Jackknife CI 6.403e-1 3.331e-1 2.370e-1 1.681e-1

Bootstrap CI 6.284e-1 3.271e-1 2.354e-1 1.678e-1

CI by LOGIT 6.071e-1 3.212e-1 2.327e-1 1.666e-1

R(60) = 0.407 Asymptotic CI 7.165e-1 4.146e-1 2.985e-1 2.131e-1

Jackknife CI 6.998e-1 4.174e-1 2.995e-1 2.135e-1

Bootstrap CI 7.007e-1 3.989e-1 2.931e-1 2.114e-1

CI by LOGIT 7.081e-1 3.947e-1 2.906e-1 2.101e-1

E(T ) = 67 Asymptotic CI 2.319e2 8.456e1 5.755e1 3.991e1

Jackknife CI 2.139e2 8.632e1 5.809e1 4.009e1

Bootstrap CI 6.523e2 9.442e1 6.086e1 4.107e1

CI by LOG 3.867e2 8.968e1 5.925e1 4.049e1
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Table 3.15: Values of bias of the estimates of the parameters a0, a1, a2, R(10),

R(30), R(60), and E(T ) for various sample sizes in the case of high reliability.

Bias in case of high reliability K = 10 K = 50 K = 100 K = 200

a0 = −6.5 EM estimate -1.215e-1 -2.763e-2 -8.146e-3 -5.596e-3

Jackknife estimate 2.402e-2 -1.898e-3 4.467e-3 6.704e-4

a1 = 0.03 EM estimate 7.121e-4 1.579e-4 8.004e-5 4.076e-5

Jackknife estimate -2.157e-4 -5.869e-6 -2.611e-7 9.023e-7

a2 = 0.03 EM estimate 8.365e-4 1.960e-4 3.324e-5 3.177e-5

Jackknife estimate -9.238e-5 3.218e-5 -4.693e-6 -8.069e-6

R(10) = 0.913 EM estimate -1.363e-2 -2.517e-3 -1.519e-3 -6.808e-4

Jackknife estimate -1.393e-4 8.235e-5 -2.223e-4 -3.535e-5

R(30) = 0.761 EM estimate -2.122e-2 -4.205e-3 -2.794e-3 -1.211e-3

Jackknife estimate -3.715e-3 9.456e-5 -5.896e-4 -9.588e-5

R(60) = 0.579 EM estimate -9.257e-3 -1.857e-3 -2.016e-3 -7.324e-4

Jackknife estimate -6.246e-3 1.114e-4 -9.211e-4 -1.498e-4

E(T ) = 110 EM estimate 5.051e1 7.922e0 3.435e0 1.817e0

Jackknife estimate -2.493e1 -3.709e-1 -4.325e-1 -6.370e-2
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Table 3.16: Values of mean square errors of the estimates of the parameters a0,

a1, a2, R(10), R(30), R(60), and E(T ) for various sample sizes in the case of high

reliability.

MSE in case of high reliability K = 10 K = 50 K = 100 K = 200

a0 = −6.5 EM estimate 1.412e0 2.640e-1 1.289e-1 6.461e-2

Jackknife estimate 1.292e0 2.596e-1 1.280e-1 6.437e-2

a1 = 0.03 EM estimate 9.594e-5 1.818e-5 8.854e-6 4.540e-6

Jackknife estimate 8.915e-5 1.794e-5 8.795e-6 4.525e-6

a2 = 0.03 EM estimate 9.579e-5 1.803e-5 8.833e-6 4.367e-6

Jackknife estimate 8.874e-5 1.777e-5 8.782e-6 4.353e-6

R(10) = 0.913 EM estimate 4.984e-3 7.711e-4 3.690e-4 1.801e-4

Jackknife estimate 4.134e-3 7.344e-4 3.592e-4 1.778e-4

R(30) = 0.761 EM estimate 2.304e-2 4.545e-3 2.238e-3 1.111e-3

Jackknife estimate 2.437e-2 4.536e-3 2.230e-3 1.109e-3

R(60) = 0.579 EM estimate 4.151e-2 9.895e-3 5.013e-3 2.535e-3

Jackknife estimate 5.174e-2 1.036e-2 5.125e-3 2.563e-3

E(T ) = 110 EM estimate 3.218e4 1.644e3 6.995e2 3.341e2

Jackknife estimate 4.280e3 1.312e3 6.303e2 3.171e2
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Table 3.17: Values of coverage probabilities of 95% confidence intervals for the

parameters a0, a1, and a2 for various sample sizes in the case of high reliability.

CP of 95% CI in case of high reliability K = 10 K = 50 K = 100 K = 200

a0 = −6.5 Asymptotic CI 0.953 0.950 0.951 0.950

Jackknife CI 0.964 0.954 0.953 0.949

Bootstrap CI 0.940 0.947 0.952 0.948

a1 = 0.03 Asymptotic CI 0.949 0.950 0.950 0.950

Jackknife CI 0.962 0.953 0.953 0.951

Bootstrap CI 0.941 0.947 0.949 0.948

a2 = 0.03 Asymptotic CI 0.949 0.950 0.950 0.951

Jackknife CI 0.962 0.954 0.951 0.951

Bootstrap CI 0.942 0.946 0.949 0.951
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Table 3.18: Values of coverage probabilities of 95% confidence intervals for the

parameters R(10), R(30), R(60), and E(T ) for various sample sizes in the case of

high reliability.

CP of 95% CI in case of high reliability K = 10 K = 50 K = 100 K = 200

R(10) = 0.913 Asymptotic CI 0.881 0.930 0.944 0.944

Jackknife CI 0.853 0.921 0.939 0.943

Bootstrap CI 0.941 0.947 0.952 0.948

CI by LOGIT 0.957 0.951 0.953 0.948

R(30) = 0.761 Asymptotic CI 0.878 0.930 0.945 0.943

Jackknife CI 0.851 0.924 0.941 0.943

Bootstrap CI 0.941 0.947 0.952 0.948

CI by LOGIT 0.967 0.953 0.954 0.949

R(60) = 0.579 Asymptotic CI 0.865 0.929 0.942 0.943

Jackknife CI 0.836 0.922 0.940 0.942

Bootstrap CI 0.941 0.947 0.952 0.948

CI by LOGIT 0.966 0.953 0.954 0.949

E(T ) = 110 Asymptotic CI 0.897 0.937 0.945 0.949

Jackknife CI 0.871 0.922 0.937 0.944

Bootstrap CI 0.941 0.947 0.952 0.948

CI by LOG 0.953 0.949 0.952 0.948
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Table 3.19: Values of average widths of 95% confidence intervals for the parameters

a0, a1, and a2 for various sample sizes in the case of high reliability.

AW of 95% CI in case of high reliability K = 10 K = 50 K = 100 K = 200

a0 = −6.5 Asymptotic CI 4.534e0 1.995e0 1.408e0 9.946e-1

Jackknife CI 4.722e0 2.011e0 1.413e0 9.965e-1

Bootstrap CI 4.782e0 2.020e0 1.419e0 1.000e0

a1 = 0.03 Asymptotic CI 3.754e-2 1.655e-2 1.169e-2 8.258e-3

Jackknife CI 3.894e-2 1.667e-2 1.172e-2 8.271e-3

Bootstrap CI 3.929e-2 1.675e-2 1.177e-2 8.301e-3

a2 = 0.03 Asymptotic CI 3.754e-2 1.655e-2 1.169e-2 8.257e-3

Jackknife CI 3.894e-2 1.667e-2 1.172e-2 8.271e-3

Bootstrap CI 3.928e-2 1.672e-2 1.177e-2 8.301e-3
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Table 3.20: Values of average widths of 95% confidence intervals for the param-

eters R(10), R(30), R(60), and E(T ) for various sample sizes in the case of high

reliability.

AW of 95% CI in case of high reliability K = 10 K = 50 K = 100 K = 200

R(10) = 0.913 Asymptotic CI 2.270e-1 1.058e-1 7.437e-2 5.225e-2

Jackknife CI 2.132e-1 1.056e-1 7.430e-2 5.223e-2

Bootstrap CI 2.768e-1 1.088e-1 7.557e-2 5.275e-2

CI by LOGIT 2.797e-1 1.094e-1 7.570e-2 5.273e-2

R(30) = 0.761 Asymptotic CI 5.271e-1 2.593e-1 1.841e-1 1.300e-1

Jackknife CI 5.100e-1 2.593e-1 1.840e-1 1.300e-1

Bootstrap CI 5.438e-1 2.596e-1 1.846e-1 1.304e-1

CI by LOGIT 5.267e-1 2.564e-1 1.832e-1 1.2974e-1

R(60) = 0.579 Asymptotic CI 7.089e-1 3.857e-1 2.767e-1 1.968e-1

Jackknife CI 6.924e-1 3.868e-1 2.771e-1 1.969e-1

Bootstrap CI 6.816e-1 3.755e-1 2.735e-1 1.959e-1

CI by LOGIT 6.661e-1 3.682e-1 2.701e-1 1.943e-1

E(T ) = 110 Asymptotic CI 4.049e2 1.496e2 1.010e2 7.021e1

Jackknife CI 3.660e2 1.525e2 1.019e2 7.051e1

Bootstrap CI 1.098e3 1.682e2 1.072e2 7.238e1

CI by LOG 7.092e2 1.599e3 1.044e2 7.137e1

83



Figure 3.1: Histograms of the EM estimates of the reliability at mission time 10

obtained by one-step Newton-Raphson method for sample sizes of 10 and 50.
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approach for constructing confidence intervals when the distribution of the pivoting

quantity is skewed, as in the present situation. Moreover, as discussed before, since

the logit-transformation of the reliability and the log-transformation of the mean

lifetime are approximately normally distributed, these transformations result in

confidence intervals with satisfactory CP and narrow AW, even when the sample

size is small. Also, in our simulation study, we observed that the parametric

bootstrap method is better than the transformation-based method for the case

of low reliable devices, and this may be due to the fact that estimated standard

deviation of the estimate is required for latter which tends to be not so precise.

Tables 3.6, 3.12 and 3.18 show that the parametric bootstrap, employing the EM

algorithm with one-step Newton-Raphson method, maintains acceptable CP even

in the case of small sample sizes, and is therefore the method we would recommend

for the purpose of interval estimation.

3.7 Concluding Remarks

We have developed here the EM algorithm with one-step Newton-Raphson

method for finding the MLEs of the model parameters as well as of the reliability

at a specific mission time and the mean lifetime, based on one-shot device testing

data under the exponential distribution for lifetimes and consisting of many stress

factors. Compared to the typical EM algorithm that finds the maximum likelihood

estimates of parameters at each iteration, we find the one-step Newton-Raphson

method to be quite efficient in this situation for finding the MLEs. For the point
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estimation of parameters, we have studied the jackknife technique as well. With

this re-sampling technique, the bias and MSE of the estimates of the model pa-

rameters, the reliability at a specific time, and the mean lifetime are improved.

However, the jackknife technique may provide an estimate that is outside the ad-

missible range, especially when the sample size is small, and consequently suitable

adjustment needs to be made on the estimate obtained by this jackknife method.

Furthermore, we have considered the confidence intervals constructed by using

the observed Fisher information matrix, the jackknife technique, the parametric

bootstrap method, and the transformation technique. In our simulation study,

the asymptotic and jackknife confidence intervals for inference on the reliability

and the mean lifetime are found to get deflated in the case of small sample sizes.

But, the asymptotic method seems to produce suitable and short confidence in-

tervals for the reliability at mission time and the mean lifetime when the sample

size is large. We further observe that the parametric bootstrap method and the

transformation technique are good alternative approaches for the construction of

confidence intervals in the case of small sample sizes since the distributions of the

MLEs of the reliability at mission time and the mean lifetime in this case are both

not normally distributed and are in fact quite skewed. Since the parametric boot-

strap confidence intervals may be centered wrongly in the case of small sample size

due to the estimates being biased, one could also use the bias-corrected percentile

method proposed by Efron [16], [17] which attempts to correct for the bias while

constructing confidence intervals.
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As mentioned earlier, it is reasonable to restrict the model parameters aj > 0

in the framework of accelerated life-tests. But, the maximization in the M-step

becomes more complicated in this case since we need to solve a restricted maxi-

mization problem. For finding the restricted estimates, Balakrishnan et al. [2], [3]

developed the order-restricted maximum likelihood estimation of parameters for

multiple step-stress models with exponentially distributed lifetimes under Type-I

and Type-II censored sampling situations and also for sequential k-out-of-n sys-

tems.
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Chapter 4

Weibull Lifetime Distribution

with Multiple-Stress Model

4.1 Introduction

For analyzing reliability, there are many distributions to describe lifetime of

devices, such as exponential, gamma and Weibull; see [26], [27]. Since Weibull dis-

tribution includes the exponential distribution as a special case and, in practice, it

is quite widely used as a lifetime model in engineering, we consider in this Chapter

Weibull distribution as the lifetime model for the devices. This would naturally

generalize the results developed for the exponential case in the last two Chapters.

In fact, the Weibull model is also used extensively in biomedical studies as a pro-

portional hazards model for evaluating the effects of covariates on lifetimes, and in
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this setting usually the scale parameter varies with covariates but shape parameter

remains unchanged over all covariates. Of course, under these assumptions, the

Weibull distribution can be parametrized as a proportional hazards model mean-

ing that the hazards of any two products stay in constant ratio. However, the

shape parameter of the Weibull distribution may be different for different condi-

tions in general, and so the assumption that the shape parameter does not depend

on stress factors/covariates may often be violated in practice. Many examples

show that both scale and shape parameters of the Weibull distribution vary with

covariates (See [48], [60], [29]). Meeter and Meeker [39] presented more examples

of the Weibull distribution with unequal shape parameters for modeling lifetimes

of devices. For this reason, we develop here the EM algorithm for Weibull lifetime

distribution when both scale and shape parameters vary over stress factors.

4.2 Model Description

We assume that lifetimes of the units, {tik, i = 1, 2, . . . , I, k = 1, 2, . . . , Ki},

have the Weibull distribution with pdf and cdf as

fT (t, αi, ηi) =
ηit

ηi−1

αηii
exp

(
−
(
t

αi

)ηi)
, t > 0, (4.1)

and

FT (t, αi, ηi) = 1− exp

(
−
(
t

αi

)ηi)
, t > 0, (4.2)

where αi > 0 and ηi > 0 are the scale and shape parameters, respectively.
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It can be seen that the corresponding hazard function

hT (t) =
ηit

ηi−1

αηii
(4.3)

is increasing when ηi > 1, implying that the unit suffers an increasing rate of

failure as it ages, and decreasing when ηi < 1, meaning that the instantaneous

failure probability falls as the unit gets older. In other words, better quality

units remain and they have a lower failure rate. This latter case is not very

likely in practice, but it may be applicable if we look at only the early part of

the lifetimes of units. For ηi = 1, the Weibull distribution is equivalent to the

exponential distribution and so the hazard rate is constant in this case. The

Weibull distribution accommodates both increasing and decreasing failure rates

simply based on the shape parameter. With a simple increasing or decreasing

failure rate, it describes lifetime data in a flexible manner and for this reason is

often used for modeling lifetime data. Figure 4.1 present a plot of the pdf, the

reliability function, and the hazard function over time t for some choices of the

shape parameter η (with scale parameter α = 1). Moreover, the corresponding

reliability function and the mean lifetime are

R(t) = exp

(
−
(
t

αi

)ηi)
, t > 0, (4.4)

and

E(T ) = αiΓ

(
1 +

1

ηi

)
, (4.5)

respectively. We assume that the parameters αi and ηi both relate to the stress

90



Figure 4.1: Plots of the Weibull pdf, the reliability, and the hazard function for

different choices of shape parameter.
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levels in log-linear forms as

αi = exp

(
J∑
j=0

ajxij

)
(4.6)

and

ηi = exp

(
J∑
j=0

bjxij

)
. (4.7)

Note that xi0 ≡ 1, for all i, corresponding to constant effects on the scale and

shape parameters in the model.

Instead of working with Weibull lifetimes, it is often more convenient to work

with the extreme value distribution for the log-lifetimes wik = log(tik); see, for

example, Meeter and Meeker [39] and Ng et al. [47]. Therefore, we consider here

the extreme value distribution with the corresponding probability density function

and distribution function as

fW (w;θ) =
1

σi
exp

(
w − µi
σi

)
exp

(
− exp

(
w − µi
σi

))
,−∞ < w <∞, (4.8)

and

FW (w;θ) = 1− exp

(
− exp

(
w − µi
σi

))
,−∞ < w <∞, (4.9)

where θ = {aj, bj, j = 0, 1, . . . , J}.

The relationship between the two distributions is rather simple which can be

utilized effectively for inferential purposes. Suppose a Weibull variable T has scale

and shape parameters αi and ηi. Then, log(T ) has an extreme value distribution

with location and shape parameters as

µi = log(αi) =
J∑
j=0

ajxij (4.10)
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and

σi =
1

ηi
= exp

(
−

J∑
j=0

bjxij

)
. (4.11)

These two relations assist in the estimation of the parameters of the Weibull distri-

bution once the estimates of the extreme value parameters have been determined.

For notational convenience, we denote z = {Wi, Ki, ni, i = 1, 2, . . . , I} for the

observed data, where Wi = log(ITi). Then, the likelihood function based on this

observed data is given by

L(θ; z) ∝
I∏
i=1

[FW (Wi;θ)]ni [1− FW (Wi;θ)]Ki−ni , (4.12)

where FW (w;θ) is in Eq. (4.9).

4.3 Point Estimation of Parameters of Interest

4.3.1 EM Algorithm Based on One-Step Newton-Raphson

Method

Again, the EM algorithm is developed for the determination of the MLEs of

the model parameters under the Weibull distribution. In the M-step, we need to

maximize the log-likelihood function based on the relevant quantity updated from

the E-step. Let

ξik =
wik − µi

σi
. (4.13)
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Then, the log-likelihood function based on the complete data can be expressed as

`c(θ) =
I∑
i=1

Ki∑
k=1

log(fW (wik; θ))

=
I∑
i=1

Ki∑
k=1

(
− log(σi) + ξik − eξik

)
+ constant. (4.14)

For j = 0, 1, . . . , J, taking the first-order derivatives of the above log-likelihood

function with respect to the parameters aj and bj, we obtain the likelihood equa-

tions as

∂`c(θ)

∂aj
=

I∑
i=1

Ki∑
k=1

(
xij
σi

)(
−1 + eξik

)
, (4.15)

∂`c(θ)

∂bj
=

I∑
i=1

Ki∑
k=1

xij
(
1 + ξik − ξikeξik

)
. (4.16)

Here again, the MLEs of the model parameters, as solutions of the above likeli-

hood equations, do not have explicit forms, and so an iterative numerical method

such as the Newton-Raphson method need to be employed for this purpose. It

requires the second-order derivatives of the log-likelihood function with respect to

the parameters aj and bj, and these are as follows:

∂2`c(θ)

∂ap∂aq
=

I∑
i=1

Ki∑
k=1

(
−xipxiq

σ2
i

eξik
)
, (4.17)

∂2`c(θ)

∂bp∂bq
=

I∑
i=1

Ki∑
k=1

xipxiq
(
ξik − ξikeξik − ξ2ikeξik

)
, (4.18)

∂2`c(θ)

∂ap∂bq
=

I∑
i=1

Ki∑
k=1

xipxiq
σi

(
−1 + eξik + ξike

ξik
)
, (4.19)
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for p = 0, 1, . . . , J and q = 0, 1, . . . , J. This would require four conditional expec-

tations to be considered in the following E-step.

Given the model parameters, θ, let

νi =
Wi − µi
σi

(4.20)

and

RW (Wi;θ) = 1− FW (Wi;θ). (4.21)

Then, the four required conditional expectations can be derived as follows:

E[ξi|z,θ] =
ni

KiFW (Wi;θ)

∫ eνi

0

log(x)e−xdx

+
Ki − ni

KiRW (Wi;θ)

∫ ∞
eνi

log(x)e−xdx

=
ni

KiFW (Wi;θ)

(
−γ − νie−e

νi −
∫ ∞
eνi

e−t

t
dt

)
+

Ki − ni
KiRW (Wi;θ)

(
νie
−eνi +

∫ ∞
eνi

e−t

t
dt

)
, (4.22)

E[eξi |z,θ] =
ni

KiFW (Wi;θ)

∫ eνi

0

xe−xdx+
Ki − ni

KiRW (Wi;θ)

∫ ∞
eνi

xe−xdx

=
ni

KiFW (Wi;θ)

(
1− e−eνi − e−eνi+νi

)
+

Ki − ni
KiRW (Wi;θ)

(
e−e

νi + e−e
νi+νi

)
, (4.23)
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E[ξie
ξi|z,θ] =

ni
KiFW (Wi;θ)

∫ eνi

0

x log(x)e−xdx

+
Ki − ni

KiRW (Wi;θ)

∫ ∞
eνi

x log(x)e−xdx,

=
ni

KiFW (Wi;θ)

∫ eνi

0

x log(x)d(−e−x)

+
Ki − ni

KiRW (Wi;θ)

∫ ∞
eνi

x log(x)d(−e−x)

=
ni

KiFW (Wi;θ)

(
1− γ − e−eνi − νie−e

νi − νie−e
νi+νi −

∫ ∞
eνi

e−t

t
dt

)
+

Ki − ni
KiRW (Wi;θ)

(
e−e

νi + νie
−eνi + νie

−eνi+νi +

∫ ∞
eνi

e−t

t
dt

)
,

(4.24)

E[ξ2i e
ξi|z,θ] =

ni
KiFW (Wi;θ)

∫ eνi

0

x(log(x))2e−xdx

+
Ki − ni

KiRW (Wi;θ)

∫ ∞
eνi

x(log(x))2e−xdx, (4.25)

where

∫ ∞
x

e−t

t
dt in Eqs. (4.22) and (4.24) is the exponential integral that can

be readily computed by mathematical programs such as Matlab and Maple. For

more details on the derivation of the last conditional expectation, we consider the

integral

∫ eνi

0

x{log(x)}2e−xdx, and then have

∫ eνi

0

x{log(x)}2e−xdx =

∫ eνi

0

x{log(x)}2
∞∑
m=0

(−x)m

m!
dx

= −
∫ eνi

0

∞∑
m=0

(−x)m+1{log(x)}2

m!
dx

= −
∞∑
m=0

1

m!

∫ eνi

0

(−x)m+1{log(x)}2dx

=
∞∑
m=0

(−eνi)m+2

m!(m+ 2)

{
ν2i −

2νi
m+ 2

+
2

(m+ 2)2

}
. (4.26)

Moreover, it is simple to show that

∫ ∞
0

x{log(x)}2e−xdx = γ2 +
1

6
π2 − 2γ, where
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γ ≈ 0.577215665 is Euler’s constant. As a result, we have

∫ ∞
eνi

x{log(x)}2e−xdx =γ2 +
π2

6
− 2γ

−
∞∑
m=0

(−eνi)m+2

m!(m+ 2)

{
ν2i −

2νi
m+ 2

+
2

(m+ 2)2

}
. (4.27)

Consequently, we obtain

E[ξ2i e
ξi |z, θ]

=
ni

KiFW (Wi; θ)

[
∞∑
m=0

(−eνi)m+2

m!(m+ 2)

{
ν2i −

2νi
m+ 2

+
2

(m+ 2)2

}]

+
Ki − ni

KiRW (Wi; θ)

[
γ2 +

π2

6
− 2γ −

∞∑
m=0

(−eνi)m+2

m!(m+ 2)

{
ν2i −

2νi
m+ 2

+
2

(m+ 2)2

}]
.

(4.28)

We can also develop inference on the reliability at time t, R(t,x0; θ̂), as well

as the mean lifetime of products, E(T (x0; θ̂)), under normal operating conditions

x0 = {x0j, j = 0, 1, . . . , J}. Given x0 and the MLE, θ̂, the corresponding estima-

tors are simply given by

R̂(t;x0) = exp

(
− exp

(
log(t)− µ̂

σ̂

))
(4.29)

and

Ê(T ) = eµ̂Γ (1 + σ̂) , (4.30)

where µ̂ = exp

(
J∑
j=0

âjxj

)
and σ̂ = exp

(
−

J∑
j=0

b̂jxj

)
, and Γ(·) is the complete

gamma function.
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4.3.2 The Choice of Initial Guess of the EM Algorithm

As discussed by Lindsey and Ryan [33], the lifetimes can be first assumed

to be distributed exponentially. In this way, we can assume that σi = 1 for all

i = 1, 2, . . . , I, compute µi by using the formula

ni
Ki

= 1− e−e
νi
, (4.31)

and then determine the parameters {a0, a1, . . . , aJ} through the least-squares method

as described earlier. Moreover, unlike the typical Newton-Raphson method that

finds MLEs in the M-step on each iteration, we adopt here the one-step Newton-

Raphson method, as discussed by McLachlan and Krishnan [36].

Such an EM algorithm is given by the following iterative process:

1. Suppose b
(0)
0 = b

(0)
1 = · · · = b

(0)
J = 0. Given z, compute µ

(0)
i as well as σ

(0)
i ,

and then find {a(0)0 , a
(0)
1 , . . . , a

(0)
J } through the least-squares method;

2. In the m-th iteration,

(a) in the E-step, compute the required conditional expectations

E[ξi|z,θ(m)], E[eξi |z,θ(m)], E[ξie
ξi |z,θ(m)], and E[ξ2i e

ξi |z,θ(m)];

(b) in the M-step, using the above conditional expectations, obtain the next

iterate value of θ(m+1) by using the first step of the Newton-Raphson

method.

3. Repeat Step 2 until convergence occurs to a desired level of accuracy, with

the current θ(m+1) as the MLEs of model parameters, denoted by θ̂.
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4.4 Confidence Intervals for Parameters of In-

terest

Since there is no closed-form expression for the MLEs and that we cannot de-

velop exact inference, we will describe here the asymptotic confidence intervals

based on the observed Fisher information matrix, the parametric bootstrap confi-

dence intervals, and also confidence intervals based on a transformation approach

for some lifetime quantities of interest.

4.4.1 Use of Observed Fisher Information Matrix

Again, for the case of one-shot device testing data, due to the fact that all

failure times are censored, the observed information matrix by Missing Information

Principle is identical to the observed Fisher information matrix obtained from the

log-likelihood function conditional on z. The observed log-likelihood function is

given by

`(θ) =
I∑
i=1

[ni log (FW (Wi;θ)) + (Ki − ni) log (RW (Wi;θ))] + constant

=
I∑
i=1

[
ni log(1− e−eνi )− (Ki − ni)eνi

]
+ constant. (4.32)

So, the second-order derivatives of the conditional distribution with respect to
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the parameters aj and bj are derived as follows:

∂2`(θ)

∂ap∂aq
=−

I∑
i=1

(
xipxiq
σ2
i

)

×

[
nie
−eνi

(
−eνi

1− e−eνi
+

(
−eνi

1− e−eνi

)2
)

+ (Ki − ni)eνi
]
, (4.33)

∂2`(θ)

∂bp∂bq
=−

I∑
i=1

(xipxiq)

×

[
nie
−eνi

(
−νi(νi + 1)eνi

1− e−eνi
+

(
−νieνi

1− e−eνi

)2
)

+ (Ki − ni)(νi + 1)νie
νi

]
,

(4.34)

∂2`(θ)

∂ap∂bq
=−

I∑
i=1

(
xipxiq
σi

)

×

[
nie
−eνi

(
−(νi + 1)eνi

1− e−eνi
+ νi

(
−eνi

1− e−eνi

)2
)

+ (Ki − ni)(νi + 1)eνi

]
.

(4.35)

Then, the observed Fisher information matrix is

Iobs =


− ∂

2`(θ)

∂ap∂aq
− ∂

2`(θ)

∂ap∂bq

− ∂
2`(θ)

∂ap∂bq
− ∂

2`(θ)

∂ap∂bq

 . (4.36)

The asymptotic variance-covariance matrix of the MLEs of the model parameters

can then be obtained by inverting the above observed Fisher information matrix.

In addition to the variances of the model parameters, the variance of the MLEs of

the reliability at mission time t and the mean lifetime of units at normal operating

conditions can also be computed by using the delta method, which requires the
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asymptotic variance-covariance matrix of the model parameters as well as the first-

order derivatives of the two estimates with respect to the model parameters. These

are as follows:

∂R(t;x0)

∂aj
=
xj
σ̂

exp

(
log(t)− µ̂

σ̂

)
exp

(
− exp

(
log(t)− µ̂

σ̂

))
, (4.37)

∂R(t;x0)

∂bj
= −xj

(
log(t)− µ̂

σ̂

)
exp

(
log(t)− µ̂

σ̂

)
exp

(
− exp

(
log(t)− µ̂

σ̂

))
,

(4.38)

∂E(T )

∂aj
= xje

µ̂Γ (1 + σ̂) , (4.39)

∂E(T )

∂bj
= −xjσ̂eµ̂Ψ(1 + σ̂)Γ (1 + σ̂) , (4.40)

where Ψ(·) is the digamma function. By using all these expressions, the 100(1−α)%

asymptotic confidence interval for any parameter of interest, φ, can be constructed

as follows: (
φ̂− z1−α/2ŝe(φ̂), φ̂+ z1−α/2ŝe(φ̂)

)
, (4.41)

where φ̂ is the MLE of φ, ŝe(φ̂) is the estimated standard error of φ̂, and z1−α/2 is

the upper (α/2)-th quantile of the standard normal distribution.

4.4.2 Use of Parametric Bootstrap Method

We now describe a procedure for constructing the parametric percentile boot-

strap confidence interval for the parameter of interest, φ, which involves the fol-
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lowing steps:

1. Obtain θ̂ from the original sample z;

2. Simulate bootstrap samples, {n∗i , i = 1, 2, ..., I}, from binomial distribution

with (Ki, p̂i), where p̂i = 1− exp

(
− exp

(
log(ITi)− µ̂

σ̂

))
;

3. Obtain bootstrap estimate of φ, φ̂∗, based on the bootstrap samples through

the EM algorithm with θ̂ as initial value;

4. Repeat Steps 2 and 3 B times to obtain a sample of bootstrap estimates,

φ̂(b), for b = 1, 2, ..., B;

5. Arrange the bootstrap estimates in ascending order, denoted by φ̂[b], for

b = 1, 2, ..., B.

Then, the 100(1−α)% percentile bootstrap confidence interval for φ is constructed

as (
φ̂[α2 (B+1)], φ̂[(1−α2 )(B+1)]

)
. (4.42)

4.4.3 Use of Transformation Method

Viveros and Balakrishnan [62] considered a transformation approach to con-

struct confidence intervals for reliability. Even when the distribution of the es-

timate of reliability is skewed in the case of small samples, the bounds for the

reliability always fall between 0 and 1 under this approach. Now, by employing a
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logit-transformation for the reliability, we have

ĝ1 = log

(
R̂(t)

1− R̂(t)

)
(4.43)

to be asymptotically normally distributed with the corresponding standard devi-

ation determined by the delta method, as

ŝe(ĝ) =
ŝe(R̂(t))

R̂(t)(1− R̂(t))
, (4.44)

where ŝe(R̂(t)) is the estimated standard error of R̂(t). Therefore, we obtain an

approximate 100(1− α)% confidence interval for the reliability R(t) to be(
R̂(t)

R̂(t) + (1− R̂(t))S(t)
,

R̂(t)

R̂(t) + (1− R̂(t))/S(t)

)
, (4.45)

where S(t) = exp
{
z1−α

2
ŝe(ĝ)

}
.

Similarly, Bishop et al. [5] mentioned a log-transformation approach for con-

structing confidence intervals for the mean lifetime, which avoids having negative

lower bound for the mean lifetime. We, therefore, assume here that log(Ê(T )) is

asymptotically normally distributed with the corresponding standard deviation,

by the delta method, as

ŝe(log(Ê(T ))) =
ŝe(Ê(T ))

Ê(T )
, (4.46)

where ŝe(Ê(T )) is the estimated standard error of Ê(T ). This results in an ap-

proximate 100(1− α)% confidence interval for the mean lifetime as(
Ê(T ) exp

(
−z1−α

2
ŝe(Ê(T ))

Ê(T )

)
, Ê(T ) exp

(
z1−α

2
ŝe(Ê(T ))

Ê(T )

))
. (4.47)
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It should be noted that the required computational work for the estimated standard

deviations of the reliability and the mean lifetime are exactly as presented earlier

in Section 4.4.1.

4.5 Illustrative Example

In this section, we use mice tumor toxicological data to illustrate the proposed

EM algorithm method. A real survival/sacrifice data obtained from the National

Center for Toxicological Research is analyzed to study the relationships of dose

of benzidine dihydrochloride, strain of offspring, and sex differences to time to

appearance of tumors in mice. Many models have been studied in the literature

for analyzing the survival/sacrifice data. Kodell and Nelson [29] specified an illness-

death model under three independent Weibull distributions for time to occurrence

of liver tumor with respect to different covariates. Finkelstein and Ryan [21] also

suggested a proportional prevalence odds model to measure carcinogenic potency

with benzidine dihydrochloride for liver tumor in terms of the log-odds of risk.

Lindsey and Ryan [33] subsequently assumed that the death rate with liver tumor

does not depend on the time to occurrence of the tumor in mice, and so presented

a non-homogeneous Markov model with a multiplicative relationship between the

hazard for death with and without the tumor, by assuming the baseline hazard

model as a piecewise exponential distribution.

A survival/sacrifice data which involved 1816 mice, of which 553 had tumors,

taken from the National Center for Toxicological Research, is presented in Table 4.1
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and used to illustrate the inferential results developed in the preceding sections.

These data have been considered earlier by Kodell and Nelson [29], Finkelstein

and Ryan [21], and Lindsey and Ryan [33]. The original data were classified into

5 states and were reported by Kodell and Nelson [29]. Note that not all mice

were sacrificed at pre-specified times since some died of tumors naturally before

the sacrifice time. So, the time of natural death would also be treated as the

time of sacrifice. We considered the mice sacrificed with tumors, died of tumors,

and died of competing risks with liver tumors as those having tumors, while the

mice sacrificed without tumors and died of competing risk without liver tumors as

those not having tumors. Let a1, a2 and a3 denote the parameters corresponding

to the covariates of strain of offspring, gender, and concentration of the chemical of

benzidine dihydrochloride in the scale parameter of the Weibull distribution, and

b1, b2 and b3 similarly for the shape parameter. We then computed, by using the

EM algorithm, the MLEs and their standard errors, the 95% asymptotic and the

parametric percentile bootstrap confidence intervals for all the model parameters,

as well as the MLE of the mean time to occurrence of tumors for each group along

with the corresponding standard error. These results are all presented in Tables 4.2

and 4.3.

Table 4.2 shows that the asymptotic confidence interval and the percentile

bootstrap confidence interval for all model parameters are quite similar. Moreover,

even though the proportional hazards model with Weibull distribution is often used

in survival analysis, requiring same shape parameter for all groups, Table 4.2 shows
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Table 4.1: The data from the tumorigenicity experiment of benzidine dihydrochlo-

ride in mice, giving the number of mice tested, Ki, number of mice having tumors,

ni, time to being sacrificed or natural death, ITi, strain of offspring (F1 = 0, F2 =

1), xi1, gender (F = 0, M = 1), xi2, and concentration of the chemical (in ppm),

xi3.

Ki ni ITi xi1 xi2 xi3 Ki ni ITi xi1 xi2 xi3

48 1 9.27 0 0 60 1 1 16.70 0 0 60

24 0 9.37 0 0 60 24 0 9.27 0 0 120

24 1 13.97 0 0 60 24 0 9.37 0 0 120

24 2 14.03 0 0 60 24 5 13.97 0 0 120

36 18 18.63 0 0 60 23 9 14.03 0 0 120

1 1 16.00 0 0 60 26 25 18.67 0 0 120

1 1 16.70 0 0 60 1 1 12.83 0 0 120

1 1 18.10 0 0 60 1 1 13.47 0 0 120

1 1 18.30 0 0 60 1 1 14.60 0 0 120

1 1 18.47 0 0 60 1 1 14.80 0 0 120

1 0 12.57 0 0 60 1 1 15.17 0 0 120

1 0 14.43 0 0 60 1 1 16.53 0 0 120

1 0 14.57 0 0 60 1 1 16.57 0 0 120

1 0 17.17 0 0 60 1 1 16.90 0 0 120

1 0 18.83 0 0 60 1 1 17.43 0 0 120
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Ki ni ITi xi1 xi2 xi3 Ki ni ITi xi1 xi2 xi3

2 2 17.47 0 0 120 1 1 13.20 0 0 200

1 1 17.70 0 0 120 1 1 13.53 0 0 200

1 1 17.90 0 0 120 1 1 14.03 0 0 200

1 1 18.40 0 0 120 1 1 14.23 0 0 200

1 0 9.17 0 0 120 1 1 14.60 0 0 200

1 0 12.47 0 0 120 1 1 14.70 0 0 200

1 0 14.70 0 0 120 2 2 14.73 0 0 200

1 0 15.40 0 0 120 1 1 14.83 0 0 200

1 0 17.30 0 0 120 1 1 14.93 0 0 200

1 0 18.13 0 0 120 1 1 15.43 0 0 200

1 1 13.50 0 0 120 2 2 15.53 0 0 200

1 1 13.96 0 0 120 1 1 16.33 0 0 200

1 1 14.33 0 0 120 1 1 16.63 0 0 200

1 1 15.13 0 0 120 1 1 16.80 0 0 200

1 1 15.40 0 0 120 1 1 16.93 0 0 200

47 4 9.33 0 0 200 1 1 18.13 0 0 200

45 38 14.00 0 0 200 1 0 7.93 0 0 200

4 4 18.67 0 0 200 1 0 8.20 0 0 200

1 1 11.10 0 0 200 1 1 18.67 0 0 200

1 1 12.13 0 0 200 24 16 9.33 0 0 400

1 1 12.17 0 0 200 10 9 14.00 0 0 400
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Ki ni ITi xi1 xi2 xi3 Ki ni ITi xi1 xi2 xi3

1 1 9.87 0 0 400 1 1 14.40 0 0 400

1 1 11.03 0 0 400 1 1 14.60 0 0 400

1 1 11.20 0 0 400 1 1 14.70 0 0 400

1 1 12.93 0 0 400 1 1 15.27 0 0 400

1 1 13.17 0 0 400 1 1 18.00 0 0 400

1 1 14.27 0 0 400 1 1 10.63 0 0 400

1 1 11.80 0 0 400 1 1 11.30 0 0 400

1 1 11.93 0 0 400 1 1 11.93 0 0 400

3 3 12.50 0 0 400 1 1 13.10 0 0 400

1 1 12.97 0 0 400 48 0 9.27 0 1 120

2 2 13.07 0 0 400 44 7 14.00 0 1 120

1 1 13.17 0 0 400 22 7 18.73 0 1 120

1 1 13.20 0 0 400 20 4 19.30 0 1 120

2 2 13.60 0 0 400 1 1 13.27 0 1 120

1 1 13.63 0 0 400 1 1 13.70 0 1 120

2 2 13.67 0 0 400 1 1 17.40 0 1 120

1 1 13.83 0 0 400 1 1 19.07 0 1 120

2 2 13.87 0 0 400 1 0 9.83 0 1 120

1 1 14.03 0 0 400 1 0 10.23 0 1 120

1 1 14.10 0 0 400 1 0 11.63 0 1 120

2 2 14.30 0 0 400 1 0 12.13 0 1 120
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Ki ni ITi xi1 xi2 xi3 Ki ni ITi xi1 xi2 xi3

1 0 12.77 0 1 120 1 1 14.73 0 1 400

1 0 17.00 0 1 120 1 1 17.43 0 1 400

47 3 9.33 0 1 120 1 1 17.53 0 1 400

32 5 14.00 0 1 120 1 1 18.50 0 1 400

19 8 18.67 0 1 120 1 1 18.67 0 1 400

1 1 11.97 0 1 120 1 0 10.07 0 1 400

1 1 12.90 0 1 120 1 0 11.23 0 1 400

1 1 15.13 0 1 120 1 1 17.10 0 1 400

1 1 15.63 0 1 120 23 0 9.30 1 0 60

1 0 4.63 0 1 120 47 0 9.37 1 0 60

1 0 6.60 0 1 120 24 5 14.03 1 0 60

1 0 7.57 0 1 120 24 5 14.07 1 0 60

1 0 8.83 0 1 120 17 8 18.63 1 0 60

1 0 9.80 0 1 120 18 7 18.70 1 0 60

1 0 13.77 0 1 200 1 1 15.63 1 0 60

1 0 17.83 0 1 200 1 1 16.20 1 0 60

1 0 17.92 0 1 200 1 1 16.53 1 0 60

24 0 9.37 0 1 400 1 1 17.60 1 0 60

22 11 14.00 0 1 400 1 1 17.90 1 0 60

15 11 18.70 0 1 400 1 1 18.50 1 0 60

1 1 7.870 0 1 400 1 1 18.53 1 0 60
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Ki ni ITi xi1 xi2 xi3 Ki ni ITi xi1 xi2 xi3

1 0 7.53 1 0 60 1 1 16.53 1 0 120

1 0 8.63 1 0 60 2 2 16.57 1 0 120

1 0 13.73 1 0 60 1 1 16.83 1 0 120

1 0 14.93 1 0 60 1 1 17.87 1 0 120

1 0 15.53 1 0 60 2 2 18.00 1 0 120

1 0 15.63 1 0 60 1 1 18.37 1 0 120

1 0 17.13 1 0 60 1 0 3.07 1 0 120

24 2 9.27 1 0 120 1 0 5.20 1 0 120

22 0 9.37 1 0 120 1 0 5.60 1 0 120

41 15 14.00 1 0 120 1 0 5.63 1 0 120

21 20 18.70 1 0 120 1 0 5.67 1 0 120

1 1 11.63 1 0 120 1 0 8.87 1 0 120

1 1 13.70 1 0 120 1 0 9.27 1 0 120

1 1 14.00 1 0 120 1 0 9.80 1 0 120

1 1 14.53 1 0 120 1 0 11.40 1 0 120

1 1 14.66 1 0 120 1 0 11.77 1 0 120

1 1 14.83 1 0 120 1 0 13.07 1 0 120

1 1 15.13 1 0 120 1 0 15.13 1 0 120

1 1 15.27 1 0 120 1 0 15.40 1 0 120

1 1 16.13 1 0 120 1 1 11.87 1 0 120

1 1 16.37 1 0 120 1 1 13.57 1 0 120
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Ki ni ITi xi1 xi2 xi3 Ki ni ITi xi1 xi2 xi3

1 1 13.60 1 0 120 2 2 15.43 1 0 200

1 1 18.33 1 0 120 1 1 16.07 1 0 200

23 2 9.30 1 0 200 1 1 16.93 1 0 200

24 2 9.33 1 0 200 1 1 17.07 1 0 200

18 9 14.00 1 0 200 1 1 17.83 1 0 200

17 14 14.03 1 0 200 1 1 18.00 1 0 200

3 3 18.70 1 0 200 1 0 6.700 1 0 200

1 1 11.90 1 0 200 1 0 9.17 1 0 200

1 1 12.10 1 0 200 1 0 13.93 1 0 200

1 1 12.30 1 0 200 1 0 17.07 1 0 200

1 1 13.03 1 0 200 1 0 18.27 1 0 200

1 1 13.07 1 0 200 1 1 9.33 1 0 200

2 2 13.30 1 0 200 1 1 11.43 1 0 200

1 1 13.33 1 0 200 1 1 11.83 1 0 200

1 1 13.60 1 0 200 1 1 12.23 1 0 200

2 2 13.73 1 0 200 22 8 9.33 1 0 400

2 2 13.77 1 0 200 14 13 14.00 1 0 400

1 1 13.97 1 0 200 1 1 18.63 1 0 400

1 1 14.20 1 0 200 2 2 11.93 1 0 400

1 1 14.87 1 0 200 2 2 12.20 1 0 400

2 2 15.27 1 0 200 1 1 12.70 1 0 400
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Ki ni ITi xi1 xi2 xi3 Ki ni ITi xi1 xi2 xi3

1 1 12.80 1 0 400 1 1 9.80 1 0 400

3 3 12.83 1 0 400 1 1 11.43 1 0 400

2 2 13.13 1 0 400 1 1 12.33 1 0 400

1 1 13.70 1 0 400 1 1 12.83 1 0 400

1 1 14.23 1 0 400 1 1 13.93 1 0 400

1 1 14.77 1 0 400 24 0 9.27 1 1 60

1 1 14.87 1 0 400 23 0 9.30 1 1 60

1 1 15.10 1 0 400 21 0 9.37 1 1 60

1 1 15.40 1 0 400 44 3 14.00 1 1 60

1 1 16.80 1 0 400 18 2 18.67 1 1 60

1 1 16.97 1 0 400 20 2 18.70 1 1 60

1 1 17.47 1 0 400 1 1 16.77 1 1 60

1 1 18.23 1 0 400 1 1 17.47 1 1 60

1 0 3.90 1 0 400 1 1 18.30 1 1 60

1 0 6.70 1 0 400 1 0 1.93 1 1 60

1 0 7.93 1 0 400 1 0 3.07 1 1 60

1 0 9.80 1 0 400 1 0 4.77 1 1 60

1 0 12.83 1 0 400 2 0 6.23 1 1 60

1 0 13.80 1 0 400 1 0 6.53 1 1 60

1 0 13.93 1 0 400 1 0 7.00 1 1 60

1 0 16.43 1 0 400 1 0 8.23 1 1 60
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Ki ni ITi xi1 xi2 xi3 Ki ni ITi xi1 xi2 xi3

1 0 9.73 1 1 60 47 0 9.30 1 1 200

1 0 10.00 1 1 60 37 6 14.00 1 1 200

1 0 13.03 1 1 60 17 7 18.67 1 1 200

1 0 16.23 1 1 60 1 1 13.60 1 1 200

1 0 16.42 1 1 60 1 0 1.90 1 1 200

1 0 16.67 1 1 60 2 0 3.67 1 1 200

24 0 9.30 1 1 120 1 0 7.00 1 1 200

22 0 9.37 1 1 120 4 0 7.74 1 1 200

37 8 14.00 1 1 120 1 0 10.73 1 1 200

21 7 18.63 1 1 120 1 0 12.03 1 1 200

18 5 18.70 1 1 120 1 0 13.10 1 1 200

1 1 9.57 1 1 120 1 0 13.97 1 1 200

1 1 14.43 1 1 120 1 0 14.60 1 1 200

1 1 17.87 1 1 120 1 0 16.23 1 1 200

1 1 18.03 1 1 120 1 0 16.97 1 1 200

1 0 5.13 1 1 120 1 1 15.43 1 1 200

1 0 7.13 1 1 120 24 1 9.30 1 1 400

1 0 8.07 1 1 120 21 4 14.00 1 1 400

1 0 12.23 1 1 120 12 6 18.67 1 1 400

1 0 17.60 1 1 120 1 1 11.90 1 1 400

1 0 18.23 1 1 120 1 1 14.77 1 1 400
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Ki ni ITi xi1 xi2 xi3 Ki ni ITi xi1 xi2 xi3

1 1 17.00 1 1 400 1 0 9.07 1 1 400

1 1 17.63 1 1 400 1 0 10.93 1 1 400

1 1 17.93 1 1 400 1 0 12.83 1 1 400

1 1 18.50 1 1 400 1 0 14.00 1 1 400

1 0 6.43 1 1 400 1 1 12.37 1 1 400

1 0 8.17 1 1 400 1 1 17.47 1 1 400

that the shape parameter varies with the covariates. The same conclusion is also

reached by the likelihood ratio test for equality of the shape parameters for all

groups, that is, for testing the null hypothesis of b1 = b2 = b3 = 0, is rejected with

a p-value of 3.942× 10−7.

The estimates of the mean times to occurrence of tumors for each group in

Table 4.3 are quite comparable to those obtained by Kodell and Nelson [29]. Also,

Kodell and Nelson [29] did not report the estimates of the mean time to occurrence

of tumors for the group of strain F1 mice with 60 ppm chemical, but it can be

estimated by the model considered here through the log-linear link function. In

addition, the reliability for each group at any time with any dose of the chemical

can be estimated through the considered model as well.

For further analysis of the survival/sacrificed data, we may be interested in the

effect of strain of offspring to the mean time to occurrence of tumors. Due to the

sufficiently large sample size and the asymptotic property of MLEs, the MLEs of
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Table 4.2: The MLEs of the estimates of the model parameters, along with stan-

dard errors (within brackets) and the corresponding 95% asymptotic and para-

metric percentile bootstrap confidence intervals.

scale parameter shape parameter

Intercept a0 b0

estimates (s.e.) 2.9821 (0.0212) 1.9723 (0.1030)

Asymptotic CI (2.9406, 3.0236) (1.7704, 2.1742)

Bootstrap CI (2.9410, 3.0257) (1.7758, 2.1882)

Strain of offspring a1 b1

estimates (s.e.) 0.0459 (0.0224) -0.2102 (0.0894)

Asymptotic CI (0.0021, 0.0897) (-0.3855, -0.0349)

Bootstrap CI (0.0006, 0.0875) (-0.3935, -0.0293)

Gender a2 b2

estimates (s.e.) 0.5127 (0.0522) -0.4587 (0.1151)

Asymptotic CI (0.4103, 0.6150) (-0.6844, -0.2331)

Bootstrap CI (0.4238, 0.6357) (-0.7041, -0.2498)

Concentration of chemical a3 b3

estimates (s.e.) -0.0018 (0.0001) -0.0014 (0.0004)

Asymptotic CI (-0.0020, -0.0016) (-0.0022, -0.0006)

Bootstrap CI (-0.0021, -0.0016) (-0.0021, -0.0005)
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Table 4.3: The MLEs of the estimates of mean time to the occurrence of tumors,

Ê(T ), along with standard errors (within brackets) and the corresponding 95%

asymptotic and parametric percentile bootstrap confidence intervals.

Str. Sex Conc. Ê(T ) in months Asymptotic CI Bootstrap CI

F1 F 60 16.4995 (0.2699) (15.9705, 17.0284) (15.9897, 17.0384)

120 14.7288 (0.2066) (14.3238, 15.1337) (14.3300, 15.1552)

200 12.6572 (0.1966) (12.2719, 13.0426) (12.2504, 13.0640)

400 8.6610 (0.2800) (8.1122, 9.2098) (8.0944, 9.2110)

F1 M 60 26.8421 (1.3686) (24.1596, 29.5247) (24.5602, 30.3265)

120 23.9562 (1.1528) (21.6968, 26.2156) (22.0673, 26.8734)

200 20.5908 (0.9406) (18.7472, 22.4343) (19.0756, 22.9599)

400 14.1472 (0.6721) (12.8298, 15.4645) (13.0119, 15.8356)

F2 F 60 17.0746 (0.3349) (16.4182, 17.7310) (16.4924, 17.7722)

120 15.2379 (0.2650) (14.7185, 15.7574) (14.7564, 15.7689)

200 13.0919 (0.2387) (12.6242, 13.5597) (12.6249, 13.5467)

400 8.9640 (0.2948) (8.3862, 9.5419) (8.3003, 9.5259)

F2 M 60 27.7792 (1.4822) (24.8742, 30.6842) (25.4218, 31.4712)

120 24.8081 (1.2593) (22.3398, 27.2763) (22.8085, 27.9218)

200 21.3510 (1.0396) (19.3134, 23.3886) (19.6605, 23.9358)

400 14.7676 (0.7553) (13.2872, 16.2480) (13.4943, 16.6077)
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Table 4.4: Estimates of the mean times to the occurrence of tumors and the

corresponding asymptotic variance-covariance matrix for the group of F1 strain of

offspring.

F1 strain of offspring (n1 = 828)

Ê(T 1) = 16.499 26.842 14.729 23.956 12.657 20.591 8.661 14.147

Σ̂1 = 0.073 0.124 0.051 0.088 0.028 0.050 -0.009 -0.010

0.124 1.873 0.044 1.566 -0.040 1.229 -0.159 0.666

0.051 0.044 0.043 0.034 0.033 0.024 0.017 0.007

0.088 1.566 0.034 1.329 -0.021 1.067 -0.101 0.621

0.028 -0.040 0.033 -0.021 0.039 -0.003 0.043 0.023

0.050 1.229 0.024 1.067 -0.003 0.885 -0.042 0.566

-0.009 -0.159 0.017 -0.101 0.043 -0.042 0.078 0.046

-0.010 0.666 0.007 0.621 0.023 0.566 0.046 0.452

mean times to occurrence of tumors for F1 and F2 strains of offspring have normal

distribution with mean vector Ê(T 1) and variance-covariance matrix Σ̂1, and with

mean vector Ê(T 2) and variance-covariance matrix Σ̂2, respectively. Therefore,

a multivariate test for equality of mean vectors can be employed to test whether

the mean time of F1 strain of offspring is equal to that of F2 strain of offspring.

Note that the asymptotic variance-covariance matrices for both groups can be

determined by the delta method from the asymptotic variance-covariance matrix

of the MLEs of the model parameters. The mean times to occurrence of tumors
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Table 4.5: Estimates of the mean times to the occurrence of tumors and the

corresponding asymptotic variance-covariance matrix for the group of F2 strain of

offspring.

F2 strain of offspring (n2 = 988)

Ê(T 2) = 17.075 27.779 15.238 24.808 13.092 21.351 8.964 14.768

Σ̂2 = 0.112 0.209 0.084 0.161 0.053 0.109 0.004 0.027

0.209 2.197 0.112 1.854 0.011 1.480 -0.137 0.860

0.084 0.112 0.070 0.093 0.055 0.073 0.029 0.036

0.161 1.854 0.093 1.586 0.023 1.291 -0.082 0.795

0.053 0.011 0.055 0.023 0.057 0.034 0.055 0.045

0.109 1.480 0.073 1.291 0.034 1.081 -0.024 0.718

0.004 -0.137 0.029 -0.082 0.055 -0.024 0.087 0.055

0.027 0.860 0.036 0.795 0.045 0.718 0.055 0.570

and the corresponding asymptotic variance-covariance matrices for both groups

are presented in Tables 4.4 and 4.5. By Box’s test, we conclude that asymptotic

variance-covariance matrices for both groups are different. Since statistic T 2 =

[(X̄1 − X̄2)− (µ1 − µ2)]
′
(

̂Cov(X1) + ̂Cov(X2)
)−1

[(X̄1 − X̄2)− (µ1 − µ2)] has an

approximate χ2
p-distribution for large sample sizes (see Johnson and Wichern [28]),

where p is the dimension size, we compute the T 2-statistic to be 7.93 < 15.51 =

χ2
8(0.95). The null hypothesis that both groups are equal is not rejected, and we

therefore conclude that the strain of offspring has no significant effect on the mean
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lifetime to occurrence of tumors, at 5% significance level.

4.6 Simulation Results

To evaluate the performance of the proposed EM algorithm for the MLEs, we

carried out a Monte Carlo simulation study, for different levels of reliability and

different sample sizes, to examine the bias, mean square error (MSE), coverage

probability (CP), and average width (AW) of 95% confidence intervals. The devices

were assumed to follow the Weibull distribution, and were on test under 3 different

conditions with 1 stress factor at 3 levels. Then, all devices under each condition

were tested at 3 different inspection times.

The sample size for each group (Ki) was taken to be 30, 50, and 100, corre-

sponding to small, medium, and large sample sizes, respectively, and the model

parameters were set as (a1, b0, b1) = (−0.05,−0.6, 0.03) while a0 was chosen to be

4.9, 5.3, and 5.7 corresponding to devices with low, moderate, and high reliabil-

ity, respectively. To prevent many zero-observations in test groups, the inspection

times were not supposed to be the same for different levels of reliability. Specifi-

cally, the inspection times were set at IT = {5, 10, 15} for the case of low reliability,

IT = {8, 16, 24} for the case of moderate reliability, and IT = {12, 24, 36} for the

case of high reliability. The results from the simulation study based on 10,000

Monte Carlo simulations are summarized in Tables 4.6 to 4.17. Due to heavy

computation required for the construction of bootstrap confidence intervals, the

simulation size for the bootstrap method was reduced to 1,000.
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Table 4.6: Values of bias and mean square errors of the estimates of some param-

eters of interest for various sample sizes in case of low reliability.

Low reliability K = 30 K = 50 K = 100

Bias

a0 4.9 9.2809E-02 4.8126E-02 3.4581E-02

a1 -0.05 -1.8841E-03 -9.8457E-04 -7.1202E-04

b0 -0.6 4.9154E-03 1.2848E-02 -5.3638E-03

b1 0.03 1.7817E-04 -1.3976E-04 1.4977E-04

R(10; 25) 0.811 -1.8575E-04 4.5059E-04 -4.1252E-04

R(20; 25) 0.627 -1.0987E-02 -6.3902E-03 -2.8449E-03

R(30; 25) 0.473 -2.4833E-02 -1.5903E-02 -6.7668E-03

E(T (25)) 36.509 7.6808E+01 6.5957E+00 2.8657E+00

MSE

a0 4.9 6.6536E-01 3.5485E-01 1.7081E-01

a1 -0.05 2.8205E-04 1.5106E-04 7.2815E-05

b0 -0.6 7.0445E-01 3.9971E-01 2.0042E-01

b1 0.03 3.3846E-04 1.9066E-04 9.4890E-05

R(10; 25) 0.811 3.3348E-03 1.9555E-03 9.9009E-04

R(20; 25) 0.627 5.3967E-03 2.9753E-03 1.3713E-03

R(30; 25) 0.473 1.5372E-02 8.8881E-03 4.1433E-03

E(T (25)) 36.509 1.3109E+07 1.7006E+03 1.6666E+02
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Table 4.7: Coverage probabilities and average widths of 95% confidence intervals

for model parameters for various sample sizes in the case of low reliability.

Low reliability K = 30 K = 50 K = 100

CP

a0 = 4.9
Asymptotic CI 0.9272 0.9382 0.9449

Bootstrap CI 0.9360 0.9410 0.9390

a1 = -0.05
Asymptotic CI 0.9322 0.9413 0.9464

Bootstrap CI 0.9420 0.9410 0.9380

b0 = -0.6
Asymptotic CI 0.9464 0.9503 0.9491

Bootstrap CI 0.9340 0.9420 0.9330

b1 = 0.03
Asymptotic CI 0.9436 0.9499 0.9501

Bootstrap CI 0.9360 0.9370 0.9380

AW

a0 = 4.9
Asymptotic CI 2.9747 2.2480 1.5752

Bootstrap CI 3.2478 2.3746 1.5847

a1 = -0.05
Asymptotic CI 0.0614 0.0464 0.0325

Bootstrap CI 0.0671 0.0490 0.0328

b0 = -0.6
Asymptotic CI 3.1589 2.4374 1.7207

Bootstrap CI 3.2853 2.4677 1.6945

b1 = 0.03
Asymptotic CI 0.0689 0.0531 0.0374

Bootstrap CI 0.0724 0.0541 0.0371

121



Table 4.8: Coverage probabilities of 95% confidence intervals for parameters of

interest for various sample sizes in the case of low reliability.

Low reliability K = 30 K = 50 K = 100

CP

R(10; 25) = 0.811

Asymptotic CI 0.9197 0.9343 0.9440

Bootstrap CI 0.9390 0.9380 0.9490

CI by LOGIT 0.9423 0.9540 0.9494

R(20; 25) = 0.627

Asymptotic CI 0.9541 0.9519 0.9535

Bootstrap CI 0.9490 0.9480 0.9630

CI by LOGIT 0.9666 0.9578 0.9561

R(30; 25) = 0.473

Asymptotic CI 0.9227 0.9315 0.9408

Bootstrap CI 0.9420 0.9300 0.9480

CI by LOGIT 0.9498 0.9487 0.9443

E(T (25)) = 36.509

Asymptotic CI 0.8743 0.8945 0.9171

Bootstrap CI 0.9320 0.9460 0.9380

CI by LOG 0.9154 0.9331 0.9483
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Table 4.9: Average widths of 95% confidence intervals for parameters of interest

for various sample sizes in the case of low reliability.

Low reliability K = 30 K = 50 K = 100

AW

R(10; 25) = 0.811
Asymptotic CI 0.2189 0.1716 0.1223

Bootstrap CI 0.2166 0.1698 0.1210

CI by LOGIT 0.2216 0.1729 0.1228

R(20; 25) = 0.627

Asymptotic CI 0.2768 0.2098 0.1451

Bootstrap CI 0.3002 0.2158 0.1450

CI by LOGIT 0.2669 0.2048 0.1427

R(30; 25) = 0.473

Asymptotic CI 0.4422 0.3522 0.2463

Bootstrap CI 0.4494 0.3497 0.2390

CI by LOGIT 0.4246 0.3350 0.2375

E(T (25)) = 36.509

Asymptotic CI 972.93 74.79 43.20

Bootstrap CI 2.04e18 412.77 63.55

CI by LOG 3.25e7 146.62 49.08
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Table 4.10: Values of bias and mean square errors of the estimates of some param-

eters of interest for various sample sizes in case of moderate reliability.

Moderate reliability K = 30 K = 50 K = 100

Bias

a0 5.3 8.1539E-02 5.5986E-02 2.5774E-02

a1 -0.05 -1.6980E-03 -1.1720E-03 -5.2485E-04

b0 -0.6 -2.3014E-03 -7.1066E-03 -3.3800E-03

b1 0.03 4.1892E-04 3.1498E-04 1.7543E-04

R(30; 25) 0.625 -7.9630E-03 -4.3641E-03 -1.8900E-03

R(40; 25) 0.518 -1.7935E-02 -9.7984E-03 -4.5495E-03

R(50; 25) 0.427 -2.2679E-02 -1.2818E-02 -6.2854E-03

E(T (25)) 54.465 6.0039E+01 9.4660E+00 3.3759E+00

MSE

a0 5.3 5.3693E-01 3.0023E-01 1.3661E-01

a1 -0.05 2.3002E-04 1.2927E-04 5.9231E-05

b0 -0.6 6.6179E-01 3.8185E-01 1.8045E-01

b1 0.03 3.1953E-04 1.8271E-04 8.6423E-05

R(30; 25) 0.625 4.3757E-03 2.5115E-03 1.2081E-03

R(40; 25) 0.518 9.4680E-03 5.3203E-03 2.4480E-03

R(50; 25) 0.427 1.5193E-02 9.0072E-03 4.2773E-03

E(T (25)) 54.465 9.5348E+06 3.5714E+03 2.6959E+02
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Table 4.11: Coverage probabilities and average widths of 95% confidence intervals

for model parameters for various sample sizes in the case of moderate reliability.

Moderate reliability K = 30 K = 50 K = 100

CP

a0 = 5.3
Asymptotic CI 0.9313 0.9351 0.9413

Bootstrap CI 0.9370 0.9430 0.9340

a1 = -0.05
Asymptotic CI 0.9376 0.9394 0.9439

Bootstrap CI 0.9370 0.9410 0.9330

b0 = -0.6
Asymptotic CI 0.9428 0.9466 0.9496

Bootstrap CI 0.9390 0.9360 0.9410

b1 = 0.03
Asymptotic CI 0.9410 0.9450 0.9485

Bootstrap CI 0.9340 0.9300 0.9390

AW

a0 = 5.3
Asymptotic CI 2.6720 2.0397 1.4188

Bootstrap CI 2.9562 2.1777 1.4328

a1 = -0.05
Asymptotic CI 0.0555 0.0424 0.0295

Bootstrap CI 0.0613 0.0452 0.0298

b0 = -0.6
Asymptotic CI 3.0413 2.3500 1.6572

Bootstrap CI 3.1658 2.3835 1.6363

b1 = 0.03
Asymptotic CI 0.0666 0.0514 0.0362

Bootstrap CI 0.0699 0.0524 0.0359
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Table 4.12: Coverage probabilities of 95% confidence intervals for parameters of

interest for various sample sizes in the case of moderate reliability.

Moderate reliability K = 30 K = 50 K = 100

CP

R(30; 25) = 0.625

Asymptotic CI 0.9518 0.9529 0.9500

Bootstrap CI 0.9390 0.9370 0.9450

CI by LOGIT 0.9615 0.9579 0.9526

R(40; 25) = 0.518

Asymptotic CI 0.9459 0.9456 0.9473

Bootstrap CI 0.9350 0.9390 0.9390

CI by LOGIT 0.9646 0.9566 0.9504

R(50; 25) = 0.427

Asymptotic CI 0.9125 0.9232 0.9393

Bootstrap CI 0.9370 0.9430 0.9380

CI by LOGIT 0.9427 0.9423 0.9463

E(T (25)) = 54.465

Asymptotic CI 0.8741 0.8960 0.9187

Bootstrap CI 0.9380 0.9440 0.9440

CI by LOG 0.9153 0.9300 0.9459
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Table 4.13: Average widths of 95% confidence intervals for parameters of interest

for various sample sizes in the case of moderate reliability.

Moderate reliability K = 30 K = 50 K = 100

AW

R(30; 25) = 0.625

Asymptotic CI 0.2553 0.1943 0.1357

Bootstrap CI 0.2646 0.1964 0.1358

CI by LOGIT 0.2481 0.1907 0.1340

R(40; 25) = 0.518

Asymptotic CI 0.3577 0.2734 0.1906

Bootstrap CI 0.3662 0.2740 0.1872

CI by LOGIT 0.3398 0.2629 0.1859

R(50; 25) = 0.427

Asymptotic CI 0.4366 0.3509 0.2508

Bootstrap CI 0.4274 0.3411 0.2417

CI by LOGIT 0.4291 0.3373 0.2427

E(T (25)) = 54.465

Asymptotic CI 704.37 102.90 56.54

Bootstrap CI 2.10e8 4.53e4 78.23

CI by LOG 7.15e6 203.49 62.55
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Table 4.14: Values of bias and mean square errors of the estimates of some param-

eters of interest for various sample sizes in case of high reliability.

High reliability K = 30 K = 50 K = 100

Bias

a0 5.7 8.2356E-02 4.8147E-02 2.1972E-02

a1 -0.05 -1.7189E-03 -1.0034E-03 -4.5630E-04

b0 -0.6 -1.8072E-02 -6.8206E-03 -3.4781E-04

b1 0.03 7.1480E-04 3.4118E-04 9.5830E-05

R(60; 25) 0.516 -1.6584E-02 -9.9779E-03 -5.2695E-03

R(70; 25) 0.453 -1.9836E-02 -1.2367E-02 -6.6925E-03

R(80; 25) 0.397 -2.0227E-02 -1.3174E-02 -7.3891E-03

E(T (25)) 81.252 3.2269E+01 1.1906E+01 4.8035E+00

MSE

a0 5.7 4.9017E-01 2.8095E-01 1.3493E-01

a1 -0.05 2.1097E-04 1.2117E-04 5.8483E-05

b0 -0.6 6.3601E-01 3.6596E-01 1.8169E-01

b1 0.03 3.0820E-04 1.7567E-04 8.6444E-05

R(60; 25) 0.516 9.0062E-03 5.2017E-03 2.4766E-03

R(70; 25) 0.453 1.2753E-02 7.5995E-03 3.6907E-03

R(80; 25) 0.397 1.5717E-02 9.7851E-03 4.9210E-03

E(T (25)) 81.252 1.3631E+05 3.3846E+03 5.6220E+02
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Table 4.15: Coverage probabilities and average widths of 95% confidence intervals

for model parameters for various sample sizes in the case of high reliability.

High reliability K = 30 K = 50 K = 100

CP

a0 = 5.7
Asymptotic CI 0.9338 0.9358 0.9414

Bootstrap CI 0.9350 0.9490 0.9460

a1 = -0.05
Asymptotic CI 0.9395 0.9385 0.9426

Bootstrap CI 0.9420 0.9450 0.9410

b0 = -0.6
Asymptotic CI 0.9486 0.9497 0.9465

Bootstrap CI 0.9260 0.9440 0.9330

b1 = 0.03
Asymptotic CI 0.9484 0.9503 0.9476

Bootstrap CI 0.9300 0.9420 0.9370

AW

a0 = 5.7
Asymptotic CI 2.6554 2.0168 1.4056

Bootstrap CI 2.8973 2.1269 1.4174

a1 = -0.05
Asymptotic CI 0.0552 0.0419 0.0292

Bootstrap CI 0.0602 0.0442 0.0295

b0 = -0.6
Asymptotic CI 3.0370 2.3427 1.6526

Bootstrap CI 3.1585 2.3750 1.6314

b1 = 0.03
Asymptotic CI 0.0665 0.0512 0.0361

Bootstrap CI 0.0698 0.0523 0.0359
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Table 4.16: Coverage probabilities of 95% confidence intervals for parameters of

interest for various sample sizes in the case of high reliability.

High reliability K = 30 K = 50 K = 100

CP

R(60; 25) = 0.516

Asymptotic CI 0.9472 0.9502 0.9500

Bootstrap CI 0.9530 0.9420 0.9450

CI by LOGIT 0.9665 0.9592 0.9531

R(70; 25) = 0.453

Asymptotic CI 0.9251 0.9362 0.9434

Bootstrap CI 0.9390 0.9370 0.9490

CI by LOGIT 0.9511 0.9519 0.9456

R(80; 25) = 0.397

Asymptotic CI 0.9074 0.9228 0.9358

Bootstrap CI 0.9360 0.9400 0.9460

CI by LOGIT 0.9386 0.9437 0.9414

E(T (25)) = 81.252

Asymptotic CI 0.8858 0.9024 0.9179

Bootstrap CI 0.9360 0.9430 0.9450

CI by LOG 0.9225 0.9335 0.9465
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Table 4.17: Average widths of 95% confidence intervals for parameters of interest

for various sample sizes in the case of high reliability.

High reliability K = 30 K = 50 K = 100

AW

R(60; 25) = 0.516

Asymptotic CI 0.3548 0.2729 0.1907

Bootstrap CI 0.3708 0.2771 0.1874

CI by LOGIT 0.3370 0.2626 0.1860

R(70; 25) = 0.453

Asymptotic CI 0.4135 0.3276 0.2317

Bootstrap CI 0.4156 0.3248 0.2247

CI by LOGIT 0.3979 0.3136 0.2247

R(80; 25) = 0.397

Asymptotic CI 0.4495 0.3694 0.2674

Bootstrap CI 0.4383 0.3572 0.2555

CI by LOGIT 0.4513 0.3579 0.2588

E(T (25)) = 81.252

Asymptotic CI 303.79 142.66 83.36

Bootstrap CI 4.14e5 568.08 113.44

CI by LOG 2.83e4 208.44 91.96
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We observe first that the MSEs of the estimates of the model parameters as

well as of the reliability at different times and of the mean lifetime all become

smaller when sample size increases, and so does the bias too. Moreover, the MSE

of the estimate of the reliability increases with time. We also observe that, while

the point and interval estimates of the model parameters as well as the reliability

by the EM algorithm are all satisfactory, even in the case of small samples sizes,

the estimate of the mean lifetime is not satisfactory when the sample size is small,

but does become better as the sample size increases. The percentile bootstrap

method and the transformation approach work very well for confidence intervals

for reliability prediction even for small sample sizes as they maintain the coverage

probability at the nominal level of 95%. Also, the average width of the bootstrap

interval is slightly larger than that of the asymptotic confidence interval, while

the transformation approach yields the shortest confidence interval for reliability

in most cases. We would therefore recommend the logit-transformation approach

for constructing confidence intervals for the reliability. However, for the mean

lifetime, the transformation approach does not work better than the bootstrap

method in case of small samples. It is due to the form of the mean lifetime of the

Weibull distribution, αΓ(1 + 1/η), which does not seem to result in a near normal

distribution for its estimate. Finally, as we would expect, the coverage probability

of asymptotic confidence intervals remain below the nominal level for small sample

sizes, but get close to the nominal level as sample size becomes larger.
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4.7 Concluding Remarks

The data considered here are subjected to both left- and right-censoring, and

are quite common in reliability and survival analysis. The Weibull distribution

is widely used for describing the lifetimes of devices and individuals. Unlike the

typical Weibull analysis wherein the shape parameter in the model is assumed to be

constant over all the stress levels/covariates, we have assumed here non-constant

scale and shape parameters in the Weibull model. Since more parameters are

introduced in the model, the model becomes more flexible, but the simulation study

reveals that a larger sample size, however, is needed to obtain stable and accurate

estimates. The simulation results also show that the EM algorithm developed here

is quite satisfactory for the estimation of the model parameters as well as for the

reliability, but not for the estimation of mean lifetime. For confidence intervals

for reliability at a specific time, the bootstrap method and the transformation

approach are observed to be more suitable than the asymptotic method, in case

of small samples, but all these methods give quite similar results in case of large

sample sizes.

Apart from the simulation study, a real data from a tumorigenicity experiment

has been analyzed by the proposed method, and the confidence intervals for the

model parameters obtained by the asymptotic method and the bootstrap method

are quite similar. Moreover, the estimates of mean times to the occurrence of

tumors for all the considered groups obtained by the proposed method are close

to the results of Kodell and Nelson [29]. Based on the model, the estimated mean
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time and the corresponding standard errors are obtained. Furthermore, an effect

of strain of offspring to the mean time to tumor occurrence has been evaluated

by T 2-test. Finally, the likelihood ratio test reveals that the shape parameters are

indeed different over the gender, the strain of offspring, and the concentration of

chemical.

Since the estimation of the mean lifetime of Weibull distribution is of great

interest for reliability engineers, it is natural to seek another method that yields

a better confidence interval in case of small sample sizes. As mentioned before,

the mean lifetime of the Weibull distribution is αΓ(1 + 1/η). Viveros and Balakr-

ishnan [63] pointed out that the lack of a pivotal quantity for the mean lifetime

of the Weibull distribution makes it impossible to derive exact conditional (or un-

conditional) confidence intervals. Instead of using logarithm of the mean lifetime,

we may consider some other transformations which produce near normality for the

distribution of the quantity. Work in this direction will be of great interest.
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Chapter 5

Optimal Accelerated Life-Test

Plans for One-Shot Device

Testing

5.1 Introduction

Traditional plans consist of equally-spaced stress levels and inspection time,

each with the same number of test units, which usually yields less accurate es-

timates of a lifetime parameter of interest. Within a pre-fixed budget, optimal

test plans that minimize the asymptotic variance of the estimate of a parameter

of interest are often constructed to collect information efficiently from ALTs. Due

to their practical importance, much work has been done on optimal test plans.
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Nelson [44], [45] has provided a list of publications that have dealt with optimal

accelerated life-test plans. Sohn [56] has developed the optimal ALTs for inter-

mittent destructive inspection with logistic lifetime distribution. Tseng et al. [59]

have developed optimal test plans for step-stress accelerated degradation data

under a gamma degradation process, and have discussed the optimal determina-

tion of sample size, measurement frequency, and termination time at each stress

level. For this objective, they minimized the asymptotic variance of the MLE of

the mean lifetime of the product within a pre-fixed budget. Subsequently, Zhang

et al. [70] have considered sample size, stress level, and test time at each stress

level as decision variables in the planning of the test while minimizing the mean

square error of the estimate of reliability at a specific time. Earlier, Meeter and

Meeker [39] discussed optimal ALT plans based on Type-I censored data under

location-scale distribution for log-lifetime with a non-constant scale parameter.

Recently, Seo et al. [55] have designed accelerated life-test sampling plans under

Weibull distribution with non-constant shape and scale parameters. In addition

to Type-I censoring, they also studied optimal test plans for Type-II censoring

scheme, wherein stress levels are raised by a pre-fixed number of failures instead

of by a pre-fixed time, for the specified model. Pascual [50] has developed ALT

plans for competing risks data with Type-I censoring under Weibull distribution

with known shape parameter, while Ismail and Aly [24] have discussed optimal

test plans for failure-step-stress partial ALT under Weibull distribution. Herein,

unlike in the typical step-stress ALTs, the partial ALT combines both ordinary
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and ALTs. Yang [66] has also discussed design of ALTs for Type-I censoring un-

der Weibull distribution by minimizing the asymptotic variance of the estimate of

the warranty cost of products.

In this Chapter, we present a methodology for planning accelerated life-tests

in the context of one-shot device testing by assuming a Weibull distribution with

non-constant scale and shape parameters for the lifetime distribution. We consider

inspection frequency, number of inspections at each stress level, and allocation of

the products as decision variables for minimizing the asymptotic variance of the

estimate of the reliability of the products at a specific mission time under normal

operating conditions within a pre-fixed budget and a termination time.

5.2 Model Description

Suppose that, at testing condition Si, Ni items are subjected to J types of stress

factors with higher-than-usual stress levels and inspected at Ki equally-spaced

time points. Specifically, Nik items are drawn and inspected at a specific time

ITik, with

Ki∑
k=1

Nik = Ni. Then, nik failure items are collected from the inspection.

Let us now assume that the lifetime of the product has a Weibull distribution

with scale parameter αi > 0 and shape parameter ηi > 0 at testing condition

Si, wherein the scale and shape parameters are both related to the stress levels

(xi1, xi2, . . . , xiJ) through log-linear links of the following forms:
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αi = exp

(
J∑
j=0

ajxij

)
(5.1)

and

ηi = exp

(
J∑
j=0

bjxij

)
, (5.2)

with xi0 ≡ 1. The corresponding pdf and cdf are

f(t;αi, ηi) =
ηit

ηi−1

αηii
exp

(
−
(
t

αi

)ηi)
, t > 0, (5.3)

and

F (t;αi, ηi) = 1− exp

(
−
(
t

αi

)ηi)
, t > 0, (5.4)

respectively. Once again, for the estimation of the parameters of the Weibull dis-

tribution, the extreme value distribution for log-lifetimes is used since this belongs

to location-scale family of distributions. The location and scale parameters are

given by

µi = log(αi) =
J∑
j=0

ajxij, (5.5)

and

σi = η−1i = exp

(
−

J∑
j=0

bjxij

)
, (5.6)

respectively.
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5.3 Asymptotic Variance of the MLE of Relia-

bility

To determine the optimal test plan by minimizing the asymptotic variance

of the MLE of reliability at a specific mission time under normal operating con-

ditions, we need the Fisher information matrix for the model parameters, θ =

(a, b) = {a0, . . . , aJ , b0, . . . , bJ}, as well as the first derivatives of the reliability

estimate with respect to these model parameters. Earlier in Chapter 4, the log-

likelihood function of the log-lifetime data from one-shot device testing is presented

in Eq. (4.32) as

`(θ) =
I∑
i=1

Ki∑
k=1

[
nik log(1− e−e

νik
)− (Nik − nik)eνik

]
+ constant, (5.7)

where νik =
log(ITik)− µi

σi
. The Fisher information matrix under a test plan, ξ,

consisting of inspection frequency, number of inspections at each condition, and

allocation of the devices, is given by

I(θ; ξ) = −E
[
∂2`(θ)

∂θ∂θ′

]
= −E


∂2`(θ)

∂a∂a′
∂2`(θ)

∂a∂b′

∂2`(θ)

∂b∂a′
∂2`(θ)

∂b∂b′

 . (5.8)

We have discussed the Fisher information matrix under Weibull distribution with

scale and shape parameters varying with stress factors in the preceding section.

This readily yields the asymptotic variance-covariance matrix of the MLEs of the

model parameters as the inverse of the above Fisher information matrix. Fur-

thermore, given the MLEs of the model parameters, θ̂ = (â, b̂), the MLE of the

reliability of the product at a specific mission time, t0, under normal operating
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conditions, x0 = {x01, x02, . . . , x0J}, can be immediately computed as

R̂(t0;x0) = exp

(
−
(
t0
α̂0

)η̂0)
, (5.9)

with α̂0 = exp
(∑J

j=0 âjx0j

)
and η̂0 = exp

(∑J
j=0 b̂jx0j

)
. We then obtain the

corresponding asymptotic variance of the MLE R̂(t0;x0) in Eq. (5.9) by using

delta method, which has also explained in the preceding section.

5.4 Optimal Test Plan

In this section, to design an efficient accelerated life-test plan for one-shot

device testing, we consider the optimization problem of determining the inspection

frequency, number of inspections at each condition, and allocation of the devices

by minimizing the asymptotic variance of the MLE of the reliability at a specific

mission time under normal operating conditions subject to a specified budget and

a termination time.

Suppose the budget for conducting an accelerated life-test for one-shot device

testing, the operation cost at testing condition Si, the cost of devices (including the

purchase of and testing cost), and the termination time are Cbudget, Coper,i, Citem

and Tter, respectively. Given a test plan, ξ, that involves the inspection frequency,

f, the number of inspections at testing condition Si, Ki ≥ 2, and the allocation of

devices, Nik, for i = 1, 2, . . . , I, the total cost of conducting the experiment is seen

to be

TC(ξ) = Citem

I∑
i=1

Ki∑
k=1

Nik +
I∑
i=1

Coper,iKif. (5.10)
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5.4.1 Subject to Specified Budget and Termination Time

The objective of the optimal test plan is to minimize the asymptotic variance

of the MLE of the reliability at mission time t0 under normal operation conditions

x0, AV ar(R̂(t0;x0)|ξ), subject to the constraints

TC(ξ) ≤ Cbudget (5.11)

and

Kif ≤ Tter. (5.12)

Due to the complex form of the objective function, we propose the following algo-

rithm for determining the optimal test plan. Let Nmin = 20 (say) be the minimum

number of devices allocated at each condition at each inspection time. Then, we

follow the following steps:

Step 1: Set f = 1;

Step 2: FindK∗i = min

(⌊
Cbudget − (CitemNminI +

∑I
i=1Coper,if)

CitemNmin + Coper,i

⌋
+ 1,

⌊
Tter
f

⌋)
,

for i = 1, 2, . . . , I;

Step 3: For i = 1, 2, . . . , I, and Ki = 2, 3, . . . , K∗i , let us denote an initial plan with

the inspection frequency, the numbers of inspections, and the allocation of

the devices with minimum number by ξ(f,K,Nmin), where K = {Ki, i =

1, 2, . . . , I} and Nmin = {Nik = Nmin, i = 1, 2, . . . , I, k = 1, 2, . . . , Ki}. For

the initial plan ξ(f,K,Nmin), if

Cbudget ≥ TC(ξ(f,K,Nmin)), (5.13)
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we proceed to the next step in finding the optimal allocation of the devices;

otherwise, we skip the next step and jump to Step 5;

Step 4: The optimal allocation of the devices is determined by a sequential ap-

proach in which, starting with the initial test plan ξ∗ = ξ(f,K,Nmin), an

additional device is considered in the test plan and then choosing the best

between the new test plan (based on the current one) and the best test

plan. Thus, beginning with the initial test plan with
I∑
i=1

KiN0 devices,

Step(a)
I∑
i=1

Ki test plans with 1 additional device based on ξ∗ are devel-

oped, and denoted by ξik for i = 1, 2, . . . , I and k = 1, 2, . . . , Ki;

Step(b) computeAV ar(R̂(t0;x0)|ξik), for i = 1, 2, . . . , I and k = 1, 2, . . . , Ki;

Step(c) a new test plan with optimal allocation of the devices can be ob-

tained asminξikAV ar(R̂(t0;x0)|ξik), and denoted by ξ∗ = ξ(f,K,N);

Step(d) repeat steps (a) to (c) until

I∑
i=1

Ki∑
k=1

Nik =

⌊
Cbudget −

∑I
i=1Coper,iKif

Citem

⌋
, (5.14)

and denote the test with the optimal allocation of the devices

based on ξ(f,K,Nmin) by ξ∗(f,K,N);

Step 5: Set f = f + 1;

Step 6: Repeat Steps 2 to 5 until f = Tter;

Step 7: The optimal solution of (f,K,N) is then obtained as

minξ∗(f,K,N)AV ar(R̂(t0;x0)|ξ∗(f,K,N)).
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5.4.2 Subject to Standard Error and Termination Time

On the other hand, when the standard error of the estimate of MLE of the

reliability se(R̂(t0;x0)) is given, one may be interested in minimizing the cost

of conducting the experiment. For this reason, we propose here the following

algorithm for determining the optimal test plan. Again, let Nmin = 20, Nmax =

100 (say) be the minimum and maximum numbers of devices allocated at each

condition at each inspection time. Then, we follow the following steps:

Step 1: Set f = 1;

Step 2: Find

K∗i =

⌊
Tter
f

⌋
, (5.15)

for i = 1, 2, . . . , I;

Step 3: For i = 1, 2, . . . , I, and Ki = 2, 3, . . . , K∗i , let us denote a maximal plan

with the inspection frequency, the numbers of inspections, and the al-

location of the devices with maximum number by ξ(f,K,Nmax), where

Nmax = {Nik = Nmax, i = 1, 2, . . . , I, k = 1, 2, . . . , KI}. For the maximal

plan ξ(f,K,Nmax), if

√
AV ar(R̂(t0;x0)|ξ(f,K,Nmax)) ≤ se(R̂(t0;x0)), (5.16)

we proceed to the next step in finding the optimal allocation of the devices;

otherwise, we skip the next step and jump to Step 5;
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Step 4: The optimal allocation of the devices is determined by a sequential ap-

proach in which, starting with the initial test plan ξ∗ = ξ(f,K,Nmin),

with minimum number of devices allocated at each condition at each in-

spection time. Once again, an additional device is considered in the test

plan and then choosing the best between the new test plan (based on the

current one) and the best test plan. Thus, beginning with the initial test

plan with
I∑
i=1

KiN0 devices,

Step(a)
I∑
i=1

Ki test plans with 1 additional device based on ξ∗ are devel-

oped, and denoted by ξik for i = 1, 2, . . . , I and k = 1, 2, . . . , Ki;

Step(b) computeAV ar(R̂(t0;x0)|ξik), for i = 1, 2, . . . , I and k = 1, 2, . . . , Ki;

Step(c) a new test plan with optimal allocation of the devices can be ob-

tained asminξikAV ar(R̂(t0;x0)|ξik), and denoted by ξ∗ = ξ(f,K,N);

Step(d) repeat steps (a) to (c) until√
AV ar(R̂(t0;x0)|ξ∗) ≤ se(R̂(t0;x0)), (5.17)

and denote the test with the optimal allocation of the devices

based on ξ(f,K,N) by ξ∗(f,K,N);

Step 5: Set f = f + 1;

Step 6: Repeat Steps 2 to 5 until f = Tter;

Step 7: The optimal solution of (f,K,N) is then obtained as

minξ∗(f,K,N)AV ar(R̂(t0;x0)|ξ∗(f,K,N)).
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5.5 Illustrative Example

In this section, we illustrate the proposed algorithm with an example involving

accelerated life-test with 1 stress factor at 3 levels under different budgets and

different termination times. Suppose the lifetime of the devices under stress level

xi has a Weibull distribution with scale parameter αi and shape parameter ηi,

where αi = exp(a0 + a1xi) and ηi = exp(b0 + b1xi). Also, suppose the devices have

long lives under standard condition with (a0, a1, b0, b1) = (5.7,−0.05,−0.6, 0.03).

Now, we consider the estimation of the reliability of the devices at mission time

t0 = 60 under normal operating stress level of x0 = 25 and the accelerated life-test

has to be terminated at times 36 and 60. The elevated stress levels used are 30,

40, and 50, and suppose the costs of operation at these elevated stress levels are

$100, $150, and $200 per unit of time, respectively, and the cost of each device

(including the purchase and testing) is $1,100.

5.5.1 Optimal Accelerated Life-Test Plans

The optimal accelerated life-test plans for different budget constraints were

determined by using the proposed algorithm, and they are presented in Table 5.1.

The corresponding theoretical standard deviation and the root mean square error

(based on 2,000 simulated samples) for the estimate of the reliability at time

t0 = 60 were also obtained, and these are presented in the last two columns

of Table 5.1. The results show that an experiment with sufficiently large time

and budget for the experiment, as one would expect, would give better reliability
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prediction.

Table 5.1: Optimal accelerated life-test plans for one-shot device testing under

different budgets and termination times, along with the corresponding standard

deviation, Std, and root mean square error, RMSE, of the MLE of the reliability

at mission time t0 = 60.

Tter Cbudget N1k N2k N3k f TC Std RMSE

36 $200,000 (20,34) (20,49) (24,20) 18 $199,900 0.0859 0.1002

36 $300,000 (20,65) (20,89) (44,20) 18 $300,000 0.0634 0.0803

36 $500,000 (20,126) (20,168) (85,20) 18 $499,100 0.0462 0.0583

60 $200,000 (20,20,44) (20,20) (20,20) 19 $199,400 0.0629 0.0643

60 $300,000 (20,20,20,41,78) (20,20) (20,20) 12 $299,300 0.0446 0.0606

60 $500,000 (20,20,57,248) (20,20) (36,20) 13 $499,400 0.0319 0.0413

Table 5.2 presents the effect on the optimal accelerated life-test plans when the

cost of operation at the highest stress level increases to $500. We observe that the

results in Tables 5.1 and 5.2 are quite close, except for the total number of test

devices. Since the cost of operation becomes higher in the latter case, the total

number of available devices to be tested becomes slightly less, but it has little

impact on the asymptotic variance of the MLE of the reliability. Consequently,

both standard derivation and RMSE of the MLE of the reliability increase slightly.

We determine here the minimum costs of conducting an accelerated life-test
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Table 5.2: Optimal accelerated life-test plans for one-shot device testing with high

cost at higher stress level under different budgets and termination times, along with

the corresponding standard deviation, Std, and root mean square error, RMSE,

of the MLE of the reliability at mission time t0 = 60.

Tter Cbudget N1k N2k N3k f TC Std RMSE

36 $200,000 (20,30) (20,45) (22,20) 18 $199,700 0.0902 0.1069

36 $300,000 (20,61) (20,85) (42,20) 18 $299,800 0.0651 0.0816

36 $500,000 (20,123) (20,164) (83,20) 18 $500,000 0.0467 0.0596

60 $200,000 (20,20,34) (20,20) (20,20) 19 $199,800 0.0672 0.0681

60 $300,000 (20,20,20,35,78) (20,20) (20,20) 12 $299,900 0.0454 0.0608

60 $500,000 (20,20,55,244) (20,20) (35,20) 13 $499,500 0.0322 0.0416

for different standard errors of the estimate of the reliability at time t0 = 60 by

using the proposed algorithm, and the constraints of the termination times and the

standard errors for the estimate of the reliability, the accelerated life-test plans,

the minimum costs, and the root mean square error (based on 2,000 simulated

samples) for the estimate of the reliability are presented in Table 5.3. The results

show that the termination time of the experiment is a significant factor in the total

cost of conducting the experiment. Since the operation cost is relatively lower than

the cost of devices, as one would expect, an experiment with a reasonable time

would reduce the total number of test devices as well as the total cost of conducting
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the experiment.

Table 5.3: Optimal accelerated life-test plans for one-shot device testing under

different standard errors for the MLE of the reliability at a mission time t0 = 60 and

termination times, along with the corresponding minimum total cost of conducting

the experiment, and root mean square error, RMSE, of the MLE of the reliability

at the mission time.

Tter Std N1k N2k N3k f TC RMSE

36 0.10 (20,22) (20,37) (20,20) 18 $169,100 0.1152

36 0.08 (20,39) (20,57) (28,20) 18 $218,600 0.0953

36 0.05 (20,107) (20,144) (72,20) 18 $437,500 0.0625

60 0.10 (20,20) (20,20) (20,20) 21 $150,900 0.1015

60 0.08 (20,29) (20,20) (20,20) 25 $164,400 0.0793

60 0.05 (20,20,20,82) (20,20) (20,20) 14 $259,600 0.0530

5.5.2 Sensitivity Analysis over Parameter Misspecification

The effect of misspecification of the model parameters on the optimal test

plan need to be studied in order to evaluate the robustness feature of the optimal

test plan to misspecification of the model parameters. Since the estimated model

parameters θ = (â0, â1, b̂0, b̂1) are likely to depart from the true model parameters

(a0, a1, b0, b1), we assume here that the estimates of the true parameters to be with

error such that θ̂ = (â0, â1, b̂0, b̂1) = ((1 + ε1)a0, (1 + ε2)a1, (1 + ε3)b0, (1 + ε4)b1),
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where εi = {−0.1, 0.0, 0.1}, thus allowing for under-estimation as well as over-

estimation. Subject to the total cost budget of $200,000 and termination time of

36, and with the same setup as in the illustrative example in the preceding section,

the optimal test plans under various combinations of errors were determined, and

these are presented in Table 5.4. Moreover, the relative bias on the estimate of

the reliability at the mission time with θ and θ̂, given by

RB(R(t0)) =
R̂(t0;x0,θ)− R̂(t0;x0, θ̂)

R̂(t0;x0,θ)
, (5.18)

were computed and these are presented in the last column of Table 5.4. From

the results in Table 5.4, we observe that the determined optimal test plans under

misspecification of parameters are quite close to the optimal test plan under correct

parameter specification, thus revealing the natural robustness of the developed

optimal test plan.

5.6 Concluding Remarks

We have developed here an algorithm for the determination of an optimal test

plan for accelerated life-test on one-shot devices by assuming the Weibull lifetime

distribution with non-constant scale and shape parameters. This algorithm can

also be applied for binary data in survival analysis such as those arising from

tumorigenicity experiments wherein the data collected are once again left- and

right-censored at each observation time. We have evaluated the performance of

this algorithm by determining the optimal test plans subject to different choices
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Table 5.4: Sensitivity analysis of optimal accelerated life-tests under various com-

binations of parameters ((1 + ε1)a0, (1 + ε2)a1, (1 + ε3)b0, (1 + ε4)b1), with εi’s being

departures from the true values.

ε1 ε2 ε3 ε4 N1k N2k N3k f RB(R(t0))

0% 0% 0% 0% (20,34) (20,49) (24,20) 18

-10% -10% -10% -10% (20,37) (20,50) (20,20) 18 -0.3599

-10% -10% -10% 0% (20,39) (20,47) (21,20) 18 -0.3656

-10% -10% -10% +10% (20,20,20) (20,20,29) (20,20) 12 -0.3716

-10% -10% 0% -10% (20,36) (20,51) (20,20) 18 -0.3557

-10% -10% 0% 0% (20,37) (20,50) (20,20) 18 -0.3610

-10% -10% 0% +10% (20,42) (20,43) (21,21) 18 -0.3667

-10% -10% +10% -10% (20,36) (20,51) (20,20) 18 -0.3517

-10% -10% +10% 0% (20,35) (20,52) (20,20) 18 -0.3567

-10% -10% +10% +10% (20,38) (20,48) (21,20) 18 -0.3621

-10% 0% -10% -10% (20,48) (20,37) (22,20) 18 -0.4602

-10% 0% -10% 0% (20,47) (20,36) (24,20) 18 -0.4733

-10% 0% -10% +10% (20,45) (20,38) (24,20) 18 -0.4874

-10% 0% 0% -10% (20,46) (20,39) (22,20) 18 -0.4503

-10% 0% 0% 0% (20,46) (20,37) (24,20) 18 -0.4627

-10% 0% 0% +10% (20,45) (20,38) (24,20) 18 -0.4761

150



ε1 ε2 ε3 ε4 N1k N2k N3k f RB(R(t0))

0% 0% 0% 0% (20,34) (20,49) (24,20) 18

-10% 0% +10% -10% (20,45) (20,41) (21,20) 18 -0.4410

-10% 0% +10% 0% (20,46) (20,38) (23,20) 18 -0.4527

-10% 0% +10% +10% (20,45) (20,38) (24,20) 18 -0.4653

-10% +10% -10% -10% (20,59) (20,28) (20,20) 18 -0.5565

-10% +10% -10% 0% (20,63) (20,24) (20,20) 18 -0.5761

-10% +10% -10% +10% (20,66) (20,21) (20,20) 18 -0.5970

-10% +10% 0% -10% (20,58) (20,29) (20,20) 18 -0.5416

-10% +10% 0% 0% (20,60) (20,27) (20,20) 18 -0.5603

-10% +10% 0% +10% (20,66) (20,21) (20,20) 18 -0.5802

-10% +10% +10% -10% (20,57) (20,30) (20,20) 18 -0.5275

-10% +10% +10% 0% (20,58) (20,29) (20,20) 18 -0.5453

-10% +10% +10% +10% (20,62) (20,25) (20,20) 18 -0.5642

0% -10% -10% -10% (20,32) (20,52) (23,20) 18 0.0883

0% -10% -10% 0% (20,30) (20,53) (24,20) 18 0.1150

0% -10% -10% +10% (20,28) (20,53) (26,20) 18 0.1431

0% -10% 0% -10% (20,33) (20,52) (22,20) 18 0.0681

0% -10% 0% 0% (20,30) (20,53) (24,20) 18 0.0935

0% -10% 0% +10% (20,28) (20,54) (25,20) 18 0.1205
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ε1 ε2 ε3 ε4 N1k N2k N3k f RB(R(t0))

0% 0% 0% 0% (20,34) (20,49) (24,20) 18

0% -10% +10% -10% (20,33) (20,52) (22,20) 18 0.0488

0% -10% +10% 0% (20,31) (20,53) (23,20) 18 0.0731

0% -10% +10% +10% (20,28) (20,54) (25,20) 18 0.0988

0% 0% -10% -10% (20,35) (20,48) (24,20) 18 -0.0041

0% 0% -10% 0% (20,34) (20,49) (24,20) 18 0.0168

0% 0% -10% +10% (20,33) (20,49) (25,20) 18 0.0391

0% 0% 0% -10% (20,36) (20,48) (23,20) 18 -0.0198

0% 0% 0% +10% (20,33) (20,50) (24,20) 18 0.0212

0% 0% +10% -10% (20,36) (20,48) (23,20) 18 -0.0348

0% 0% +10% 0% (20,34) (20,49) (24,20) 18 -0.0160

0% 0% +10% +10% (20,33) (20,50) (24,20) 18 0.0041

0% +10% -10% -10% (20,41) (20,43) (23,20) 18 -0.1010

0% +10% -10% 0% (20,39) (20,44) (24,20) 18 -0.0868

0% +10% -10% +10% (20,39) (20,44) (24,20) 18 -0.0716

0% +10% 0% -10% (20,41) (20,43) (23,20) 18 -0.1116

0% +10% 0% 0% (20,39) (20,44) (24,20) 18 -0.0982

0% +10% 0% +10% (20,38) (20,45) (24,20) 18 -0.0839
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ε1 ε2 ε3 ε4 N1k N2k N3k f RB(R(t0))

0% 0% 0% 0% (20,34) (20,49) (24,20) 18

0% +10% +10% -10% (20,41) (20,43) (23,20) 18 -0.1217

0% +10% +10% 0% (20,40) (20,44) (23,20) 18 -0.1090

0% +10% +10% +10% (20,38) (20,45) (24,20) 18 -0.0954

+10% -10% -10% -10% (20,39) (20,45) (23,20) 18 0.4349

+10% -10% -10% 0% (20,38) (20,44) (25,20) 18 0.4739

+10% -10% -10% +10% (20,37) (20,43) (27,20) 18 0.5132

+10% -10% 0% -10% (20,40) (20,45) (22,20) 18 0.4040

+10% -10% 0% 0% (20,38) (20,45) (24,20) 18 0.4427

+10% -10% 0% +10% (20,37) (20,44) (26,20) 18 0.4818

+10% -10% +10% -10% (20,40) (20,45) (22,20) 18 0.3734

+10% -10% +10% 0% (20,39) (20,45) (23,20) 18 0.4116

+10% -10% +10% +10% (20,38) (20,44) (25,20) 18 0.4505

+10% 0% -10% -10% (20,39) (20,43) (25,20) 18 0.3701

+10% 0% -10% 0% (20,38) (20,43) (26,20) 18 0.4082

+10% 0% -10% +10% (20,37) (20,42) (28,20) 18 0.4470

+10% 0% 0% -10% (20,40) (20,43) (24,20) 18 0.3402

+10% 0% 0% 0% (20,38) (20,43) (26,20) 18 0.3777

+10% 0% 0% +10% (20,37) (20,43) (27,20) 18 0.4159
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ε1 ε2 ε3 ε4 N1k N2k N3k f RB(R(t0))

0% 0% 0% 0% (20,34) (20,49) (24,20) 18

+10% 0% +10% -10% (20,40) (20,43) (24,20) 18 0.3110

+10% 0% +10% 0% (20,38) (20,44) (25,20) 18 0.3476

+10% 0% +10% +10% (20,38) (20,43) (26,20) 18 0.3852

+10% +10% -10% -10% (20,42) (20,40) (25,20) 18 0.2990

+10% +10% -10% 0% (20,41) (20,40) (26,20) 18 0.3352

+10% +10% -10% +10% (20,41) (20,39) (27,20) 18 0.3726

+10% +10% 0% -10% (20,42) (20,40) (25,20) 18 0.2708

+10% +10% 0% 0% (20,41) (20,40) (26,20) 18 0.3061

+10% +10% 0% +10% (20,41) (20,40) (26,20) 18 0.3426

+10% +10% +10% -10% (20,42) (20,40) (25,20) 18 0.2434

+10% +10% +10% 0% (20,41) (20,41) (25,20) 18 0.2777

+10% +10% +10% +10% (20,41) (20,40) (26,20) 18 0.3133

of budget and termination time. We have also carried out a sensitivity analysis

to display the natural robustness feature of the developed optimal test plan to

misspecification of the model parameters.

The optimal plan test developed here can also be modified to that of a plan

based on warranty cost considerations, as done by Yang [67] for accelerated life-

tests based on Type-I censoring under the Weibull distribution.
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Chapter 6

Concluding Comments

In this thesis, we have considered the one-shot device testing data under ac-

celerated life-test, which is an extreme case of interval censored data. We have

developed the EM algorithm for the determination of the MLEs of the model pa-

rameters as well as for estimating the reliability at a mission time and the mean

lifetime of products under normal operating conditions. In addition to point es-

timation, the interval estimation of some lifetime parameters of interest is also

discussed.

6.1 Summary

The EM algorithm approach is compared to the Bayesian approach under the

exponential distribution with single stress model in Chapter 2. The simulation

study reveals that, in small sample sizes, the EM algorithm performs quite well
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for the estimation of the reliability at a mission time in the cases of moderate

and low reliability in terms of bias and mean square error. In the case of high

reliability, the Bayesian approach with reliable prior information performs better.

In general, the Bayesian approach yields more accurate estimate of mean lifetime

of products than the EM algorithm does. When the sample size gets larger, both

methods result in estimates that are quite comparable.

In Chapter 3, the exponential distribution with multiple stress model is con-

sidered and the jackknife technique is employed to reduce the bias of the estimates

of parameters of interest. Also, the use of the observed Fisher information matrix,

the jackknife technique, the bootstrap method, and the transformation method

for the construction of confidence intervals are compared through a Monte Carlo

simulation study in terms of coverage probability and average width. It is ob-

served that the distributions of relevant pivotal quantities for the reliability at a

mission time and the mean lifetime are quite skewed in small sample sizes, and so

the confidence intervals by the use of the observed Fisher information matrix and

the jackknife technique, which require normality probabilities for the distribution,

do not posses satisfactory coverage probability. Moreover, the bootstrap method

for the construction of confidence intervals demands heavy computational time.

Hence, the transformation methods for the reliability at a mission time based on

logit-transformation and for the mean lifetime based on the log-transformation are

observed to perform satisfactorily, and so are the ones that are recommended.

Chapter 4 discusses the Weibull distribution with multiple stress model and the
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determination of the MLEs of the model parameters by using the EM algorithm,

and also construction of various confidence intervals. Since the lifetime model in-

volves scale as well as shape parameters that are both allowed to vary with the

stress factors, a large sample size is required for fitting this model to data; other-

wise, the iterative estimation method may not converge. Then, a one-shot device

testing data arising from survival study involving a tumorigenicity experiment is

analyzed. The analysis shows that the covariates of the gender, the strain of off-

spring, and the concentration of the chemical of benzidine dihydrochloride in the

drinking water have significant effects on both scale and shape parameters of the

Weibull distribution. In other words, the shape of the Weibull lifetime distribution

varies with all these three covariates, and so a conventional proportional hazards

analysis based on Weibull distribution will be erroneous is this case.

Since the asymptotic variance of the estimate of the reliability at a mission time

under the Weibull distribution has been derived, in Chapter 5, we have used it to

develop an algorithm to obtain an optimal accelerated life-test plan by minimizing

the asymptotic variance subject to constraints on the budget and the termination

time of the life-test. In addition, with a given standard error of the estimates of

the reliability at a mission time, we can determine the budget and design the test

plan for collecting the data. We have carried out a sensitivity analysis to check

the robustness of the developed optimal test plan. This analysis displays that the

proposed optimal test plan is stable even if there are moderate departures from

specified model parameters.
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6.2 Further Generalizations and Extensions

For further work, we may consider the gamma and lognormal distributions

as models for lifetimes of devices, and then develop the corresponding likelihood

inferential results and optimal test plans based on the asymptotic variance of the

estimate of the reliability at a mission time. Note that the gamma distribution

would also generalize the results developed in Chapters 2 and 3 based on the

exponential distribution. Furthermore, we may study of the effect of model mis-

specification on the optimal design of test plan; for example, when the data is

treated wrongly to fit a gamma model when the true lifetime of the devices is a

Weibull distribution.

We may also develop an optimal test plan based on warranty cost considerations

under different models such as inverse power law model and Arrhenius accelerated

model that relate the parameters in the lifetime model to voltage and temperature

as stress factors, respectively.

To reduce the cost of the experiment by decreasing the number of test devices,

we may consider a step-stress accelerated test instead of constant-stress accelerated

test. Under such an ALT, it will be of great interest to develop the EM algorithm

for the determination of the MLEs of the model parameters and also to develop

methods for interval estimation.

Next, in the context of an accelerated life-test, it is reasonable to restrict the

model parameters aj > 0. But, the maximization in the M-step becomes more

complicated in this case since we need to solve a restricted maximization problem.
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It will be of interest to find the restricted MLEs in this case and then develop the

corresponding order-restricted inferential results.

A distance-based test statistic and the corresponding approximate p-value by

bootstrap method have been discussed briefly in Chapter 3 to examine the fit of the

exponential model to a data. In this regard, finding a suitable test statistic with

good power properties for testing the suitability of the model for the accelerated

life-test on one-shot devices remains as an open problem. This will also be of

practical interest as model validation is a key aspect of any statistical analysis.

159



Bibliography

[1] Aguilar, J. A. and Hernández-Rey, J. J. (2008). The expectation-

maximization algorithm applied to the search of point sources of astropar-

ticles. Astroparticle Physics, 29:117-124.

[2] Balakrishnan, N., Beutner, E. and Kamps, U. (2008). Order restricted in-

ference for sequential k-out-of-n systems. Journal of Multivariate Analysis,

99:1489-1502.

[3] Balakrishnan, N., Beutner, E., and Kateri, M. (2009). Order restricted in-

ference for exponential step-stress models. IEEE Transactions on Reliability,

58:132-142.

[4] Bartnikas, R. and Morin, R. (2004). Multi-stress aging of stator bars with elec-

trical, thermal, and mechanical stresses as simultaneous acceleration factors.

IEEE Transactions on Energy Conversion, 19:702-714.

[5] Bishop, Y. M. M., Feinberg, S. E. and Holland, P. W. (1975). Discrete

Multivariate Analysis: Theory and Practice. MIT Press, Cambridge, Mas-

sachusetts.

160



[6] Bruning, A. M. and Campbell, F. J. (1993). Aging in wire insulation under

multifactor stress. IEEE Transactions on Electrical Insulation, 28:729-754.

[7] Cai, B., Lin, X. Y. and Wang, L. M. (2011). Bayesian proportional hazards

model for current status data with monotone splines. Computational Statistics

& Data Analysis, 55:2644-2651.

[8] Casella, G. and Berger, R. L. (2002). Statistical Inference, Second Edition.

Duxbury Press, Pacific Grove, California.

[9] Chen, D. G. and Lio, Y. L. (2010). Parameter estimations for generalized

exponential distribution under progressive type-I interval censoring. Compu-

tational Statistics & Data Analysis, 54:1581-1591.

[10] Chen, M. H., Tong, X. and Sun, J. (2009). A frailty model approach for

regression analysis of multivariate current status data. Statistics in Medicine,

28:3424-3436.

[11] Craiu, R. V. and Duchesne, T. (2004). Inference based on the EM algorithm

for the competing risks model with masked causes of failure. Biometrika,

91:543-558.

[12] Davidson, R. (2009). Reliable inference for the Gini index. Journal of Econo-

metrics, 150:30-40.

161



[13] Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood

from incomplete data via the EM algorithm (with discussion). Journal of the

Royal Statistical Society, Series B, 39:1-38.

[14] Dunson, D. B. and Dinse, G. E. (2002). Bayesian models for multivariate

current status data with informative censoring. Biometrics, 58:79-88.

[15] Dupuy, J. F. (2009). Detecting change in a hazard regression model with

right-censoring. Journal of Statistical Planning and Inference, 139:1578-1586.

[16] Efron, B. (1981). Nonparametric standard errors and confidence intervals. The

Canadian Journal of Statistics, 9:139-158.

[17] Efron, B. (1982). The Jackknife, the Bootstrap and Other Resampling Plans.

SIAM, Philadelphia, Pennsylvania.

[18] Emura, T., Lin, C. W. and Wang, W. J. (2010). A goodness-of-fit test for

Archimedean copula models in the presence of right censoring. Computational

Statistics & Data Analysis, 54:3033-3043.

[19] Fan, T. H., Balakrishnan, N. and Chang, C. C. (2009). The Bayesian ap-

proach for highly reliable electro-explosive devices using one-shot device test-

ing. Journal of Statistical Computation and Simulation, 79:1143-1154.

[20] Finkelstein, D. M. (1986). A proportional hazards model for interval-censored

failure time data. Biometrics, 42:845-854.

162



[21] Finkelstein, D. M. and Ryan, L. M. (1987). Estimating carcinogenic potency

from a rodent tumorigenicity experiment. Journal of the Royal Statistical So-

ciety, Series C, 36:121-133.

[22] Friedl, H. and Kauermann, G. (2000). Standard errors for EM estimates in

generalized linear models with random effects. Biometrics, 56:761-767.

[23] Hanagal, D. D. (2005). Bivariate Weibull regression model based on censored

samples. Statistical Papers, 47:137-138.

[24] Ismail, A. A. and Aly, H. M. (2010). Optimal planning of failure-step stress

partially accelerated life tests under type-II censoring. Journal of Statistical

Computation and Simulation, 80:1335-1348.

[25] Joarder, A., Krishna, H. and Kundu, D. (2011). Inferences on Weibull pa-

rameters with conventional type-I censoring. Computational Statistics & Data

Analysis, 55:1-11.

[26] Johnson, N. L., Kotz, S. and Balakrishnan, N. (1994). Continuous Univariate

Distributions - Volume 1, Second Edition. John Wiley & Sons, New York.

[27] Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995). Continuous Univariate

Distributions - Volume 2, Second Edition. John Wiley & Sons, New York.

[28] Johnson, R. A. and Wichern, D. W. (1997). Applied Multivariate Statistical

Analysis, Sixth Edition. Prentice Hall, Upper Saddle River, New Jersey.

163



[29] Kodell, R. L. and Nelson, C. J. (1980). An illness-death model for the study of

the carcinogenic process using survival/sacrifice data. Biometrics, 36:267-277.

[30] Kundu, D. and Dey, A. K. (2009). Estimating the parameters of the Marshall-

Olkin bivariate Weibull distribution by EM algorithm. Computational Statis-

tics & Data Analysis, 53:956-965.

[31] Laird, N. M. (2010). The EM algorithm in genetics, genomics and public

health. Statistical Science, 25:450-457.

[32] Lin, C. T., Huang, Y. L. and Balakrishnan, N. (2008). A new method for

goodness-of-fit testing based on type-II right censored samples. IEEE Trans-

actions on Reliability, 57:633-642.

[33] Lindsey, J. C. and Ryan, L. M. (1993). A three-state multiplicative model for

rodent tumorigenicity experiments. Journal of the Royal Statistical Society,

Series C, 42:283-300.

[34] Louis, T. A. (1982). Finding the observed information matrix when using the

EM algorithm. Journal of the Royal Statistical Society, Series B, 44:226-233.

[35] Lu, C. J., Meeker, W. Q. and Escobar, L. A. (1996). A comparison of degra-

dation and failure-time analysis methods for estimating a time-to-failure dis-

tribution. Statistica Sinica, 6:531-546.

[36] McLachlan, G. J. and Krishnan, T. (2008). The EM Algorithm and Exten-

sions, Second Edition. John Wiley & Sons, Hoboken, New Jersey.

164



[37] Meeker, W. Q. and Escobar, L. A. (1998). Statistical Methods for Reliability

Data. John Wiley & Sons, New York.

[38] Meeker, W. Q., Escobar, L. A. and Lu, C. J. (1998). Accelerated degradation

tests: modeling and analysis. Technometrics, 40:89-99.

[39] Meeter, C. A. and Meeker, W. Q. (1994). Optimum accelerated life tests with

a nonconstant scale parameter. Technometrics, 36:71-83.

[40] Morris, M. D. (1987). A sequential experimental design for estimating a scale

parameter from quantal life testing data. Technometrics, 29:173-181.

[41] Murta, A. G. and Vendrell, C. (2009). Using the EM algorithm to age fish

eggs. ICES Journal of Marine Science, 66:607-616.

[42] Nandi, S. and Dewan, I. (2010). An EM algorithm for estimating the parame-

ters of bivariate Weibull distribution under random censoring. Computational

Statistics & Data Analysis, 54:1559-1569.

[43] Nelson, W. B. (1990). Accelerated Testing, Statistical Models, Test Plans and

Data Analysis. John Wiley & Sons, New York.

[44] Nelson, W. B. (2005). A bibliography of accelerated test plans, Part I:

overview. IEEE Transactions on Reliability, 54:194-197.

[45] Nelson, W. B. (2005). A bibliography of accelerated test plans, Part II: refer-

ences. IEEE Transactions on Reliability, 54:370-373.

165



[46] Newby, M. (2008). Monitoring and maintenance of spares and one shot de-

vices. Reliability Engineering and System Safety, 93:588-594.

[47] Ng, H. K. T., Chan, P. S. and Balakrishnan, N. (2002). Estimation of param-

eters from progressively censored data using EM algorithm. Computational

Statistics & Data Analysis, 39:371-386.

[48] Nogueira, E., Vázquez, M. and Núñez, N. (2009). Evaluation of AlGaInP
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[60] Vázquez, M., Núñez, N., Noguirea, E. and Borreguero, A. (2010). Degradation

of AlInGaP red LEDs under drive current and temperature accelerated life

tests. Mircoelectronics Reliability, 50:1559-1562.
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