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Abstract

The properties of neutron stars and black holes are investigated within a class

of alternative theories of gravity known as Scalar-Tensor theories, which extend

General Relativity by introducing additional light scalar fields to mediate the

gravitational interaction.

It has been known since 1993 that neutron stars in certain Scalar-Tensor

theories may undergo ‘scalarization’ phase transitions. The Weak Central

Coupling (WCC) expansion is introduced for the purpose of describing scalar-

ization in a perturbative manner, and the leading-order WCC coefficients are

calculated analytically for constant-density stars. Such stars are found to

scalarize, and the critical value of the quadratic scalar-matter coupling pa-

rameter βs = −4.329 for the phase transition is found to be similar to that of

more realistic neutron star models.

The influence of cosmological and galactic effects on the structure of an

otherwise isolated black hole in Scalar-Tensor gravity may be described by in-

corporating the Miracle Hair Growth Formula discovered by Jacobson in 1999,

a perturbative black hole solution with scalar hair induced by time-dependent

boundary conditions at spatial infinity. It is found that a double-black-hole bi-

nary (DBHB) subject to these boundary conditions is inadequately described

by the Eardley Lagrangian and emits scalar dipole radiation.

Combining this result with the absence of observable dipole radiation

from quasar OJ287 (whose quasi-periodic ‘outbursts’ are consistent with the

predictions of a general-relativistic DBHB model at the 6% level) yields the

bound |φ̇/Mpl| . (16 days)−1 on the cosmological time variation of canonically-

normalized light (m . 10−23 eV) scalar fields at redshift z ∼ 0.3.
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1 Outline

Scalar-Tensor theories are alternatives to General Relativity which modify

the widely-accepted theory by introducing additional light scalar particles

to mediate the gravitational interaction while retaining the usual graviton.

The principal motivation for considering these alternatives stems from theo-

retical attempts to unify gravity with quantum mechanics at high energies,

such as string theory, whose low-energy limit has recently been shown to con-

tain scalars sufficiently light to have interesting astrophysical consequences

[9]. Scalar-Tensor theories also play an important role in classical gravita-

tional physics by providing a concrete framework for interpreting tests of rel-

ativistic gravity in the strong-field regime, where a phenomenological theory-

independent interpretation is often problematic.

The subject of this thesis is the structure of highly-relativistic compact

objects, namely, neutron stars and black holes, within Scalar-Tensor theories

of gravity. Two novel theoretical results are obtained — the Weak Central

Coupling (WCC) formalism for the perturbative description of scalarization

phase transitions in neutron stars, developed in section 3, and Miracle Hair

Growth in a double-black-hole binary system induced by cosmological and/or

galactic effects, which is the subject of section 5.

The thesis begins with a comprehensive discussion of the basic proper-

ties of Scalar-Tensor gravity in section 2. In 2.1, the motivation for this theory

stemming from classical gravitational physics on the one hand, and quantum

high-energy physics on the other, is reviewed, and the historical development

of the theory is summarized. A survey of more recent work is also provided,

in order to set the context for the novel theoretical results developed in later

sections. In 2.2 and 2.3, the action and field equations of Scalar-Tensor gravity

are presented in two different mathematical formulations commonly referred

to as the Einstein and Jordan frames, respectively. Conservation laws are dis-

cussed in 2.4, while the weak-field limit is taken in 2.5 in order to identify the

‘physical’ Newton constant G̃, among other things. This section contains no

new results, and experts should feel free to skip it.

The purpose of section 3 is to develop the Weak Central Coupling
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(WCC) formalism for the description of neutron star scalarization. The Lan-

dau approach to phase transitions is followed [113], and the coefficients therein

are expressed in terms of perturbative solutions to the equations of stellar

structure. In 3.1, the phenomenon of spontaneous scalarization is explained in

some detail, and the key ideas behind the WCC expansion are introduced. The

field equations for a static spherically-symmetric perfect fluid are obtained in

3.2, and the external vacuum solution is described in 3.3. Subsequently, the

equations of stellar structure are derived in 3.4, and the formulas for matching

their solution to an exterior metric are obtained in 3.5. With all the required

tools in hand, the WCC perturbative expansions are then introduced in 3.6,

and the leading-order coefficients are expressed in terms of perturbative solu-

tions to the equations of stellar structure. This formalism is finally applied

to constant-density stars in 3.7, and the complete leading-order solution is ex-

pressed analytically in terms of Heun functions, enabling one to describe the

scalarization of such stars without numerically solving the equations of stellar

structure.

Section 4 concerns the formalism and analytical approximation meth-

ods employed in the description of a binary inspiral with small size-to-separation

ratio ε ∼ R/D, as a prerequisite for the Miracle Hair Growth described in sec-

tion 5. The non-relativistic two-body problem is briefly reviewed in 4.1, and

the complications arising at the relativistic level are first introduced in 4.2.

The formalism of dividing the two-body problem into the ‘interior’ and ‘ex-

terior’ regions is explained in 4.3, and in particular it is demonstrated how

the boundary conditions simplify in the ‘point-particle’ limit ε → 0. Subse-

quently, the work of Damour and Esposito-Farèse [50] on binary systems in

Scalar-Tensor gravity and radiation therefrom is summarized in 4.4 and 4.5, re-

spectively, and the foundations upon which this work was built are explained.

The results of a recent Jordan-frame calculation by Alsing and collaborators

[6] of the radiation flux in massive Scalar-Tensor theory are summarized in 4.6,

and converted to the Einstein frame, confirming in particular that the radi-

ated power is a frame-independent quantity up to re-scaling of units. Finally,

the Effective Field Theory (EFT) approach to the two-body problem initi-

2
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ated by Goldberger and Rothstein [78, 80] is motivated and introduced in 4.7.

Omitting the details of Feynman diagrams and power counting, the discussion

focuses on the fundamental role played by the point-particle Lagrangian, its

derivative expansion, and the relation thereof to an expansion in powers of the

size-to-separation ratio ε ∼ R/D. As a prerequisite for the material in section

5, the derivative expansion in Scalar-Tensor gravity is explicitly written down

to second order.

Building heavily on the material of section 4, section 5 discusses the

influence of cosmological and galactic effects on the orbital dynamics of a

double-black-hole binary inspiral in Scalar-Tensor gravity, and the radiation

emitted therefrom. Following a brief introduction in 5.1, it is explained in 5.2

how Jacobson’s Miracle Hair Growth Formula implies that such effects cause

isolated black holes to grow scalar hair. Subsequently, Jacobson’s arguments

are applied to a double-black-hole binary in 5.3, and it is shown that the trun-

cation of the point-particle Lagrangian to zeroth order in the derivative ex-

pansion, namely, the Eardley Lagrangian, is inadequate to describe the orbital

corrections induced by galactic and cosmological effects. While the difficult

problem of calculating these corrections is left for future work, the leading-

order scalar dipole radiation flux is calculated in a relatively straightforward

manner. Finally, in 5.4, an application to quasar OJ287 (which has been suc-

cessfully modelled as a DBHB within GR) is discussed, and a bound on the

cosmological time evolution of light scalar fields at its redshift is obtained.

Finally, the key results are summarized in section 6, and prospects for

future work are discussed.

Mathematical preliminaries and explanations of notation, units, and

conventions, have all been relegated to appendix A.

3
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2 Scalar-Tensor Gravity

2.1 Introduction

2.1.1 Motivation from Classical Gravitational Physics

General Relativity, the current widely-accepted standard theory of gravitation,

arose out of the attempt to unify the Newtonian theory of gravity with the

special theory of relativity. Shortly after being formulated by Einstein in

1916, General Relativity was tested in the solar system, and was found to

correctly describe the bending of starlight in the gravitational field of the sun,

as measured by Eddington during a total solar eclipse in 1919. Moreover,

General Relativity was able to explain the anomalous precession of Mercury’s

orbit, which had been a long-standing unsolved problem in celestial mechanics.

Subsequent solar-system tests have become much more precise, and

have confirmed the validity of General Relativity to a high degree of accuracy

[198, 196, 199]. For instance, Very Long Baseline Interferometry (VLBI) [155]

and the Very Long Baseline Array (VLBA) [73] have been used to measure

the deflection of radio waves from distant sources in the sun’s gravitation field,

and have confirmed the validity of General Relativity to a few parts in 104.

According to General Relativity, electromagnetic signals propagating through

a gravitational field experience a time delay [154] in addition to being deflected.

This delay has been measured for radio signals transmitted from Earth to the

Cassini spacecraft, and found to agree with the general-relativistic prediction

to a few parts in 105 [18].

While the accuracy of these solar-system tests is impressive, it is im-

portant to keep in mind that such tests only probe the weak-field, or Post-

Newtonian limit of General Relativity, where relativistic effects are merely

small corrections to Newtonian gravity.

In 1975, a remarkable new testing ground for relativistic gravity was

discovered — the binary pulsar PSR B1913+16 [92, 93, 169], for which Hulse

and Taylor were awarded the Nobel Prize. This system consists of two neutron

stars in a binary orbit, one of which is a pulsar, rotating with a period on the

order of milliseconds, and having a magnetic field whose axis is not aligned
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with the axis of rotation. This creates a ‘lighthouse effect’, where an observer

on Earth sees radio signals emitted from the pulsar at regular intervals. These

signals are measured by radio telescopes, and the Doppler shift is used to

reconstruct the properties of the orbit. It was found that the reconstructed

orbit agrees beautifully with the predictions of General Relativity [168]. In

particular, a secular decrease of the orbital period due to the emission of

gravitational radiation has been observed. Recent observations of this system

continue to be consistent with the predictions of General Relativity [170, 193,

192].

Subsequently, many other binary pulsars have been discovered, and

their reconstructed orbits all spectacularly agree with the predictions of Gen-

eral Relativity [164, 108]. Of particular interest is the double pulsar PSR

J0737-3039 [110, 105], a binary system consisting of two pulsars. Although one

of the pulsars has a slow rotational period on the order of seconds, its timing

gives access to an orbital parameter that can not be measured in single-pulsar

binary systems.

These binary pulsars typically have orbital periods on the order of

hours, and light-crossing times on the order of seconds, and thus orbital ve-

locities on the order of v/c ∼ 0.0001, implying that the orbital motion may be

described as a perturbation of the non-relativistic Kepler problem. However,

the gravitational fields inside the neutron stars are very strong, and thus the

binary pulsar tests probe some limited aspects of strong-field General Relativ-

ity.

Although the measurement of the decrease of the orbital period of bi-

nary pulsars provides indirect evidence for the existence of gravitational waves,

a major experimental research program is currently being undertaken in or-

der to directly measure these waves on Earth with interferometric detectors

[128, 151]. The ‘first generation’ ground-based detectors (LIGO, VIRGO, GEO

600, and TAMA 300) have taken data, and set upper limits on the amplitudes

of gravitational waves. Since a signal above the background noise has not yet

been detected, the method of matched filtering is employed to look for signals

buried in noise. After carrying out six ‘science runs’, LIGO is currently being

5
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upgraded to Advanced LIGO [85], which is planned to become operational in

2014. This upgrade will increase the sensitivity ten-fold, which is expected

to be sufficient to detect a gravitational wave signal above the noise. Similar

‘second generation’ upgrades are planned for the other ground-based detectors.

Since the frequency range of any ground-based detector is fundamen-

tally limited by seismic noise, there exist propoals for ‘third-generation’ de-

tectors, which will eliminate this noise and be sensitive to lower frequencies.

The Einstein Telescope [142] will be cryogenically cooled and located in an

underground facility, whereas eLISA/NGO [7] will be space-based and consist

of three satellites.

One of the most promising sources of gravitational waves are the in-

spiral, merger, and ringdown of a binary system consisting of neutron stars

and/or black holes. During the merger, orbital velocities may approach the

speed of light, and thus, direct gravitational wave detection will test a regime

of General Relativity which has not yet been tested by binary pulsar timing.

It is useful to interpret the results of experiments and observations in a

framework which does not assume General Relativity, or any other particular

theory of gravity, to be correct. For instance, in the weak-field regime it is

possible to express the predictions of a broad class of relativistic theories of

gravity in terms of the Parametrized Post-Newtonian (PPN) phenomenological

parameters [196]. The result of any experiment or observation in a weak-field

setting may then be phrased as a bound on some combination of the PPN

parameters.

For the timing of binary pulsars whose relative orbital velocity is much

slower than the speed of light, i.e. v/c� 1, the Parametrized Post-Keplerian

(PPK) formalism may be used to describe the properties of the orbits, and

relate the times-of-emission of pulses to their times-of-arrival on Earth in a

broad class of relativistic theories of gravity [196, 54].

In order to describe the gravitational waveform emitted by a binary

inspiral in a theory-independent manner, Yunes and Pretorius have developed

the Parametrized Post-Einsteinian (PPE) framework [209, 41]. Following an

investigation by Arun [8], this framework was extended to include amplitude

6
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corrections due to dipole radiation [39]. However, recent work has revealed

that the PPE framework is not sufficiently general to describe the waveform

in massive Brans-Dicke theory [17].

In regimes where the gravitational fields are strong everywhere, such as

binary systems with v/c approaching unity, it is usually very difficult, if not

downright impossible, to express the predictions of a broad class of relativistic

theories of gravity in terms of a finite set of phenomenological parameters.

Thus, the only practical approach is the explicit construction of well-motivated

alternative theories of gravity, which depend on a finite set of parameters, and

reduce to General Relativity for a specific choice of parameters. Then the

result of any experiment or observation may be phrased as a bound on some

combination of these parameters.

In addition to their crucial role in the interpretation of strong-field ob-

servations, alternative theories of gravity are useful for gaining insight into the

special properties of General Relativity. For example, the Strong Equivalence

Principle (SEP), which holds in General Relativity, states that extended bod-

ies with internal self-gravity respond to an external gravitational field in the

same manner as microscopic test particles [196]. Nordtvedt [119, 120, 118]

was the first to point out that the SEP may be violated in alternative theories

of gravity, and suggest an experimental test by Lunar Laser Ranging (LLR).

The results of this test have confirmed the validity of the SEP to a very high

degree of accuracy [58, 204].

Another special property of General Relativity which breaks down in

most alternative theories is the effacement principle, which states that in a

binary system with v/c � 1, the internal structure of the two bodies affects

the orbital motion at a much higher order in v/c than one would have a

priori expected [44]. Thus, the successful general-relativistic description of

the binary pulsar orbits in terms of two neutron star masses, and no other

‘internal’ parameters, is an excellent test of the effacement principle.

7
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2.1.2 Motivation from High-Energy Physics

Being a classical field theory, General Relativity is expected to break down

when quantum-gravitational effects become important, that is, when energies

become comparable to the Planck energy Mplc
2, or when distance scales be-

come comparable to the Planck length `pl, where

Mpl =

√
~c
G
∼ 1019 GeV

c2
, (2.1)

`pl =

√
~G
c3
∼ 10−35 m . (2.2)

Although such high energies are far outside the range of present-day and any

foreseeable future experimental technologies, the problem of unifying gravity

with quantum mechanics is of great theoretical interest, and has received much

attention over the past few decades. The principal obstacle to the straight-

forward quantization of General Relativity, and most alternative theories of

gravity, is that G has mass dimension −2 in relativistic units, and thus the

resulting quantum field theory of gravity is non-renormalizable, in the sense

that an infinite number of counterterms are required to cancel ultraviolet di-

vergences.

String theory [13], the most popular candidate for a quantum theory

of gravity, solves this problem by postulating that matter is composed of ex-

tended objects with length scale `p called strings rather than point particles

at the fundamental level. This length scale eliminates ultraviolet divergences

by providing a natural high-energy and short-distance cut-off.

In order to be consistent at the quantum level, string theory forces the

number of space-time dimensions to be equal to ten. One way to reconcile

this requirement with the observed four space-time dimensions is to postulate

that space-time is the product of a ‘large’ four-dimensional manifold and an

‘internal’ six-dimensional manifold. In the low-energy limit, an effective four-

dimensional theory is obtained, and the information about the geometry of

the ‘internal’ manifold is encoded in four-dimensional scalar fields. This idea

of ‘compactification’ goes back to Kaluza [100] and Klein [103].

Moreover, string theory incorporates supersymmetry, which predicts,

8
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among other things, that the gravitational interaction is mediated not only

by the rank-2 symmetric tensor field of General Relativity, but by an entire

supergravity multiplet. Although its precise structure depends on the type

of supersymmetry considered, this multiplet generically contains a spin-3/2

‘gravitino’ field, and a scalar ‘dilaton’ field.

Thus, the low-energy limit of string theory is not pure General Rela-

tivity, but a more complicated theory of gravity which contains scalar fields.

In order for these scalar fields to mediate long-range forces which are rel-

evant in gravitational physics, they must be either massless, or very light.

Although quantum corrections generically give large masses to scalars, it has

been recently argued that many of the scalar fields predicted by string the-

ory remain sufficiently light to have interesting cosmological and astrophysical

consequences [9].

2.1.3 Partial Literature Survey

Relativistic theories of gravity which contain scalar fields in addition to the

usual metric tensor are generically called Scalar-Tensor, or Tensor-Scalar theo-

ries [50, 25, 158, 75, 40]. Motivated by Mach’s principle and building on earlier

work by Jordan [98, 97] and Fierz [71], Brans and Dicke [24, 26, 57] constructed

the first Scalar-Tensor theory in 1962, now referred to as Brans-Dicke (BD)

gravity, or Jordan-Fierz-Brans-Dicke (JFBD) gravity. It contains one massless

scalar field, and one free parameter ω which determines the strength of inter-

actions between this scalar field and other matter fields. In the limit ω →∞,

General Relativity is recovered. The tests of relativistic gravity within the

solar system described in section 2.1.1 place the bound ω & 40000. Conse-

quently, all the predictions of Brans-Dicke gravity, in both the strong-field

and weak-field regimes, are very close to those of General Relativity. For in-

stance, in 1967 Salmona [150] investigated how the properties of neutron stars

in Brans-Dicke theory differ from those in General Relativity, and found small

corrections which vanish as ω →∞.

Thus, in order to construct a Scalar-Tensor theory whose strong-field

predictions deviate from General Relativity in an interesting manner, while

9
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the weak-field limit passes the stringent solar-system tests, it is necessary

to go beyond Brans-Dicke gravity. In the years 1968-1970, Bergmann [15],

Nordtvedt [121], and Wagoner [188], have taken steps in this direction, and

generalized the work of Brans and Dicke by replacing the parameter ω with a

scalar-matter coupling function ω(φ).

Following the discovery of the binary pulsar PSR B1913+16 in 1975,

the predictions of several alternative theories of gravity were compared with

the reconstructed orbit from pulsar timing, and a bound on the Brans-Dicke

parameter ω was obtained [62, 203, 202], while the alternative bimetric theory

of Rosen which contains no free parameters was ruled out [200].

In 1992, Damour and Esposito-Farèse generalized Scalar-Tensor grav-

ity to include multiple scalar fields, and worked out the orbital Lagrangian

and radiative energy loss for the N -body problem in these so-called Tensor-

Multi-Scalar theories. They explicitly constructed a two-parameter family of

models T (β′, β′′), which contains two scalar fields, and passes solar system

tests while predicting deviations from General Relativity in the strong-field

regime. Binary pulsar timing data was used to obtain constraints on β′ and

β′′ [50].

In deriving their theoretical results, Damour and Esposito-Farèse em-

ployed the ‘Einstein frame’ formulation of Scalar-Tensor gravity, which is

mathematically simpler than the ‘Jordan frame’ formulation used by Clifford

Will and others. There has been a great deal of confusion and controversy in

the literature surrounding the issue of the physical equivalence of the Einstein

and Jordan frames, or lack thereof [19, 35, 72, 69, 38]. The point of view

taken here is that the distinction between these two frames is no different

than the distinction between Cartesian and polar coordinates — all physical

predictions, when worked out carefully, should be independent of the choice

of conformal frame [72, 38]. In fact, in section 4.6, it is explicitly demon-

strated that a recent Jordan-frame calculation of the radiative energy loss [6]

in massive Brans-Dicke theory is consistent with the results of Damour and

Esposito-Farèse.

In 1993, Damour and Esposito-Farèse investigated stellar structure in

10
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the quasi-Brans-Dicke, or ‘quadratic’ model, which contains a single scalar

field whose couplings to matter are determined by the Einstein-frame scalar-

matter coupling function α(ϕ) = αs + βsϕ. They found a phase-transition

phenomenon which is analogous to the spontaneous magnetization of ferro-

magnets at low temperatures, and has been called spontaneous scalarization

[51]. The quantity playing a role analogous to the applied magnetic field

is the ‘applied scalar-matter coupling’ α∞ asymptotically far away from the

star, while the analogue of the magnetization is the scalar-charge-to-mass ratio

Q/M of the star. For non-relativistic stars it may be shown that Q/M = α∞

which vanishes in the limit α∞ → 0, and thus scalarization is not possible. On

the other hand, for a relativistic star, if βs . −4, then scalarization is possible

— there exists a critical mass whose value depends on βs, and relativistic stars

heavier than this critical mass may have finite Q/M in the limit α∞ → 0.

The discovery of scalarization was an important milestone for the study

of stellar structure in Scalar-Tensor gravity, which has motivated much of the

subsequent research. In 1998, the properties of scalarization were further in-

vestigated by Salgado and Sudarsky [148], while Harada employed catastrophe

theory to quasi-analytically verify that scalarized stars are stable against per-

turbations, while non-scalarized stars heavier than the critical scalarization

mass are unstable [83, 84]. These stability properties were also verified by

Novak by means of a direct numerical simulation [122]. Other numerical sim-

ulations of scalarization phenomena have been carried out in [123, 124] and

[2].

In further research, the spontaneous scalarization of boson stars [194],

as well as a possible relation between scalarization and violation of the Weak

Energy Condition (WEC) [195, 149] were investigated.

Subsequently, oscillations of scalarized stars were investigated by Sotani

and Kokkotas [161, 160] and DeDeo and Psaltis [55, 56, 141]. The latter au-

thors used observed redshifts of spectral lines from neutron stars to obtain

the bound βs & −9 on the quasi-Brans-Dicke model. Psaltis has also writ-

ten a more general review on the subject of testing strong-field gravity with

observations in the electromagnetic spectrum [140].
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It was found that the orbital dynamics of a binary system of scalarized

stars differs substantially from that of non-scalarized stars, and consequently,

the spectacular agreement between the pulsar timing data and General Rel-

ativity places strong constraints on the quasi-Brans-Dicke model. A detailed

analysis yields the bound βs & −5 [68, 66, 67, 65, 64, 53, 63, 52, 49, 20, 106,

74, 89], ruling out a large portion of the theory-space in which scalarization is

possible.

In 2010, an argument claiming that string theory predicts light scalars

with masses in the range 10−33 eV/c2 . . . 10−10 eV/c2 [9] has led to an interest

in massive Scalar-Tensor theories of gravity. For a massive scalar, the super-

radiance mechanism enables a Kerr black hole to develop a non-trivial scalar

field profile at the expense of its rotational energy, leading to potentially ob-

servable phenomena [10, 104, 61]. In the context of a binary system with at

least one rotating black hole, superradiance enables gravitational radiation to

be emitted at the expense of the rotational energy of the black hole rather than

the orbital binding energy, leading to the notion of a floating orbit which ra-

diates without shrinking [36, 207]. Recently, Alsing and collaborators [6] have

calculated the power loss formulas for circular orbits in massive Brans-Dicke

theory, and in further work [17] these results were combined with a Fisher

matrix analysis to obtain prospective bounds on massive Brans-Dicke theory

from future gravitational wave detection, along lines similar to the earlier work

of Will, Scharre, and Yunes [197, 152, 201], Damour and Esposito-Farèse [53],

and Yagi and Tanaka [206].

In recent years there has been interest in stars [125], black holes [211,

208, 210], and binary inspirals [205, 166, 159, 127] in extended versions of

Scalar-Tensor gravity motivated by string theory, where the scalar is coupled to

quadratic curvature invariants. The two cases of special interest are Dynamical

Chern Simons (DCS) gravity [94, 3, 4] and Einstein-Dilaton-Gauss-Bonnet

(EDGB) gravity [116, 126], which are distinguished by the fact that the scalar

is coupled to a topological invariant, giving rise to second-order field equations

(which generically are fourth order).

In order to understand gravitational physics in regimes where analyti-
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cal methods break down, such as the merger or collision of compact objects,

it is necessary to resort to numerical relativity. This mature subfield of gravi-

tational physics is well-developed, and numerous textbooks have been written

on the subject (for example, see [12]). In contrast, numerical simulation in

alternative theories of gravity is relatively uncharted territory. Although the-

oretical work has been carried out to cast the field equations of Scalar-Tensor

gravity into a form suitable for numerical integration [147, 146] four years ago,

it was only very recently that the first results of a binary inspiral simulation

were reported [87]. It was found that whenever the scalar field is given an

initial non-trivial profile, dipole radiation is emitted, and the dynamics dif-

fers very strongly from that of a double-black-hole binary inspiral in General

Relativity. On the other hand, if the initial scalar field profile is turned off,

the dynamics is indistinguishable from that of General Relativity, and dipole

radiation is absent. Future numerical work in Scalar-Tensor gravity, as well as

other alternative theories, has great potential to give insights into the proper-

ties of these theories which are inaccessible by analytical means.

In addition to Brans-Dicke theory and its natural generalizations, which

are the principal subject of this thesis, there exist numerous other approaches

to incorporating light scalar fields in a relativistic theory of gravity. For exam-

ple, the Chameleon mechanism developed by Khoury and Weltman [102] by

building on earlier work of Mota and Barrow [115] employs a matter-dependent

scalar mass to satisfy solar system constraints, whereas the Galileon mecha-

nism developed by Nicolis, Rattazzi, and Trincherini [117] satisfies these con-

straints by incorporating the Vainshtein effect [173] to decouple the scalar field

from matter in gravitationally bound systems. A comprehensive survey of such

alternative approaches is beyond the scope of this thesis.

Another subject beyond the scope of this thesis is cosmology. Although

the effects of cosmology on an double-black-hole binary are investigated in sec-

tion 5, this is implemented in a phenomenological manner, independent of the

details of any particular cosmological model. For a comprehensive introduc-

tion to cosmology in Scalar-Tensor gravity, and motivation therefor, the reader

is referred to the monographs [70] and [16].
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2.2 Action and Field Equations in the Einstein Frame

The class of Scalar-Tensor theories considered in this thesis is defined by the

following action in the so-called Einstein frame:

S =
c4

4πG

∫
ddx

c

√
−g
(
R

4
− 1

2
γab(ϕ)gµν∇µϕ

a∇νϕ
b −B(ϕ)

)
+Sm[Ψ;A2(ϕ)gµν ] , (2.3)

where the units, conventions, and geometrical quantities have been defined in

appendices A.1 and A.2. The ϕa are scalar fields, and a is an index used to

denote coordinates on an N -dimensional target-space with metric γab(ϕ). The

notation used is similar, but not identical, to that of Damour and Esposito-

Farèse [50]. In particular, the ‘star’ subscripts used by these authors to denote

Einstein-frame quantities are dropped for brevity. It is always assumed that

boundary terms in actions may be dropped, in other words, one may ‘integrate

by parts’.

The first line of (2.3) is the gravitational action, consisting of kinetic

terms for both the tensor and scalar fields, as well as a scalar potential B(ϕ).

It is the most general coordinate-space-covariant and target-space-covariant

functional of a metric and N scalar fields, expanded in numbers of coordinate-

space derivatives to second order.1 The motivation for such an expansion

comes from effective field theory, which is described in section 4.7.

The second line of (2.3) is the matter action, which functionally depends

on a set of matter fields, denoted collectively by Ψ. The choice of coupling these

matter fields only to the combination A2(ϕ)gµν is motivated by the well-tested

Weak Equivalence Principle (WEP) [196], which states that trajectories of test

particles follow the geodesics of a metric. Moreover, couplings of this form arise

in the low-energy limit of several higher-dimensional models [99, 1, 47, 48].

The tensor and scalar field equations are derived from the requirement

that the action (2.3) be stationary under variations of the metric and scalar

fields, respectively. Using equations (A.46) and (A.42) to find the variations

1A priori, arbitrary functions of ϕ may appear in the kinetic terms. However, these

functions may be eliminated by field redefinitions. Such a redefinition is explicitly carried

out in section 2.3 to put the action into Jordan-frame form.
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of R and
√
−g, respectively, and using equation (A.41) to write δgµν in terms

of δgµν , it is found that the tensor field equation is given by

Rµν −
1

2
Rgµν − 2γab(ϕ)

(
∇µϕ

a∇νϕ
b − 1

2
gµνg

ρσ∇ρϕ
a∇σϕ

b

)
+2B(ϕ)gµν =

8πG

c4
Tµν , (2.4)

where the Einstein-frame energy-momentum tensor is defined by

T µν =
2c√
−g

δSm[Ψ;A2(ϕ)gρσ]

δgµν
, (2.5)

and with the help of equation (A.41), its lowered-index form may be written

as

Tµν = − 2c√
−g

δSm[Ψ;A2(ϕ)gρσ]

δgµν
. (2.6)

Contracting the indices in the tensor equation (2.4) yields

R = 2γab(ϕ)gµν∇µϕ
a∇νϕ

b +
4dB(ϕ)

d− 2
− 16πGT

(d− 2)c4
, (2.7)

where T is the trace of the energy-momentum tensor (2.5), and substituting

this result back in to (2.4) yields the ‘trace-reverse’ form of the tensor field

equation:

Rµν−2γab(ϕ)∇µϕ
a∇νϕ

b− 4

d− 2
B(ϕ)gµν =

8πG

c4

(
Tµν −

1

d− 2
Tgµν

)
. (2.8)

Varying the action (2.3) with respect to ϕa yields the scalar field equa-

tion

2ϕa + γabc(ϕ)gµν∇µϕ
b∇νϕ

c −Ba(ϕ) = −4πG

c4
αa(ϕ)T , (2.9)

where

γabc(ϕ) =
1

2
γad(ϕ)

(
∂γcd(ϕ)

∂ϕb
+
∂γbd(ϕ)

∂ϕc
− ∂γbc(ϕ)

∂ϕd

)
(2.10)

are the target-space Christoffel symbols, and the derivatives of the functions

A(ϕ) and B(ϕ) are denoted by

αa(ϕ) =
d logA(ϕ)

dϕa
, Ba(ϕ) =

dB(ϕ)

dϕa
. (2.11)

Note that target-space indices are lowered and raised with the metric γab(ϕ)

and its inverse γab(ϕ), respectively. For example, αa(ϕ) = γab(ϕ)αb(ϕ).
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2.3 Transformation to the Jordan Frame

The essential feature of the Einstein-frame formulation of Scalar-Tensor grav-

ity presented in section 2.2 is the absence of ‘mixed’ kinetic terms of the

form F (ϕ)R in (2.3), which implies that the last two terms in (A.46) may

be neglected when varying the action. Consequently, the Einstein-frame field

equations (2.8) and (2.9) have a very simple mathematical form. However, the

downside is that matter couples to a combination of gµν and ϕ, complicating

the physical interpretation of a given solution to the field equations.

The idea behind the Jordan-frame formulation of Scalar-Tensor gravity

is to write the gravitational action (2.3) in terms of the Jordan-frame metric

g̃µν = A2(ϕ)gµν , to which matter is universally coupled. This simplifies the

physical interpretation of solutions to the field equations, but the price paid

is that the field equations themselves become substantially more complicated.

A Jordan-frame scalar field φ is introduced, and defined by the require-

ment that the Ricci term of (2.3) take the canonical form c3
√
−g̃φR̃/16π when

written in terms of Jordan-frame variables2, where g̃ and R̃ are the determi-

nant and Ricci scalar, respectively, built out of the Jordan-frame metric g̃µν .

This requirement implies that

φ =
1

GAd−2(ϕ)
. (2.12)

Whereas the scalar fields ϕa are all on equal footing in the Einstein-

frame gravitational action, the field φ plays a distinguished role in the Jordan-

frame gravitational action, which complicates the Jordan-frame description of

Tensor-Multi-Scalar theories. For simplicity, only the case of a single scalar

field (N = 1) will be considered.

The results of section A.5 (with Ω = A(ϕ)) may be used to calculate

the various geometric objects built out of the Jordan-frame metric g̃µν . In

particular, equation (A.56), along with (2.12) may be used to write the action

2Note that with this definition of φ, the Jordan-frame quantity φ−1 may be interpreted

as a spacetime-dependent Newton constant. This interpretation has been historically im-

portant in the development of Brans-Dicke theory [24, 26, 57].
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(2.3) in the Jordan-frame form

S =
c4

16π

∫
ddx

c

√
−g̃
(
φR̃− ω(φ)

φ
g̃µν∇̃µφ∇̃νφ− V (φ)

)
+Sm[Ψ; g̃µν ] , (2.13)

where

ω(φ) =
2

(d− 2)2α2(ϕ)
− d− 1

d− 2
(2.14)

is the Jordan-frame scalar-matter coupling function, and

V (φ) =
4B(ϕ)

GAd(ϕ)
(2.15)

is the Jordan-frame scalar potential.

The method described in the section 2.2 may be used to derive the the

Jordan-frame scalar field equation3

R̃ + 2
ω(φ)

φ
2̃φ+

(
ω′(φ)

φ
− ω(φ)

φ2

)
g̃µν∇̃µφ∇̃νφ− V ′(φ) = 0 , (2.16)

and tensor field equation

φ

(
R̃µν −

1

2
R̃g̃µν

)
− ω(φ)

φ

(
∇̃µφ∇̃νφ−

1

2
g̃µν g̃

ρσ∇̃ρφ∇̃σφ

)
+g̃µν2̃φ− ∇̃µ∇̃νφ+

1

2
V (φ)g̃µν =

8π

c4
T̃µν , (2.17)

where the Jordan-frame energy-momentum tensor is defined by

T̃ µν ≡ 2c√
−g̃

δSm[Ψ; g̃ρσ]

δg̃µν
=

T µν

Ad+2(ϕ)
, (2.18)

and its indices and lowered and raised by g̃µν and g̃µν , respectively, so that

T̃µν ≡ g̃µρg̃νσT̃
ρσ = − 2c√

−g̃
δSm[Ψ; g̃ρσ]

δg̃µν
=

Tµν
Ad−2(ϕ)

, (2.19)

and

T̃ µν ≡ g̃νσT̃
µσ =

T µν
Ad(ϕ)

. (2.20)

3Alternatively, the Jordan-frame field equations (2.16) and (2.17) may be derived di-

rectly from the Einstein-frame field equations (2.9) and (2.4) by means of the conformal

transformation formulas given in section A.5.
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Contracting the tensor equation (2.17) yields

φR̃ =
ω(φ)

φ
g̃µν∇̃µφ∇̃νφ+

2(d− 1)

d− 2
2̃φ+

dV (φ)

d− 2
− 16πT̃

(d− 2)c4
, (2.21)

and susbstituting this result back into (2.17) yields the ‘trace-reverse’ form of

the tensor field equation

φR̃µν −
g̃µν2̃φ
d− 2

− V (φ)g̃µν
d− 2

− ω(φ)

φ
∇̃µφ∇̃νφ− ∇̃µ∇̃νφ

=
8π

c4

(
T̃µν −

g̃µνT̃

d− 2

)
. (2.22)

Equation (2.21) may also be used to exchange the curvature term in the scalar

field equation (2.16) for a ‘matter’ term :(
2ω(φ) +

2(d− 1)

d− 2

)
2̃φ+ ω′(φ)g̃µν∇̃µφ∇̃νφ+

d

d− 2
V (φ)− φV ′(φ)

=
16πT̃

(d− 2)c4
. (2.23)

2.4 Conservation Laws

In relativistic theories of gravity, the equations describing the local flow of

energy and momentum are intricately tied to the contracted form of the second

Bianchi identity, equation (A.19). For the Scalar-Tensor theories constructed

in sections 2.2 and 2.3, the simplest method of deriving these equations involves

working with (A.19) in the Einstein frame, and subsequently transforming the

result to the Jordan frame.

Applying ∇µ to the Einstein-frame tensor field equation (2.4) and using

the Bianchi identity (A.19) yields the Einstein-frame conservation law

∇µ
(
Tµν + T (ϕ)

µν

)
= 0 , (2.24)

where the second term in the brackets denotes an effective energy-momentum

tensor for the scalar fields, given by

T (ϕ)
µν =

c4

4πG

([
∇µϕ

a∇νϕ
b − 1

2
gµνg

ρσ∇ρϕ
a∇σϕ

b

]
γab(ϕ)−B(ϕ)gµν

)
.

(2.25)
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Applying ∇µ to equation (2.25) and using the scalar field equation (2.9) yields

a more explicit form of the conservation law (2.24):

∇µTµν = −∇µT (ϕ)
µν = αa(ϕ)T∇νϕ

a . (2.26)

Since matter does not couple to the scalar field φ in the Jordan frame,

it is expected that the Jordan-frame energy-momentum tensor (2.18) is covari-

antly conserved, in other words, the Jordan-frame version of equation (2.24)

should not have a ‘scalar energy-momentum tensor’. In order to demonstrate

this, the covariant derivative of (2.18) is written in terms of Einstein-frame

quantities by means of equations (A.8) and (A.48):

∇̃µT̃
µν = ∂µT̃

µν + Γ̃µµλT̃
λν + Γ̃νµλT̃

µλ

= ∇µT̃
µν + Cµ

µλT̃
λν + Cν

µλT̃
µλ , (2.27)

where in the second line, Cλ
µν denotes the terms proportional to log Ω on the

right-hand side of equation (A.48), which are given by

Cλ
µν = α(ϕ)

(
δλµ∂νϕ+ δλν∂µϕ− gµνgλρ∂ρϕ

)
. (2.28)

Using equation (2.18) to write T̃ µν in terms of T µν , and also using the Einstein-

frame conservation law (2.26) finally yields the desired result, namely,

∇̃µT̃
µν = 0 . (2.29)

2.5 The Weak-Field Limit

In order to connect Scalar-Tensor gravity with Newtonian gravity and identify

the physical Newton constant G̃ which is the quantity measured by Cavendish

experiments, it is necessary to take the weak-field limit.

To this end, specialize the construction of sections 2.2 and 2.3 to the

case of a single scalar field (N = 1) with no potential (B(ϕ) = V (φ) = 0).

Consider a ‘weakly-gravitating’ isolated system whose matter distribution in a

globally-defined Minkowskian coordinate system is given by T̃µν , and assume

that the solutions to the Scalar-Tensor field equations admit perturbative ex-

pansions of the form

gµν = ηµν + hµν +O(h2) , (2.30)

ϕ = ϕ∞ + ψ +O(ψ2) (2.31)
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in the Einstein frame, and

g̃µν = η̃µν + h̃µν +O(h̃2) , (2.32)

φ = φ∞ + χ+O(χ2) (2.33)

in the Jordan frame, where ϕ∞ and φ∞ are constants, and

η̃µν := A2(ϕ∞)ηµν , η̃µν := A−2(ϕ∞)ηµν (2.34)

is the ‘Jordan-frame flat metric’.

Assume that all the quadratic terms on the right-hand sides of (2.30)-

(2.33), as well as cross-terms of O(hψ) and O(h̃χ) may be neglected. It follows

from (2.30) that gµν = ηµν + O(h), and therefore the indices on hµν may be

lowered and raised with the flat metric ηµν and its inverse ηµν , respectively.

For example,

h ν
µ := gνλhµλ = [ηνλ +O(h)]hµλ = ηνλhµλ . (2.35)

The identity gµνg
νλ = δλµ then implies that

gµν = ηµν − hµν . (2.36)

In the Jordan frame, the indices on h̃µν are lowered and raised with g̃µν

and g̃µν by definition, and it follows from the linearization approximation that

one may instead use the flat metric η̃µν and its inverse η̃µν to lower and raise

these indices. Moreover, the identity g̃µν g̃
νλ = δλµ implies that

g̃µν = η̃µν − h̃µν . (2.37)

The Einstein-frame (2.30)-(2.31) and Jordan-frame (2.32)-(2.33) per-

turbative expansions are not independent, but rather are related by g̃µν =

A2(ϕ)gµν and equation (2.12). Linearizing these relations yields

h̃µν = A2(ϕ∞)hµν + 2α(ϕ∞)ψη̃µν , (2.38)

and

φ∞ =
1

GAd−2(ϕ∞)
, (2.39)

χ

φ∞
= −(d− 2)α(ϕ∞)ψ , (2.40)
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respectively. Furthermore, linearizing the relation between the Jordan-frame

and Einstein-frame scalar-matter coupling functions (2.14), and using equa-

tions (2.39)-(2.40) yields

ω(φ∞) =
2

(d− 2)2α2(ϕ∞)
− d− 1

d− 2
, (2.41)

ω′(φ∞) =
4GAd−2(ϕ∞)α′(ϕ∞)

(d− 2)3α4(ϕ∞)
=

4α′(ϕ∞)

(d− 2)3φ∞α4(ϕ∞)
, (2.42)

where ω′(φ) := dω(φ)/dφ, and α′(ϕ) := dα(ϕ)/dϕ.

In order to write down the linearized field equations in a simple form

that is readily solved, it is convenient to employ harmonic coordinates, which

are defined by the condition (A.22), or equivalently, (A.23). Linearizing the

latter equation yields

∂µh̄
µν = 0 , (2.43)

where

h̄µν ≡ hµν −
1

2
hηµν , (2.44)

is the so-called trace-reverse4 of hµν , and h := ηµνhµν is the trace of hµν .

Linearizing the expression for the Ricci tensor in harmonic coordinates (A.24)

yields

Rµν = −1

2
2ηhµν , (2.45)

and therefore, the so-called Einstein tensor takes the form

Rµν −
1

2
Rgµν = −1

2
2ηh̄µν , (2.46)

where 2η = ηµν∂µ∂ν is the d’Alembertian operator of the flat Minkowski

metric ηµν . With equation (2.46) in hand, it is now a straightforward matter

to linearize the Einstein-frame field equations (2.4) and (2.9):

2ηh̄µν = −16πG

c4
Tµν , (2.47)

2ηψ = −4πG

c4
α(ϕ∞)T . (2.48)

4This nomenclature derives from the identity h̄ := ηµν h̄µν = −ηµνhµν = −h which holds

when d = 4.
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Alternatively, one may linearize (2.8) instead of (2.4) to obtain an equation

for hµν rather than h̄µν :

2ηhµν = −16πG

c4

(
Tµν −

Tηµν
d− 2

)
. (2.49)

Note that applying ∂µ to equation (2.47) and using the linearized har-

monic coordinate condition (2.43) yields the linearized conservation law

∂µTµν = 0 , (2.50)

which is consistent with the exact nonlinear conservation law (2.26) because

T = O(ψ).5 The fact that T = O(ψ) also implies that indices on Tµν may

be lowered and raised with the flat metric ηµν and its inverse ηµν , and that

the linearized version of the relations between the Jordan-frame and Einstein-

frame energy-momentum tensors (2.18)-(2.20) is simply

T̃µν =
Tµν

Ad−2(ϕ∞)
, T̃ µν =

T µν

Ad+2(ϕ∞)
, T̃ µν =

T µν
Ad(ϕ∞)

. (2.51)

Equation (2.51) implies that T̃ = O(ψ) and therefore, indices on T̃µν may be

lowered and raised with the flat metric η̃µν and its inverse η̃µν , respectively.

Equations (2.47)-(2.48) are wave equations in d-dimensional Minkowski

space-time, which may be formally solved by the method of Green’s functions,

as explained in section A.6. In the case d = 4 which is of physical interest, the

Green’s function has the simple form given by equation (A.61), which yields

the following solution of the field equations:

h̄µν(x
0, ~x) =

4G

c4

∫
d3~y

Tµν(x
0 − |~x− ~y|, ~y)

| ~x− y|
, (2.52)

ψ(x0, ~x) =
G

c4
α(ϕ∞)

∫
d3~y

T (x0 − |~x− ~y|, ~y)

|~x− ~y|
. (2.53)

If Tµν is time-independent, then the solution to the field equations

may be taken to also be time-independent, and thus the d’Alembertian wave

operator 2η in d-dimensional Minkowski space-time reduces to the Laplacian ∆

in (d−1)-dimensional Euclidean space. The Green’s function for this operator

5This follows from the linearized scalar field equation (2.48).
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is given by equation (A.62) (with N = d − 1), and therefore the solution to

the field equations is given by

h̄µν(~x) =
16πG

(d− 3)Ωd−2c4

∫
dd−1~y

Tµν(~y)

|~x− ~y|d−3
, (2.54)

ψ(~x) =
4πGα(ϕ∞)

(d− 3)Ωd−2c4

∫
dd−1~y

T (~y)

|~x− ~y|d−3
, (2.55)

where Ωd−2 is the area of the sphere Sd−2, and is given by equation (A.64).

If the matter distribution is further specialized to pressure-less dust

with mass density ρ, then the form of the energy-momentum becomes particu-

larly simple — T̃00 = ρc2A2(ϕ∞), and all other components vanish. Using the

relations (2.51), one finds that T00 = −T = ρc2Ad(ϕ∞), which in conjunction

with the solution (2.54)-(2.55) yields

h00(~x) =
16πGAd(ϕ∞)

(d− 2)Ωd−2c2

∫
dd−1~y

ρ(~y)

|~x− ~y|d−3
, (2.56)

h0i(~x) = 0 , (2.57)

hij(~x) = δij ·
16πGAd(ϕ∞)

(d− 2)(d− 3)Ωd−2c2

∫
dd−1~y

ρ(~y)

|~x− ~y|d−3
, (2.58)

ψ(~x) = −4πGα(ϕ∞)Ad(ϕ∞)

(d− 3)Ωd−2c2

∫
dd−1~y

ρ(~y)

|~x− ~y|d−3
. (2.59)

Equations (2.56)-(2.59) express the solution of the linearized field equations in

a form that is suitable for comparison to Newtonian gravity.

In order to complete the connection with Newtonian gravity, it is neces-

sary to investigate the trajectory of a test particle in the presence of the fields

(2.56)-(2.59). The universal coupling of matter to the Jordan-frame metric

implies that such a trajectory zµ(t) is a geodesic of the Jordan-frame metric,

and thus satisfies
d2zλ

dτ 2
+ Γ̃λµν

dzµ

dτ

dzν

dτ
= 0 , (2.60)

where τ is the proper time. The first step in evaluating equation (2.60) involves

the calculation of the Jordan-frame Christoffel symbols Γ̃λµν , whose indepen-

dent non-vanishing components (in the weak and static field limit) are found
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using equation (A.9):

Γ̃0
0i = Γ̃i00 = − 1

2A2(ϕ∞)
∂ih̃00 , (2.61)

Γ̃ijk =
1

2A2(ϕ∞)

(
∂jh̃ki + ∂kh̃ji − ∂ih̃jk

)
. (2.62)

The temporal and spatial components of the geodesic equation (2.60) may

then be written as

d2t/dτ 2

dt/dτ
= − 2

c2

d~z

dτ
· ~∇UNewt , (2.63)

d2zi

dτ 2
= −∂iUNewt ·

(
dt

dτ

)2

− Γ̃ijk
dzj

dτ

dzk

dτ
, (2.64)

where the Newtonian potential is identified as

UNewt(~x) = − c
2h̃00(~x)

2A2(ϕ∞)
. (2.65)

Up to this point, all calculations in this section have employed coor-

dinates xµ in which the Einstein-frame metric asymptotically tends to ηµν =

diag(−1, 1, . . . , 1), while the Jordan-frame metric asymptotically tends to η̃µν =

A2(ϕ∞)ηµν (see equations (2.30) and (2.32)). However, in order to identify the

‘physical’ Jordan-frame Newton constant G̃, it is useful to introduce new co-

ordinates x̂µ := A(ϕ∞)xµ, in which the Jordan-frame metric asymptotically

tends to η̃µ̂ν̂ = diag(−1, 1, . . . , 1). Let ÛNewt and ρ̂ denote the Newtonian po-

tential and mass density in these new coordinates, so that ρ̂(x̂) := ρ(x̂/A(ϕ∞)),

and likewise for ÛNewt. Combining equations (2.65), (2.38), (2.56), and (2.59)

yields an explicit integral formula for the Newtonian potential, which in hatted

coordinates reads

ÛNewt(x̂) = −G̃
∫
dd−1ŷ

ρ̂(ŷ)

|x̂− ŷ|d−3
, (2.66)

where

G̃ =
4πGAd−2(ϕ∞)[2(d− 3) + (d− 2)α2(ϕ∞)]

(d− 2)(d− 3)Ωd−2

(2.67)

is the ‘physical’ Jordan-frame Newton constant. This expression simplifies to

G̃ = A2(ϕ∞)(1 + α2(ϕ∞)) (2.68)
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in the case of physical interest, d = 4. Note that the Newtonian limit of

the geodesic equation (2.63)-(2.64), expressed in ‘hatted’ coordinates, has the

canonical form
d2ẑi

dt̂2
= −∂̂iÛNewt . (2.69)
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3 The Weak-Central-Coupling Formalism

3.1 Introduction

The purpose of this introductory section is to explain the phenomenon of

spontaneous scalarization and outline the key ideas behind the Weak Central

Coupling (WCC) formalism. The starting point is the definition of the mass

and scalar charge of a possibly strongly-gravitating star, which is motivated by

the asymptotic properties of the gravitational fields of a ‘weakly-gravitating’

object found in section 2.5

To this end, the hyperspherical coordinates described in section A.3 are

employed, and a multipole expansion of equations (2.56)-(2.59) is carried out,

demonstrating that the behaviour of the fields asymptotically far away from

such a body is given by

g00 = −1 +
16πGM

(d− 2)Ωd−2c2rd−3
+O

(
1

rd−2

)
, (3.1)

g0i = 0 , (3.2)

gij = δij

[
1 +

16πGM

(d− 2)(d− 3)Ωd−2c2rd−3

]
+O

(
1

rd−2

)
, (3.3)

ϕ = ϕ∞ −
4πGQ

(d− 3)Ωd−2c2rd−3
+O

(
1

rd−2

)
, (3.4)

where

M := A(ϕ∞)M̃ = Ad(ϕ∞)

∫
dd−1~y ρ(~y) (3.5)

is defined to be the Einstein-frame mass of the body,

M̃ :=

∫
dd−1ŷ ρ̂(ŷ) (3.6)

is the ‘physical’ Jordan-frame mass, and

Q :=
c2

4πG

∫
Sd−2

∂µϕn
µdΩd−2 = α(ϕ∞)M (3.7)

is the Einstein-frame ‘scalar charge’, where nµ and dΩµ
d−2 denote the outward-

pointing normal vector and canonical volume element on Sd−2, respectively.

The important lesson to take away from this analysis is that in the slow-

motion weak-field regime of Scalar-Tensor gravity, the magnitude of scalar ef-

fects relative to tensor effects is determined by the asymptotic value of the
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scalar-matter coupling, α(ϕ∞). The purpose of this section is to explore

how things change in the strong-field regime, while restricting attention to

static spherically-symmetric isolated bodies for simplicity. It turns out that

an asymptotic expansion of the form (3.1)-(3.4) continues to hold6, however,

the constants M , Q, and ϕ∞ characterizing the asymptotic fields are no longer

given by equations (3.5)-(3.7). In fact, it turns out that in certain Scalar-

Tensor theories, it is possible for the ratio Q/M to be non-zero, and even of

order unity, when α(ϕ∞) = 0. This phenomenon, called spontaneous scalar-

ization, was discovered in 1993 by Damour and Esposito-Farèse [51]. The

principal goal of this section is to develop a formalism for describing scalar-

ization perturbatively.

It is possible to expand Q/M in a series of the form [51]

Q

M
= α(ϕ∞)

(
1 + a1s+ a2s

2 + . . .
)
, (3.8)

where s := GM/Rd−3c2, the compactness of the star, is a dimensionless mea-

sure of the gravitational field strength in the stellar interior, where R denotes

the stellar radius. For instance, Schwarzschild black holes in d = 4 have s = 1
2
,

while neutron stars typically have s ∼ 0.1. It is important to note that all

the properties of a star depend on the scalar boundary condition ϕ∞ imposed

at infinity, and thus, the right-hand side of (3.8) depends on ϕ∞ not only

explicitly, but also implicitly through s. Thus, it may happen that Q/M re-

mains finite in the limit α(ϕ∞) → 0, provided that the series in s diverges

sufficiently rapidly. It is in this sense that spontaneous scalarization has been

called a ‘non-perturbative’ phenomenon [51].

The approach taken in the WCC formalism begins with the observation

that the difficulties in analytically understanding scalarization stem from the

multi-valuedness of (3.8) as a function of ϕ∞. The crucial insight is that an

expansion of Q/M in powers of the central values of the scalar field ϕ0 and

pressure P0 is guaranteed to define a single-valued function. Indeed, for a

given choice of these central values (ϕ0, P0), it is possible to integrate the

equations of stellar structure, match the solution to the exterior metric, and

6This will be demonstrated in section 3.3
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thus uniquely determine all properties of the star. Therefore, the so-called

Weak-Central-Coupling (WCC) series expansions are employed:

GM

Rd−3c2
≡ s = c1 + c2α

2
0 + c3α

4
0 +O(α6

0) , (3.9)

α∞ = d1α0 + d2α
3
0 +O(α5

0) , (3.10)

Q/M = e1α0 + e2α
3
0 +O(α5

0) , (3.11)

where α0 := α(ϕ0), α∞ := α(ϕ∞), and the coefficients ci, di and ei are func-

tions of P0. When the cubic terms are neglected, it follows from (3.10)-(3.11)

that Q/M ∝ α∞, and thus scalarization is impossible. However, when the

cubic terms are included, equation (3.10) may be inverted to write α0 in terms

of α∞, d1, and d2 by means of Cardano’s formula [90]. In the limit α∞ → 0,

the expression for α0 simplifies to

α0 = ±
√
−d1/d2 . (3.12)

Therefore, scalarization is possible whenever d1/d2 < 0, and the criterion for

the onset of scalarization is given by d1 = 0.

Arguments of this type for describing phase transitions go back to Lan-

dau [113], and have been previously put forward in the literature on scalariza-

tion. For instance, the ansatz

M(Q,ϕ∞) = µ(Q)−Qϕ∞ , (3.13)

µ(Q) =
1

2
a(M̄cr − M̄)Q2 +

1

4
bQ4 , (3.14)

was postulated in [52], however, the coefficients a and b were not calculated,

either numerically or analytically. The quantity M̄ denotes the baryonic mass7

of the star, and M̄cr is the critical value thereof for the onset of scalarization.

The novelty of the present approach is the development of a formalism

for the systematic calculation of the coefficients ci, di and ei. This formalism is

applied to constant-density stars, for which the i = 1 coefficients are expressed

in terms of Heun functions, and used to demonstrate that such stars exhibit

scalarization.
7The baryonic mass is defined to be the total mass of the baryons making up the star

when their gravitational interaction is ‘turned off’. This is a useful quantity because it is

often conserved.
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3.2 Field Equations

There exist two distinct classes of astrophysical objects with strong internal

gravitational fields — black holes and neutron stars. The former are described

by vacuum solutions of the field equations, whereas the latter may be modelled

by a perfect fluid at zero temperature, characterized by the mass-energy density

ρ and pressure P , as well as a functional relation between these two quantities,

called an equation of state. The purpose of this section is to specialize the field

equations of Scalar-Tensor gravity to such a perfect fluid source, and write

them out explicitly in a suitable coordinate system.

The starting point is the perfect fluid energy-momentum tensor [37],

which has the form

T̃ µν = (ρ+ P/c2)ũµũν + P g̃µν , (3.15)

where ũµ is the velocity four-vector of the fluid. For a static spherically-

symmetric fluid, the requirement that ũµ must point in the positive time di-

rection, together with the normalization condition

g̃µν ũ
µũν = −c2 , (3.16)

uniquely determines

ũ0 =
c

A(ϕ)
√
f
, (3.17)

and

ũ0 := g̃00ũ
0 = −cA(ϕ)

√
f , (3.18)

where the Einstein-frame metric is taken to have the form (A.25).

In order to write down the Einstein-frame field equations (2.8) and

(2.9), it is necessary to calculate the lower-index components and trace of the

Einstein-frame energy momentum tensor, which may be accomplished with

the help of equations (2.19) and (2.20):

T00 = Ad(ϕ)fρc2 , (3.19)

Trr = Ad(ϕ)hP , (3.20)

Tθiθi = Ad(ϕ)Pgθiθi , (3.21)

T = Ad(ϕ)[(d− 1)P − ρc2] . (3.22)
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It is thus found that the independent non-trivial components of the Einstein-

frame tensor field equation (2.8) are given by

R00 +
4

d− 2
B(ϕ)f =

8πG

c4(d− 2)
Ad(ϕ)f [(d− 3)ρc2 + (d− 1)P ] , (3.23)

Rrr − 2ϕ′2 − 4

d− 2
B(ϕ)h =

8πG

c4(d− 2)
Ad(ϕ)h(ρc2 − P ) , (3.24)

Rθ1θ1 −
4

d− 2
B(ϕ)k =

8πG

c4(d− 2)
kAd(ϕ)(ρc2 − P ) , (3.25)

while (A.11) may be used to write the Einstein-frame scalar field equation

(2.9) in the form

1√
fhk(d−2)/2

(√
f

h
k(d−2)/2ϕ′

)′
−B′(ϕ)

=
4πG

c4
α(ϕ)Ad(ϕ)(ρc2 − (d− 1)P ) . (3.26)

Substituting into (3.23)-(3.25) the components of the Ricci tensor Rµν given

by equations (A.38)-(A.40) yields

f ′′

2f
− f ′2

4f 2
− f ′h′

4fh
+

(d− 2)f ′k′

4fk
+

4

d− 2
B(ϕ)h =

8πG

c4(d− 2)
Ad(ϕ)h[(d− 3)ρc2 + (d− 1)P ] , (3.27)

−f
′′

2f
+
f ′2

4f 2
+
f ′h′

4fh
+ (d− 2)

(
−k

′′

2k
+
k′2

4k2
+
k′h′

4kh

)
−2ϕ′2 − 4

d− 2
B(ϕ)h =

8πG

c4(d− 2)
Ad(ϕ)h(ρc2 − P ) , (3.28)

(d− 3)
h

k
− k′′

2k
− (d− 4)k′2

4k2
+
k′h′

4kh
− k′f ′

4kf
− 4

d− 2
B(ϕ)h =

8πG

c4(d− 2)
Ad(ϕ)h(ρc2 − P ) . (3.29)

Thus, the field equations for a static spherically-symmetric perfect fluid

boil down to (3.26)-(3.29), a system of four coupled radial differential equations

for the dependent variables f = −g00, h = grr, k = gθ1θ1 , and ϕ. Note that the

freedom to re-define the radial coordinate allows one to impose a constraint

involving f , h, k, ϕ, and r. For the interior of a star, which is treated in

section 3.4, it is convenient to make the choice k = r2. On the other hand, the
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solution to the vacuum equations with P = ρ = 0 (described in section 3.3),

which is relevant for describing a black hole or the exterior of a star, is known

analytically in a coordinate system where f = hq for some constant exponent

q. The coordinate transformation required to match the interior and exterior

solutions at a stellar boundary is the subject of section 3.5.

3.3 Vacuum

The field equations (3.26)-(3.29) simplify considerably in the absence of matter,

that is, when P = ρ = 0. To simplify things even further and enable an

analytical solution, it will be assumed that the scalar potential B(ϕ) vanishes.

Under these assumptions, the scalar field equation (3.26) may be im-

mediately integrated, yielding

f

h
kd−2ϕ′2 = const . (3.30)

After multiplying through by f/f ′, one finds that the (tt) equation (3.27) may

also be immediately integrated, yielding

f ′2

fh
kd−2 = const . (3.31)

These two ‘conservation laws’ imply that

ϕ′ = const× f ′

f
. (3.32)

When d = 4, it is not difficult to find the most general solution to the remaining

equations (3.28) and (3.29) by means of standard techniques. However, for

arbitrary d, it appears that there exists no straightforward method of arriving

at the most general solution without making any additional assumptions. One

way to understand why the case d 6= 4 is challenging, is to notice that the k′2

term drops out of (3.29) when d = 4, considerably simplifying this equation.

By means of an ansatz, the following three-parameter class of solutions
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has been obtained for arbitrary d by Bagchi and Kalyana Rama [11]:

f(ξ) = (1− (ξ0/ξ)
d−3)1−(d−3)q , (3.33)

h(ξ) = (1− (ξ0/ξ)
d−3)q−1 , (3.34)

k(ξ) = ξ2(1− (ξ0/ξ)
d−3)q , (3.35)

ϕ(ξ) = ϕ∞ +
p

2
log(1− (r0/r)

d−3) , (3.36)

where the constants p and q are related by

2p2 = (d− 2)(2− (d− 3)q)q , (3.37)

and the radial coordinate has been renamed to ξ to distinguish it from the

coordinate used in the interior of a star. Note that it follows from equation

(3.37) that

0 ≤ q ≤ 2

(d− 3)
≡ qmax . (3.38)

While the solution (3.33)-(3.36) for arbitrary d is relatively recent, the special

case of d = 4 has been known for a long time. For references to these earlier

works, the reader is referred to the bibliography of [11].

The asymptotic expansions

g00 = −1 + (1− (d− 3)q)(ξ0/ξ)
d−3 + . . .

≡ −1 +
GM̂

ξd−3c2
+ . . . , (3.39)

ϕ = ϕ∞ −
p

2
(ξ0/ξ)

d−3 + . . .

≡ ϕ∞ +
GQ̂

ξd−3c2
+ . . . , (3.40)

agree with those derived earlier in the weak-field context, namely, equations

(3.1) and (3.4). The ‘hatted’ mass M̂ and scalar charge Q̂ have been introduced

for simplicity of notation, and are related to the corresponding Einstein-frame

quantities by

M̂ =
16πM

(d− 2)Ωd−2

, (3.41)

Q̂ = − 4πQ

(d− 3)Ωd−2

. (3.42)
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For the later purpose of matching to a stellar interior (which is the

subject of section 3.5), it is useful to express the constants (M̂ , Q̂, ϕ∞) char-

acterizing the vacuum solution in the form

GM̂

c2
=

kd−3

(d− 3)ξd−4

df

dξ
, (3.43)

Q̂

M̂
= − dϕ/dξ

d log f/dξ
, (3.44)

ϕ∞ = ϕ− log f
dϕ/dξ

d log f/dξ
. (3.45)

In order to investigate whether the solution (3.33)-(3.36) may be em-

ployed to describe a black hole, it is necessary to study its behaviour in the

vicinity of ξ = ξ0, which involves the computation of scalar curvature invari-

ants. In General Relativity, where the Ricci scalar vanishes by the vacuum field

equations, one must compute ‘quadratic’ curvature scalars such as RρσµνR
ρσµν .

However, in Scalar-Tensor gravity, the Ricci scalar may be written in terms of

(∂ϕ)2 by means of (2.7), yielding

R =
p2(d− 3)2ξ2d−6

0

2ξ2d−4(1− (ξ0/ξ)d−3)1+q
, (3.46)

which is singular at ξ = ξ0 unless q = 0. Thus, the solution (3.33)-(3.36)

may describe a black hole only in the case q = 0, which is nothing other than

the well-known d-dimensional generalization of the Schwazschild black hole.

Statements about vanishing scalar charges of black holes are usually referred

to as ‘no-hair theorems’ [86], and have been recently extended to a broad class

of Scalar-Tensor theories [162]. These theorems generically need to assume

some form of time-independence, as explicitly illustrated by the Miracle Hair

Growth Formula [96] discussed in section 5.

3.4 Interior

In this section, the Einstein-frame field equations for a static spherically-

symmetric perfect fluid (3.26)-(3.29) are simplified. Schwarzschild-like coor-

dinates with k = r2 are employed, and the dependent variables are trans-

formed from (f, h, k, ϕ) to (µ, ν, P, ϕ), where ν = log f = log(−g00), and
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µ = (1 − h−1)/2 = (1 − grr)/2. It turns out that ν may be eliminated, in

the sense that the µ, P , and ϕ equations form a closed system.

In order to carry out these simplifications, one starts by adding the (tt)

(3.27) and (rr) (3.28) equations to obtain

−k
′′

2k
+
k′2

4k2
+
f ′k′

4fk
+
h′k′

4hk
− 2

d− 2
ϕ′2 =

8πG

c4(d− 2)
Ad(ϕ)h(ρc2 + P ) . (3.47)

Adding the (θ1θ1) (3.29) equation to this result yields an equation which does

not depend on P ,

−k
′′

k
− (d− 5)k′2

4k2
+
k′h′

2kh
− 2

d− 2
ϕ′2 + (d− 3)

h

k
− 4

d− 2
B(ϕ)h

=
16πG

c2(d− 2)
Ad(ϕ)hρ , (3.48)

whereas subtracting the (θ1θ1) (3.29) equation from (3.47) yields an equation

which allows ν ′ = f ′/f to be eliminated,

ν ′ =
2k

k′

(
(d− 3)

(
h

k
− k′2

4k2

)
+

2ϕ′2 − 4B(ϕ)h+ 16πGAd(ϕ)hP/c4

d− 2

)
. (3.49)

Writing out the r component of the energy conservation equation (2.26) quickly

yields

P ′ = −(ρc2 + P )

(
ν ′

2
+ α(ϕ)ϕ′

)
, (3.50)

a simple result which may also be derived the hard way by starting from

(3.26)-(3.29). Finally, writing out the scalar equation (3.26) and using (3.49)

to eliminate ν ′ = f ′/f yields

ϕ′′ +

(
−k

′′

k′
+
k′

k
− 8khB(ϕ)

(d− 2)k′
+ 2(d− 3)

h

k′

)
ϕ′ −B′(ϕ)h =

4πGAd(ϕ)h

c4

(
α(ϕ)(ρc2 − (d− 1)P ) +

4ϕ′k

(d− 2)k′
(ρc2 − P )

)
. (3.51)

This new system of ODEs (3.48)-(3.51) in which the dependent variables are

(h, ν, P, ϕ) and k is regarded as being fixed by a constraint is equivalent to the

original system (3.26)-(3.29).
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In order to further simplify (3.48)-(3.51), define the radial coordinate

r by the condition k(r) = r2, and define

h(r) =
1

1− 2µ(r)
, µ(r) =

Gm(r)

c2rd−3
. (3.52)

Then the h equation (3.48) becomes

rµ′ + (d− 3)µ =
1

d− 2
(1− 2µ)r2ϕ′2 +

2

d− 2
r2B(ϕ) +

8πGAd(ϕ)r2ρ

c2(d− 2)
, (3.53)

the ν equation (3.49) becomes

ν ′ =
2(d− 3)µ

r(1− 2µ)
+

2rϕ′2

d− 2
− 4rB(ϕ)

(d− 2)(1− 2µ)
+

16πGAd(ϕ)rP

c4(1− 2µ)(d− 2)
, (3.54)

the P equation (3.50) remains unchanged, and the scalar equation (3.51) be-

comes

ϕ′′ + ϕ′
(

(d− 2)− 2µ

r(1− 2µ)
− 4rB(ϕ)

(d− 2)(1− 2µ)

)
− B′(ϕ)

1− 2µ
=

4πGAd(ϕ)

c4(1− 2µ)

(
α(ϕ)(ρc2 − (d− 1)P ) +

2rϕ′(ρc2 − P )

d− 2

)
. (3.55)

For a solution regular at the stellar centre, the appropriate initial conditions

are found to be

ν(r = 0) = ν0 , µ(r = 0) = 0 , P (r = 0) = P0 ,

ϕ(r = 0) = ϕ0 , ϕ′(r = 0) = 0 . (3.56)

The final simplification involves casting the ODEs (3.53),(3.54), (3.50),

and (3.55) into dimensionless form, which is useful for both analytical and

numerical work. To this end, write the dimensionful variables as ρ = ρ0ρ̄,

P = ρ0c
2P̄ , B(ϕ) = λζB̄(ϕ), and r =

√
u/ζ, where ρ0 := ρ(r = 0) is the

central mass density, and ζ := 8πGρ0A
d(ϕ0)/c2 has units of inverse length

squared, so that ζ−1/2 sets the scale for the radius of the star. The conformal

factor is written as A(ϕ) = A(ϕ0)Ā(ϕ).

Under this transformation, the µ equation (3.53) becomes

µ̇+
d− 3

2u
µ = 2u

1− 2µ

d− 2
ϕ̇2 +

λB̄(ϕ)

d− 2
+

Ād(ϕ)ρ̄

2(d− 2)
, (3.57)

35



PhD Thesis - M. W. Horbatsch McMaster - Physics and Astronomy

where dots denote derivatives with respect to u. The P equation (3.50) be-

comes
˙̄P = −(ρ̄+ P̄ )

(
ν̇

2
+ α(ϕ)ϕ̇

)
, (3.58)

the ν equation (3.54) becomes

ν̇ =
(d− 3)µ

u(1− 2µ)
+

4uϕ̇2

d− 2
− 2λB̄(ϕ)

(d− 2)(1− 2µ)
+

Ād(ϕ)P̄

(1− 2µ)(d− 2)
, (3.59)

and finally, the ϕ equation (3.55) becomes

ϕ̈+
d− 1− 4µ

2u(1− 2µ)
ϕ̇− 2λB̄(ϕ)ϕ̇

(d− 2)(1− 2µ)
− λB̄′(ϕ)

4u(1− 2µ)

=
Ād(ϕ)

8u(1− 2µ)

(
α(ϕ)(ρ̄− (d− 1)P̄ ) +

4uϕ̇

d− 2
(ρ̄− P̄ )

)
. (3.60)

The system of ODEs (3.57)-(3.60) is the final simplified dimensionless form

of the Einstein-frame field equations for a static spherically-symmetric perfect

fluid. The appropriate initial conditions for the scalar gradient are given by

ϕ̇(u = 0) =
2λB̄′(ϕ0) + (1− (d− 1)P̄0)α(ϕ0)

4(d− 1)
, (3.61)

where P̄0 := P̄ (u = 0).

3.5 Matching Conditions

At the surface of a star, it is necessary to match the interior solution described

in section 3.4 to the exterior solution described in section 3.3. This matching

procedure is complicated by the fact that the interior and exterior problems

are formulated using different radial coordinates — the interior coordinate,

denoted by r, is defined by the condition gθ1θ1 = r2, whereas the exterior

coordinate, denoted by ξ, is defined by the condition (3.35), in which k = gθ1θ1 .

Therefore, the relation between r and ξ is given explicitly by

r2 = (1− (ξ0/ξ)
d−3)qξ2 . (3.62)
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Equating the other components of the metric and the scalar field yields the

following matching conditions to be satisfied at the stellar boundary:

−g00 = eν = (1− (ξ0/ξ)
d−3)1−(d−3)q , (3.63)

grr =
1

1− 2µ
= (1− (ξ0/ξ)

d−3)−(1−q)
(
dξ

dr

)2

, (3.64)

ϕ = ϕ∞ +
p

2
log(1− (ξ0/ξ)

d−3) . (3.65)

Differentiating equation (3.62) with respect to ξ and combining the result with

equation (3.64) yields

dξ

dr
=

(1− (ξ0/ξ)
d−3)1−q/2

1− (1− q/qmax)(ξ0/ξ)d−3
≥ 0 , (3.66)

√
1− 2µ =

1− (1− q/qmax)(ξ0/ξ)
d−3√

1− (ξ0/ξ)d−3
, (3.67)

where qmax has been defined in equation (3.38).

The ultimate goal of the matching procedure is to express the constants

which characterize the external solution (M̂, Q̂, ϕ∞) in terms of the boundary

values of the internal solution (µ(R), ν(R), ϕ(R), ϕ′(R)), where R denotes the

value of the coordinate r at the stellar boundary, (not to be confused with

the Ricci scalar), which is defined by the condition of vanishing pressure —

P (R) = 0.

To achieve this, equations (3.43)-(3.45) are evaluted at the stellar bound-

ary, and then re-written in terms of ‘internal’ quantities. This is a triviality

for the latter two of these equation, since the derivatives with respect to ξ may

be replaced by derivatives with respect to r. On the other hand, more work is

required to express (3.43) in terms of internal quantities, and the desired result

may be obtained by the use of equations (3.66), (3.67), (3.63), and (3.62). It

is found that

GM̂

c2
=

√
1− 2µ

Rd−2

d− 3

dν

dr
eν/2 , (3.68)

Q̂

M̂
= −dϕ/dr

dν/dr
, (3.69)

ϕ∞ = ϕ− ν · dϕ/dr
dν/dr

. (3.70)
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In principle, the set of equations (3.68)-(3.70) is the complete solution to the

matching problem. Given an interior solution, the right-hand sides of these

equations may be evaluated at the stellar boundary, and used to determine

the parameters M̂ , Q̂, and ϕ∞ which characterize the external gravitational

and scalar fields.

However, it turns out that the quantities which appear on the right-

hand sides of equations (3.68)-(3.70) are not all independent, and in particular,

ν(R) and ν ′(R) may be expressed in terms of the other quantities. It is useful

to eliminate ν and its derivative, because the interior ODEs for µ, P , and ϕ,

namely, equations (3.57), (3.58), and (3.60), form a closed system.

While it is fairly straightforward to express ν ′(R) in terms of other

quantities by evaluating equation (3.54) at the stellar boundary,

ν ′(R) =
2(d− 3)µ(R)

R(1− 2µ(R))
+

2Rϕ′2(R)

d− 2
, (3.71)

it takes much more work to carry this out for ν(R). Since the gradients

(eν)′ = −g′00 and ϕ′ are required to be continuous at the stellar boundary,

equations (3.63) and (3.65) may be differentiated and then combined with

(3.66) to yield

ϕ′ =
p(d− 3)

2ξ
· (1− (ξ0/ξ)

d−3)−q/2(ξ0/ξ)
d−3

1− (1− q/qmax)(ξ0/ξ)d−3
, (3.72)

ν ′ =
(1− (d− 3)q)(d− 3)

ξ
· (1− (ξ0/ξ)

d−3)−q/2(ξ0/ξ)
d−3

1− (1− q/qmax)(ξ0/ξ)d−3
. (3.73)

With these two expressions in hand, it is now a matter of algebra to verify

that one may write

ν = − 2ν ′√
ν ′2 + 8(d− 3)ϕ′2/(d− 2)

×arctanh

(√
ν ′2 + 8(d− 3)ϕ′2/(d− 2)

ν ′ + 2(d− 3)/R

)
. (3.74)

Finally, substituting the expressions (3.74) for ν(R) and (3.71) for ν ′(R) into
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the matching formulas (3.68)-(3.70) and simplifying yields

ŝ :=
GM̂

Rd−3c2
=

2K
(d− 2)(d− 3)

√
1− 2µ

exp

(
−K
H

arctanh
H
J

)
,(3.75)

Q̂

M̂
= −(d− 2)(1− 2µ)Rϕ′

2K
, (3.76)

ϕ∞ = ϕ(R) +
(d− 2)(1− 2µ)Rϕ′

H
arctanh

(
H
J

)
, (3.77)

where the following auxilliary quantities have been defined:

K = (d− 2)(d− 3)µ+ (1− 2µ)R2ϕ′2 , (3.78)

H =
√
K2 + 2(d− 2)(d− 3)(1− 2µ)2R2ϕ′2 , (3.79)

J = (d− 2)(d− 3)(1− µ) +R2ϕ′2(1− 2µ) . (3.80)

From the matching conditions in their final form, (3.75)-(3.80), one deduces

that the quantities ŝ, Q̂/M̂ , and ϕ∞−ϕ(R) depend only on µ(R) and Rϕ′(R).

3.6 The Weak-Central-Coupling (WCC) Expansion

In this section, it is demonstrated that the quantities characterizing the exter-

nal gravitational and scalar fields of a star, namely, s = GM/Rd−3c2, Q/M ,

and α∞ := α(ϕ∞), admit formal Weak-Central-Coupling (WCC) series expan-

sions in powers of α0 := α(ϕ0) of the type (3.9)-(3.11), and explicit formulas

for the first WCC coefficients c1, d1, and e1 are obtained. For simplicity, atten-

tion is restricted to the ‘quadratic’, or quasi-Brans-Dicke model with vanishing

scalar potential, that is, B(ϕ) = 0, and conformal factor

A(ϕ) = exp

(
αs(ϕ− ϕ?) +

1

2
βs(ϕ− ϕ?)2

)
, (3.81)

which leads to the Einstein-frame scalar-matter coupling

α(ϕ) = αs + βs(ϕ− ϕ?) , (3.82)

where ϕ? is an arbitrary constant8.

8This constant is related to the choice of units and drops out of all physical predictions.
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The first step in the calculation of the WCC coefficients involves an

expansion of the solution to the equations of stellar structure (3.57)-(3.60) in

powers of α0 := α(ϕ0). In order to write down such a series explicitly, it is

useful to ‘move’ the quantity ϕ0 ‘from the initial conditions to the differential

equations’, by shifting and scaling the Einstein-frame scalar field ϕ. To this

end, introduce ψ := (ϕ−ϕ0)/α(ϕ0), which is well-defined as long as α(ϕ0) does

not vanish9. When written in terms of ψ, the equations of stellar structure

(3.57)-(3.60) take the form

µ̇ = −d− 3

2u
µ+

2α2
0u(1− 2µ)ψ̇2

d− 2
+
ρ̄edα

2
0ψ(1+βsψ/2)

2(d− 2)
, (3.83)

˙̄P = −(ρ̄+ P̄ )

(
ν̇

2
+ α2

0(1 + βsψ)ψ̇

)
, (3.84)

ν̇ =
(d− 3)µ

u(1− 2µ)
+

4α2
0uψ̇

2

d− 2
+
P̄ edα

2
0ψ(1+βsψ/2)

(d− 2)(1− 2µ)
, (3.85)

ψ̈ = −d− 1− 4µ

2u(1− 2µ)
ψ̇

+
edα

2
0ψ(1+βsψ/2)

8u(1− 2µ)

(
4u

d− 2
ψ̇(ρ̄− P̄ )

+ (1 + βsψ)(ρ̄− (d− 1)P̄ )

)
, (3.86)

which is readily suited for expansion in powers of α2
0. It follows from equations

(3.56) and (3.61) that the initial conditions for a solution regular at the stellar

centre are given by

ν(0) = ν0 , µ(0) = 0 , P̄ (0) = P̄0 ,

ψ(0) = 0 , ψ̇(0) =
1− (d− 1)P̄0

4(d− 1)
, (3.87)

9If α(ϕ0) vanishes, then ϕ ≡ ϕ0 solves the scalar equation (3.60), and the remaining

equations reduce to those of General Relativity. On the other hand, if α(ϕ∞) vanishes, it

does not follow that the equations of stellar structure reduce to those of GR, which is the

lesson of scalarization, and the whole motivation behind working with ϕ0 rather than ϕ∞.

40



PhD Thesis - M. W. Horbatsch McMaster - Physics and Astronomy

and therefore, the coefficients of the series

µ = µ(0) + α2
0µ

(1) + α4
0µ

(2) + . . . , (3.88)

P̄ = P̄ (0) + α2
0P̄

(1) + α4
0P̄

(2) + . . . , (3.89)

ψ = ψ(0) + α2
0ψ

(1) + α4
0ψ

(2) + . . . , (3.90)

depend only on the parameters βs, P̄0, and d.10 The stellar boundary, located

at u = U and defined by the condition P̄ (u = U) = 0, may also be expanded

in powers of α2
0,

U = U (0) + α2
0U

(1) + α4
0U

(2) + . . . , (3.91)

where the coefficients in (3.91) are related to those in (3.89) by expansion of

P̄ (U) = 0. For instance,

P̄ (0)(U (0)) = 0 , U (1) = − P̄
(1)(U (0))

˙̄P (0)(U (0))
. (3.92)

The final step involves an expansion of the matching conditions (3.75)-

(3.80) in powers of α2
0. One may use

Rϕ′(R) = 2Uϕ̇(U) = 2α0Uψ̇(U) (3.93)

to re-write these equations in terms of ψ and the dimensionless radial variable

u introduced in section 3.4, and subsequently conclude that the quantities ŝ,

Q̂/(M̂α0), and

F :=
ϕ∞ − ϕ0

α0

= ψ(U) +
2(d− 2)(1− 2µ)Uψ̇(U)

H
arctanh

(
H
J

)
(3.94)

all admit series expansions in powers of α2
0, with coefficients depending on

βs, P̄0, and d. Finally, converting from ‘hatted’ to ‘physical’ quantities by

means of (3.41)-(3.42) and writing α∞ = α0(1 + βsF) yields the desired WCC

expansions (3.9)-(3.11).

In summary, it has been demonstrated that the coefficients ci, di, and

ei in the WCC series (3.9)-(3.11) may be explicitly calculated in terms of the

10These coefficients also depend on the functional form of the equation of state. An

expansion of ν is not considered because this quantity does not enter into the matching

conditions (3.75)-(3.80) derived in section 3.5.
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perturbative solutions to the equations of stellar structure (3.83)-(3.86). For

example,

c1 =
(d− 2)Ωd−2

8π
µ(0) , (3.95)

d1 = 1 + βs

(
ψ(0) − U (0)ψ̇(0)

(d− 3)µ(0)
(1− 2µ(0)) log(1− 2µ(0))

)
, (3.96)

e1 =
4(1− 2µ(0))U (0)ψ̇(0)

(d− 2)µ(0)
, (3.97)

where the right-hand sides of the above equations are all to be evaluated at

the zeroth-order stellar boundary u = U (0).

3.7 Constant-Density Stars

The purpose of this section is to put some ‘flesh’ on the skeletal framework

developed in the preceeding sections 3.1 - 3.6 by solving the equations of stellar

structure (3.83)-(3.86) and calculating the coefficients of the WCC series (3.9)-

(3.11) to leading order for an explicit model. As in section 3.6, the scalar-

matter coupling is taken to have the ‘quasi-Brans-Dicke’ form (3.82), while

the stellar model employed is that of an ‘incompressible’, or constant-density

star, defined by ρ(r) ≡ ρ0 rather than a functional relation between P and ρ.

The leading-order terms in the series (3.88)-(3.90) may be found by

solving the equations of stellar structure (3.83)-(3.86) in the limit α2
0 = 0,

namely,

µ̇(0) = −d− 3

2u
µ(0) +

1

2(d− 2)
, (3.98)

˙̄P (0) = −(1 + P̄ (0))[(d− 3)(d− 2)µ(0) + uP̄ (0)]

2u(d− 2)(1− 2µ(0))
, (3.99)

ψ̈(0) = −d− 1− 4µ(0)

2u(1− 2µ(0))
ψ̇(0)

+
1

8u(1− 2µ(0))

(
4u

d− 2
ψ̇(0)(1− P̄ (0))

+ (1 + βsψ
(0))(1− (d− 1)P̄ (0))

)
, (3.100)
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with initial conditions

µ(0)(0) = 0 , P̄ (0)(0) = P̄0 , ψ(0)(0) = 0 , (3.101)

and

ψ̇(0)(0) =
1− (d− 1)P̄0

4(d− 1)
(3.102)

at the stellar centre. Equation (3.98), which is self-contained, may be imme-

diately solved to yield

µ(0)(u) =
u

(d− 1)(d− 2)
. (3.103)

This result is substituted into equation (3.99), whose solution may then be

found by standard techniques to be

P̄ (0) =
((d− 1)P̄0 + d− 3)

√
1− 2µ(0) − (d− 3)(1 + P̄0)

(d− 1)(1 + P̄0)− ((d− 1)P̄0 + d− 3)
√

1− 2µ(0)
, (3.104)

which vanishes at

U (0) =
2(d− 1)(d− 2)P̄0(d− 3 + (d− 2)P̄0)

(d− 3 + (d− 1)P̄0)2
. (3.105)

Equations (3.103)-(3.104) describe the famous constant-density stellar solu-

tion in General Relativity which saturates the Buchdahl inequality11 and was

first discovered by Schwarzschild in 1916 [153]. The leading-order ‘scalar cor-

rections’ to this general-relativistic solution are contained in the remaining

equation (3.100), whose solution is considerably more complicated than that

of (3.98)-(3.99)

In the special case of Brans-Dicke theory, namely, βs = 0, equation

(3.100) reduces to a linear first-order equation for ψ̇(0), whose solution may be

written in terms of the hypergeometric function (A.67),

ψ̇(0) =
(1 + P̄0)(d− 2)2F1(1

2
, d−1

2
; d+1

2
; 2µ(0))− d(d−3

d−1
+ P̄0)

4(d− 1)
√

1− 2µ(0)[(1 + P̄0)− (d−3
d−1

+ P̄0)
√

1− 2µ(0)]
. (3.106)

11The general-relativistic Buchdahl inequality, an upper bound on the mass-to-radius ratio

of a star, was initially derived in [28], and its generalization to Scalar-Tensor gravity was

investigated in [172].
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On the other hand, for βs 6= 0 the change of variables

y = 1 + βsψ
(0) , z =

1

2

(
1−

√
1− 2u

(d−1)(d−2)

)
(3.107)

reduces (3.100) to the Heun equation (A.69) with parameters

aH = − 1
d−3+(d−1)P̄0

, qH = − (d−1)(d−2)[1−(d−1)P̄0]βs
4[d−3+(d−1)P̄0]

, (3.108)

αH = d−1
2

(
1 +

√
1− d(d−2)

d−1
βs

)
, βH = d−1

2

(
1−

√
1− d(d−2)

d−1
βs

)
, (3.109)

and

γH = δH = d−1
2
, εH = 1 . (3.110)

In the latter case, the leading-order WCC coefficients (3.95)-(3.97) are found

to be

c1 =
(d− 2)Ωd−2P̄0(d− 3 + (d− 2)P̄0)

4π[d− 3 + (d− 1)P̄0]2
, (3.111)

d1 = HeunG− (1 + P̄0)HeunG′

d− 3 + (d− 1)P̄0

log

(
(d− 3)(1 + P̄0)

d− 3 + (d− 1)P̄0

)
, (3.112)

e1 =
2(d− 3)(1 + P̄0)HeunG′(aH , qH ;αH , βH , γH , δH ;Z)

(d− 2)βs[d− 3 + (d− 1)P̄0]
, (3.113)

where in (3.112), the arguments of the Heun functions are the same as those

in (3.113) and have been suppressed for brevity. The derivative of the Heun

function (A.71) with respect to its argument is denoted by HeunG′, and

Z =
P̄0

d− 3 + (d− 1)P̄0

(3.114)

is the value of the radial variable z at the stellar boundary.

Recalling from section 3.1 that the onset of scalarization takes place

when d1 = 0, and evaluating (3.112) in Maple for the case of physical interest,

namely, d = 4, reveals the critical value of βs for this transition to be −4.329

[90], which is similar to that of more realistic neutron star models [51]. The

ability to calculate this critical value by means of special functions without hav-

ing to numerically integrate the equations of stellar structure and employ the
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shooting method12 is the most remarkable achievement of the Weak-Central-

Coupling formalism13. For other applications, the reader is referred to [90].

12In the numerical integration of the equations of stellar structure, initial conditions are

specified at the stellar centre. In order to obtain a solution with a desired boundary condition

at infinity, it is necessary to vary the initial conditions until the required boundary condition

is obtained to the desired level of accuracy. This procedure is often referred to as the shooting

method.
13Note that heuristic analytical methods of estimating the critical value of βs, based

on minimizing an approximate energy functional, or neglecting certain terms in the field

equations, were presented in [51, 52].
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4 Binary Systems

4.1 The Non-Relativistic Problem

The gravitational two-body problem has a long history, going back to Kepler

and Newton in the 1600s, who obtained the complete solution at the non-

relativistic level [88]. In this limit, the ‘relative’ dynamics decouples from that

of the centre of mass, and is described by the equations of motion

~̈r = −GM~r

r3
, (4.1)

which may be derived from the Lagrangian

L =
1

2
µv2 +

GMµ

r
, (4.2)

where ~r is the relative position vector, and ~v = ~̇r is its time derivative. The

masses of the two bodies are denoted by M1 and M2, the total mass is denoted

by M = M1 + M2, and the reduced mass is denoted by µ = M1M2/M . On

account of the time-translational and rotational symmetries of the Lagrangian

(4.2), the total mechanical energy,

E =
1

2
µv2 − GMµ

r
, (4.3)

and the angular momentum

~L = µ~r × ~v , (4.4)

are conserved — Ė = ~̇L = 0. The famous result for which Kepler is well-

known, is that every bound orbit with E < 0 is a non-precessing14 ellipse with

one of the foci at r = 0, described mathematically by

r =
a(1− e2)

1 + e cos θ
, (4.5)

where

a =
GMµ

2|E|
, e =

√
1− 2|E|L2

G2M2µ3
, (4.6)

14This lack of precession is related to an abstract symmetry of (4.2), and the conservation

of the so-called Laplace-Runge-Lenz vector which points in the direction of the periastron.
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are the semi-major axis and eccentricity, respectively, and θ is the angle be-

tween the periastron and ~r, as measured in the plane of the motion. Less

well-known is Kepler’s equation describing the motion in time15,

ω(t− t0) = ψ − e sinψ , (4.7)

where

ω =

√
GM

a3
=

√
8|E|3

G2M2µ3
(4.8)

is the orbital (angular) frequency, and ψ is an auxilliary variable called the

eccentric anomaly, which is related to r and θ by

r = a(1− e cosψ) , tan
θ

2
=

√
1 + e

1− e
tan

ψ

2
. (4.9)

4.2 Introduction to The Relativistic Problem

The feature of General Relativity (or alternatives) absent in Newtonian gravity

which substantially complicates the two-body problem is the finite propagation

speed of gravity, which leads to gravitational radiation, rendering the orbits

unstable. Due to this instability, the relativistic two-body problem consists

of three successive stages — the inspiral, when the separation between the

bodies greatly exceeds their radii, the merger, when the separation is of the

same order as the radii, and the ringdown, when the two bodies have coalesced

into a single oscillating body which gradually ‘rings’ down to the final state.

A variety of approximation methods have been developed for the purpose of

describing the inspiral and ringdown analytically, whereas the merger is not

amenable to analytical methods and must be treated numerically.

The purpose of this section is to provide a brief overview of the approx-

imation methods employed in the analytical description of a binary inspiral in

Scalar-Tensor gravity. The Einstein-frame approach of Damour and Esposito-

Farèse [50] which draws heavily on the methods of [42, 22] is followed, and it is

explicitly checked that the power loss formulas obtained are consistent with the

15This equation may be inverted by means of a Fourier series, the nth coefficient being

proportional to the Bessel function Jn(ne) [190].
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recent Jordan-frame calculation in massive Scalar-Tensor gravity carried out

by Alsing and collaborators [6], which draws heavily on the methods described

in the book by Clifford Will [196].

4.3 Formalism

The natural dimensionless expansion parameter in a binary inspiral is the size-

to-separation ratio ε ∼ R/D. If the masses of the two bodies have equal order

of magnitude16, i.e. M1 ∼ M2 ∼ M , then the assumption ε � 1 implies

GM/Dc2 � GM/Rc2 . 1, that is to say, the gravitational fields exterior to

the bodies are weak, whereas the interior fields may be strong, as in the case

of neutron stars and black holes. The obvious way to proceed, is to break

up space-time into three distinct regions — the interiors of the two bodies, in

which the full non-linear field equations are to be solved, and the exterior, in

which a weak-field approximation similar to that described in section 2.5 may

be employed. To formalize this idea, introduce the ‘matching’ length scale

L ∼
√
RD so that R � L � D, construct regions of space-time D1 and D2

of radius L enclosing the world-tubes of bodies 1 and 2, respectively, and let

Dext denote the complement of D1∪D2. While the problem of solving the field

equations, both in DA and Dext, is a difficult one17, due to the necessity of

imposing appropriate boundary conditions, a substantial simplification takes

place in the limit ε→ 0.

Indeed, for a dimensionless coordinate system covering DA in which the

size of the Ath body is of order unity, the boundary conditions are imposed

at a radius of order L/R ∼ ε−1/2, which tends to infinity as ε → 0. Thus, in

this limit, the problem to be solved in the interior of DA reduces to that of an

isolated body subject to boundary conditions (gext
µν , ϕ

ext) at infinity. Moreover,

the boundary condition for the metric may be reduced to asymptotic flatness

by means of a coordinate transformation.

16Recall thatM := M1+M2 is defined to be the total mass. An extreme mass ratio inspiral

(EMRI) with M1 � M2 is treated by perturbing about geodesics, employing methods

beyond the scope of this thesis.
17The letter A labels the bodies and runs over 1, 2.
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Similarly, for a dimensionless coordinate system covering Dext in which

the separation between the bodies is of order unity, the boundary conditions

are imposed on tubes of size L/D ∼ ε1/2, which vanishes in the limit ε → 0.

Thus, in this limit, the tubes shrink down to the worldlines of the two bodies.

In General Relativity, it may be shown [42] that imposing these ‘near-

worldline’ boundary conditions is equivalent to introducing the following fic-

titious source term into the field equations:

T µν(a)(x) =
∑
A

MA

∫
dsA Z(a)(x− zA(sA))

uµuν
√
−g
√
−gρσuρuσ/c2

, (4.10)

where zµA(sA) is the arclength-parametrized worldline of body A, and uµA =

dzµA/dsA is its velocity. The function Z(a) which depends on a complex param-

eter a is called the Riesz kernel, and is defined to be

Z(a)(x) =
(−ηµνxµxν)(a−d)/2

π(d−2)/22a−1Γ(a/2)Γ((a+ 2− d)/2)
(4.11)

for future-directed timelike vectors x, and zero otherwise18. It reduces to the

delta function in the limit a → 0, and serves to regularize divergences19. If

these divergences are disregarded and ZΛ is replaced by δ(4), then the fictitious

energy-momentum tensor (4.10) may be formally derived20 from the ‘point

particle’ matter action

Sm = −
∑
A

cMA

∫
ΓA

dsA , (4.12)

18Equations (4.10) and (4.11) are written in a ‘Minkowskian’ coordinate system xµ glob-

ally defined on Dext. In these coordinates the metric gµν is asymptotically flat, and satisfies

the Kirchoff ‘no-incoming-radiation’ boundary condition at past null infinity.
19Taking the limit ε ∼ R/D → 0 essentially amounts to approximating extended bodies by

point particles, and it is well known that a field theory coupled to point sources generically

contains divergences due to the lack of a short-distance cutoff. In equations (4.10) and

(4.11), the parameter a essentially plays the role of such a cutoff. It is taken to zero at

the end of the calculation, and all physical quantities, when calculated carefully, should be

independent of it.
20The one-dimensional integral over the worldline ΓA is written as a four-dimensional

integral over the entire space-time, with a delta function restricting the integration variables

to the worldline. This expression is functionally differentiated with respect to gµν , and

equation (2.5) is used to calculate Tµν .
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where ΓA denotes the worldline of body A.

In Scalar-Tensor gravity, the situation is more complicated. Although

one may introduce fictitious source terms to impose the correct ‘near-worldline’

boundary conditions as in General Relativity, it turns out that these sources

may not be formally derived from a matter action of the form considered in

(2.3) where matter couples solely to the Jordan-frame metric. Rather, the

appropriate action, first written down by Eardley [62] in 1975, has the form

Sm = −
∑
A

c

∫
ΓA

MA(ϕ)dsA , (4.13)

where MA(ϕext) is the Einstein-frame mass21 of body A, found by solving the

field equations in the interior of DA. This action may also be expressed in

terms of Jordan-frame quantities as

Sm = −
∑
A

c

∫
ΓA

M̃A(ϕ)ds̃A , (4.14)

where M̃A(ϕext) := MA(ϕext)/A(ϕext) is the Jordan-frame mass of body A, and

ds̃A = A(ϕ)dsA is the differential arclength along ΓA measured by the Jordan-

frame metric. In the special case of a ‘weakly-gravitating’ body, the results

of sections 2.5 and 3.1 may be applied in the interior of DA, and thus the

Jordan-frame mass of body A is given by equation (3.6), which is independent

of ϕext. It then follows that the matter action for body A does couple solely to

the Jordan-frame metric, and is of the form considered in (2.3). However, this

need not be the case for strongly gravitating bodies, indicating a violation of

the Strong Equivalence Principle (SEP).

4.4 Solution of the External Field Equations

With the source terms in hand, one turns to the problem of solving the field

equations in Dext. To this end, approximation schemes are employed which

are similar in spirit to those described in section 2.5, but technically more

sophisticated. Whereas the field equations were linearized and all quadratic

21For a strongly-gravitating body, the Einstein-frame mass is defined by the asymptotic

expansion (3.1).

50



PhD Thesis - M. W. Horbatsch McMaster - Physics and Astronomy

terms were dropped in section 2.5, the method employed here may be used to

systematically calculate higher-order corrections.

The starting point is the definition of harmonic coordinates (A.22), in

which the Ricci tensor takes the form (A.24) of a nonlinear wave operator

acting on the metric. Since (A.22) may be written as ∂µg
µν = 0, where

gµν ≡
gµν√
−g

, gµν ≡
√
−ggµν , (4.15)

is the ‘gothic’ metric, it is useful to work with a perturbative expansion of gµν

(rather than gµν , as was done in section 2.5), so that the harmonic coordinate

condition retains its simple form at all orders. The Post-Minkowskian (PM)

series, written as

gµν = ηµν +Ghµν(1) +G2hµν(2) + . . . , (4.16)

ϕ = ϕ∞ +Gϕ(1) +G2ϕ(2) + . . . , (4.17)

is an expansion in the ‘nonlinearity’ of gravity, where ϕ∞ is the constant

‘background’ value of the scalar field asymptotically far away from the binary

system. At ith order in G, the harmonic coordinate condition simply reads

∂µh
µν
(i) = 0, while the Einstein-frame field equations (2.8)-(2.9) take the form

2ηh
µν
(i) = F µν [h(1), . . . , h(i−1), ϕ(1), . . . , ϕ(i−1);mA,ΓA] , (4.18)

2ηϕ(i) = F [h(1), . . . , h(i−1), ϕ(1), . . . , ϕ(i−1);mA,ΓA] , (4.19)

where 2η = ηµν∂µ∂ν is the d’Alembertian operator of the flat Minkowski

metric, and the right-hand sides depend on the lower-order solutions, as well as

the mass functions mA(ϕ) and the worldlines ΓA. Equations (4.18)-(4.19) may

be formally solved by means of the Green’s function (A.60), and in principle

the procedure may be iterated to arbitrarily high order in G.

The harmonic coordinate condition at ith order, ∂µh
µν
(i) = 0, is a set of

four constraints involving the worldlines, the mass functions, and the solution

up to order i − 1. These constraints may be regarded in some sense as the

O(Gi−1) ‘equations of motion’ that the worldlines must satisfy. In General

Relativity, this has been carefully worked out [42] for i = 4, and moreover,

these constraints have been further expanded in a Post-Newtonian series, that
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is, an expansion in powers of v/c, to yield the relativistic corrections to the

equations of motion (4.1), up to and including G3/c5, which is the order at

which non-conservative effects first arise [44].

In suitable coordinates, the O(v4/c4) relativistic corrections to the

equations of motion may be derived from a two-body Lagrangian22, whose

symmetries may be employed to decouple the centre-of-mass and relative prob-

lems, and furthermore define the energy and angular momentum, i.e., the rel-

ativistic generalizations of (4.3)-(4.4). Although the mathematical description

of trajectories at this order involves complicated hyperelliptic functions [43],

Damour and Deruelle [45] have shown that shifting the radial coordinate and

introducing ‘relativistic eccentricities’ allows the O(v2/c2) trajectories to be

described by means of the standard Keplerian functions (4.7) and (4.9), pro-

viding the foundation upon which the Parametrized Post Keplerian (PPK)

framework and pulsar timing formula [46, 54] have been built.

At order v5/c5, the equations of motion contain a ‘radiation reaction’

force, and thus may not be derived from a Lagrangian. The rate of energy loss

due to this force has been found to be [44]

dE

dt
= −8G3M2µ2

15r4c5
[12v2 − 11(~v · r̂)2] . (4.20)

Moreover, the relative dynamics no longer decouples from that of the centre

of mass, since a system emitting non-symmetric radiation experiences a recoil,

as first pointed out by Bekenstein [14]. In recent years it has been found

that a double-black-hole binary with anti-aligned spins in the orbital plane

experiences a particularly large recoil, which has been called a ‘superkick’

[32, 27, 81, 33, 139, 101, 109, 82, 163].

4.5 Radiation at Infinity

The conventional interpretation of equation (4.20) is that mechanical energy

is converted into ‘gravitational-wave energy’, which then gets ‘radiated out to

infinity’. The purpose of the present section is to make this intuition precise,

22Although this Lagrangian generically depends on positions, velocities, and accelerations,

a special coordinate choice eliminates the acceleration-dependence.
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and demonstrate that the energy flux through a large sphere at infinity is

given by (4.20). In addition to providing a consistency check of the general-

relativistic result, this method enables one to calculate the power loss in Scalar-

Tensor gravity without the use of equations of motion23.

The principal obstacle to the description of gravitational radiation in

terms of the coordinates xµ and fields (gµν , ϕ) employed in the previous section,

is the non-analyticity of the metric gµν at future null infinity — in an expansion

of the form

gµν(x
0, ~x) = ηµν +

kµν(x
0 − r, ~x/r)
r

+O
(

1

r2

)
, (4.21)

where r = |~x|, terms logarithmic in r appear at high Post-Minkowskian orders,

because the light-cones of gµν along which the waves propagate differ from

those of ηµν [23]. However, it is possible to construct a ‘radiative’ coordinate

system (which is not harmonic) adapted to the light cones of gµν , in which the

metric is analytic at future null infinity [21].

Therefore, it is necessary to break up space-time yet again. A region

Dnear (the near zone) which encloses the binary system is constructed, and

Dfar (the far wave zone) is defined to be its complement. In the latter re-

gion, the radiative coordinates constructed in [21] are employed and denoted

by Xµ = (X0, ~X), while the metric and scalar fields are denoted by Gµν and

Φ, respectively. The solution to the vacuum field equations in Dfar, subject

to past-stationarity and no incoming radiation at past null infinity, has been

obtained in [23] to all orders24 in the Post-Minkowskian expansion. The result-

ing metric depends functionally on an infinite set of multipole moments, which

are functions of the retarded time U = (X0 − | ~X|)/c, and are conventionally

denoted by Mi1···il(U) and Si1···il(U).25 Similarly, the scalar field Φ depends

on an infinite set of multipole moments denoted by Ψi1···il(U). Matching the

23These equations of motion are only known to order v2/c2, and calculating them to

higher order is extremely difficult.
24This is made possible by the simplified structure of the Post-Minkowskian field equations

(4.18)-(4.19) in the absence of matter. The solution is first obtained in harmonic coordinates,

and then transformed to radiative coordinates.
25Note that these time-dependent multipole moments [34] differ from the frequency-

dependent moments often used in electrodynamics [95]. For a comprehensive introduction
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radiative fields (Gµν ,Φ) to the near fields (gµν , ϕ) at the boundary leads to

expressions for the multipole moments in terms of integrals over the sources

in Dnear, the first few of which are given by

Mij(U = t) =

∫
Dnear

d3~x
(
xixj − 1

3
δij|~x|2

)
ρ(t, ~x) +O

(
1

c2

)
, (4.22)

ψ(U = t) =

∫
Dnear

d3~x j(t, ~x) +O
(

1

c2

)
, (4.23)

ψi(U = t) =

∫
Dnear

d3~x xi j(t, ~x) +O
(

1

c2

)
, (4.24)

ψij(U = t) =

∫
Dnear

d3~x (xixj − 1
3
δij|~x|2)j(t, ~x) +O

(
1

c2

)
, (4.25)

in the non-relativistic limit, where ρ = T 00/c2 +O(1/c2) is the mass density,

while j is the source term26 in the scalar field equation

√
−g2ϕ = −4πG

c2
j . (4.26)

In the particular case of the matter action (4.13), it is found that

ρ(t, ~x) =
∑
A

MA(ϕ∞)δ(3)(~x− ~zA(t)) +O
(

1

c2

)
, (4.27)

j(t, ~x) = −
∑
A

M ′
A(ϕ∞)δ(3)(~x− ~zA(t)) +O

(
1

c2

)
, (4.28)

where M ′
A(ϕ) := dMA(ϕ)/dϕ. By considering the variation of a Tolman-like

integral expression forMA, it may be shown [50] for a static body thatM ′
A(ϕ) =

QA(ϕ), where QA is defined by the integral in equation (3.7), or equivalently

by the asymptotic expansion (3.4).

With expressions for the multipole moments in hand, it remains to

express the radiative fields in terms of these moments, and calculate the energy

flow through a large sphere at infinity. The leading-order term in the multipole

expansion of the metric is given by

Gij(U, ~X) = δij +
1

R

[
2G

c4
M̈ij(U) +O

(
1

c5

)]
+O

(
1

R2

)
, (4.29)

to multipole expansions in relativistic gravity, the reader is referred to the review of Thorne

[171].
26Note that j is generically not equal to

√
−gα(ϕ)T on account of the violation of the

Strong Equivalence Principle (SEP).
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where dots denote derivatives with respect to U , R = | ~X|, and the time-time

and time-space components of the metric vanish in the Transverse Traceless

(TT) gauge. A similar expansion for the scalar field Φ has the form

Φ = ϕ∞ +
1

R

[
G

c2
ψ(U) +

G

c3
N iψ̇i(U)

+
G

2c4
N iN jψ̈ij(U) +O

(
1

c5

)]
+O

(
1

R2

)
, (4.30)

where ~N = ~X/R. The scalar energy flux through a large sphere of radius R?

may be calculated by means of the energy-momentum tensor defined in (2.25),

Fϕ(U) =

∫
S2
R?

T 0i
(ϕ)(U, ~X)NidA

=
G

c
ψ̇2(U) +

G

3c3

3∑
i=1

[ψ̈i(U)]2

+
G

30c5

3∑
i,j=1

[
...
ψ ij(U)]2 +O

(
1

c7

)
, (4.31)

where the first three terms describe monopole, dipole, and quadrupole scalar

radiation, respectively, and the limit R? →∞ has been taken so that the 1/R2

terms in (4.30) do not contribute.

The notion of a gravitational energy flux may only be defined in special

circumstances. In particular, given a decomposition of the metric into a ‘back-

ground’ and ‘perturbation’, as in (4.29), the quadratic corrections to equation

(2.46) may be interpreted as an effective gravitational energy-momentum ten-

sor [189, 37]. Employing such a construction and calculating the corresponding

flux, one finds the leading-order contribution

Fg =
G

5c5

3∑
i,j=1

[
...
Mij(U)]2 +O

(
1

c7

)
, (4.32)

which is the famous quadrupole formula. The fluxes (4.31)-(4.32) may be

explicitly calculated for a binary system by means of equations (4.22)-(4.25)

and (4.27)-(4.28), and in General Relativity it is found that Fg = −dE/dt,
where the right-hand side is given by (4.20), confirming that the mechanical

energy loss is balanced by the radiated power, as promised.
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In Scalar-Tensor gravity, the tensor flux picks up an additional factor,

F quad
g =

8G

15c5

(
G12Mµ

r2

)2

[12v2 − 11(~v · r̂)2] , (4.33)

where G12 = G(1+α1α2) is the total (gravity plus scalar) coupling between the

two bodies, and the charge-to-mass ratios αA = QA/MA may be interpreted as

effective scalar-matter couplings. The scalar flux Fϕ = Fmon
ϕ + F dip

ϕ + F quad
ϕ

contains three contributions given by

Fmon
ϕ = O

(
1

c5

)
, (4.34)

F dip
ϕ =

G

3c3

(
G12Mµ

r2

)2

[α1 − α2]2 +O
(

1

c5

)
, (4.35)

F quad
ϕ =

G

30c5

(
G12Mµ

r2

)2 [
32v2 − 88

3
(r̂ · ~v)2

]
(α1X2 + α2X1)2

+O
(

1

c7

)
, (4.36)

where XA = MA/M are mass ratios. In equations (4.33)-(4.36), the masses

and charges are all to be evaluated at ϕ∞, the value of the scalar field asymp-

totically far away from the binary system. Note that the leading contribution

to the monopole flux vanishes on account of the constancy of the bodies’ scalar

charges. The first non-trivial contribution to this flux depends on the second

derivatives M ′′
A(ϕ∞), and is given in [50].

4.6 Radiation in Massive Brans-Dicke Theory

Motivated in part by the recent argument that string theory predicts a broad

range of scalar masses with potentially observable astrophysical consequences

[9], Alsing and collaborators [6] have recently turned to the problem of find-

ing the energy flux in massive Scalar-Tensor theories, whose solution is com-

plicated by the unwieldy form of the Green’s function for the massive wave

equation in four-dimensional Minkowski space-time27, and requires sophisti-

cated contour integration methods [6, 190]. The most promiment feature of

the obtained solution is the presence of Heaviside step functions cutting off

27This Green’s function may be written in terms of Bessel functions [6, 190]
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the radiation when the scalar mass gets larger than (a constant multiple of)

the orbital frequency, the existence of which has been intuitively anticipated in

[31]. In order to simplify the calculation, Alsing and collaborators restricted

attention to the special case of circular orbits in Brans-Dicke theory28 and

obtained the Jordan-frame scalar fluxes29

F̃ dip
φ =

2G̃3G2M̃2µ̃2ξ

3r̂4c3
(s1 − s2)2

(
1− m2

sc
4

~2Ω2

)
Θ(~Ω−msc

2) , (4.37)

F̃ quad
φ =

8G̃3G2M̃2µ̃2ξΓ2v2

15r̂4c5

(
1− m2

sc
4

4~2Ω2

)
Θ(2~Ω−msc

2) , (4.38)

and the tensor flux

F̃ quad
g̃ =

8G̃3G2M̃2µ̃2v2

15r̂4c5
(12− 6ξ) . (4.39)

Here

m2
s =

~2

c2
B′′(ϕ∞) =

~2

c2
· V
′′(φ∞)φ∞
2ω∞ + 3

(4.40)

is the mass of the scalar field, Ω is the orbital angular frequency, and G̃ is

the physical Newton constant given by equation (2.68). The hat on r indi-

cates that units are used in which the Jordan-frame metric is asymptotically-

Minkowski30, and the tildes on the total and reduced masses indicate that

these quantities are calculated using the Jordan-frame point-particle action

(4.14).

The sensitivities of the two bodies are defined by

sA ≡
d log M̃A(φ)

d log φ

∣∣∣∣
φ=φ∞

, (4.41)

and may be expressed in terms of Einstein-frame quantities by means of equa-

tion (2.12). It is found that

d log M̃A(φ)

d log φ
=

1

2

(
1− d logMA(ϕ)

d logA(ϕ)

)
=

1

2

(
1− αA(ϕ)

α(ϕ)

)
, (4.42)

28Work is in progress to relax both of these restrictions [6].
29The scalar monopole flux vanishes for a circular orbit.
30This notation was first introduced in equation (2.66)
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which implies

1− 2sA =
αA
α∞

. (4.43)

With this result in hand, the constants ξ, G, and Γ appearing in equations

(4.37)-(4.39) may be transformed into the Einstein frame:

ξ :=
1

ω∞ + 2
=

2α2
∞

1 + α2
∞
, (4.44)

G := 1− ξ(s1 + s2 − 2s1s2) =
1 + α1α2

1 + α2
∞

, (4.45)

Γ := 1− 2(s1X2 + s2X1) =
α1X2 + α2X1

α∞
. (4.46)

Finally, upon putting everything together, it is found that31

F̃ dip
φ =

GA−2
∞

3c3

(
G12Mµ

r2

)2

(α1 − α2)2 ×(
1− m2

sc
4

~2Ω2

)
Θ(~Ω−msc

2) , (4.47)

F̃ quad
ϕ =

16GA−2
∞

15c5

(
G12Mµv

r2

)2

(α1X2 + α2X1)2 ×(
1− m2

sc
4

4~2Ω2

)
Θ(2~Ω−msc

2) , (4.48)

F̃ quad
g̃ =

96GA−2
∞

15c5

(
G12Mµv

r2

)2

, (4.49)

which is consistent with equations (4.33)-(4.36) in the limit of circular orbits

and a massless scalar, that is, r̂ · ~v → 0 and ms → 0, explicitly confirming the

equivalence of the Einstein-frame and Jordan-frame formulations of Scalar-

Tensor gravity.

4.7 Effective Field Theory

4.7.1 Motivation

In General Relativity, the relativistic corrections to the equations of motion de-

scribed in section 4.4 were calculated in a mathematically well-defined manner

to order v5/c5, by employing the Riesz kernel (4.11) to regularize divergences

31The notation A∞ is short-hand for A(ϕ∞).
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arising in the point-particle limit [44, 42]. Two independent groups have at-

tempted to extend this calculation to order v6/c6, and both found that the

final equations of motion depend on an undetermined parameter arising in the

regularization procedure. Although initially conjectured that this ambiguity

is related to the physical incompleteness of the point-particle model, it was

later understood how the unknown parameter may be uniquely determined by

means of dimensional regularization. Subsequently, the results obtained by

these two groups were shown to be physically equivalent [22].

Motivated by the desire to obtain an intuitive physical understanding of

these complicated calculations, Goldberger and Rothstein [80, 78, 76] applied

the formalism of Effective Field Theory (EFT) [30] to the gravitational two-

body problem. This approach employs the tools of Quantum Field Theory

(QFT) [112] to handle divergences, and explains in very simple terms why

the traditional Post-Newtonian calculations run into difficulty at order v6/c6.

Moreover, the equations of motion, radiative multipole moments, and power

loss formulas may be calculated by means of Feynman diagrams and power

counting, which drastically reduces the amount of work required to obtain

results at a given Post-Newtonian order [77, 145, 80, 78, 76]. These methods

are particularly useful for incorporating the effects of spin [129, 134, 133, 132,

137, 138, 130, 136, 135] and disspiation [79, 131].

4.7.2 Introduction

Motivated by the separation of scales32 ubiquitous in nature, Effective Field

Theory (EFT) [30] is a framework built upon the axiom that it is always possi-

ble to describe physics at energies E � Λ (or length scales r � r0) using only

degrees of freedom accessible at those energies (or length scales). The high-

energy (or short-distance) degrees of freedom are ‘integrated out’, and their

effects are encoded into a set of low-energy (or long-distance) phenomenolog-

ical parameters. For instance, hydrodynamics is an effective field theory in

32For example, it is possible to understand the macroscopic properties of fluids without

understanding atomic physics (QED), and the latter may be understood without knowledge

of QCD.
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which molecular length scales have been integrated out, and the viscosity is

an example of a long-distance phenomenological parameter encoding informa-

tion about the short-distance molecular interactions. Another example more

relevant to the subject of this thesis is General Relativity itself, which is the-

oretically consistent and observationally well-tested at energies33 E � Mplc
2

[29, 60, 59].

In the context of a binary inspiral, the effective field theory framework

may be applied on two different levels [80]. For the purpose of obtaining the

equations of motion, it is useful to integrate out length scales shorter than the

sizes of the bodies, and encode their effects into a ‘point particle’ Lagrangian

such as (4.12) or (4.13), which enters as a source into the field equations de-

scribing the orbital dynamics. On the other hand, for the purpose of obtaining

the energy flux at infinity, length scales shorter than the orbital separation are

integrated out, and the orbital dynamics is encoded into multipole moments

such as (4.22)-(4.25), in terms of which the flux is expressed.

Of principal interest here is the former application, namely, the point-

particle description of orbital dynamics, which will be relevant in section 5

where a double-black-hole binary system embedded in a cosmological back-

ground (or slowly moving through a scalar gradient) is considered, and found

to be inadequately described by the Eardley Lagrangian (4.13).

4.7.3 Formalism

The point-particle description of a binary inspiral (in General Relativity or

alternative theories) begins with a matter action of the form

Sm =
∑
A

∫
ΓA

LAdsA , (4.50)

where the point-particle Lagrangian LA functionally depends on the metric,

worldline, and any other fields in the theory34, and is invariant under co-

ordinate transformations and worldline reparametrizations. In Scalar-Tensor

33The Planck mass Mpl is defined in equation (2.1).
34In some instances it is necessary to introduce additional degrees of freedom [129, 79, 131].
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gravity, it has the explicit functional form

LA = LA[gµν ; εµνρσ ; Rρσµν ; ∇λ1···∇λiRρσµν ;

ϕ ; ∇λ1···∇λiϕ ; uλA ; DiuλA/ds
i
A] , (4.51)

where zλA(sA) is an arclength parametrization of the worldline ΓA, uλA :=

dzλA/dsA is its velocity, and D/dsA := uλA∇λ is the covariant derivative along

it.

The point-particle Lagrangian plays two distinct roles. On one hand,

its functional derivatives appear as sources in the field equations, and on the

other, its variation with respect to the worldline yields the equations of motion

for body A in the test-particle limit. In the case of a ‘true’ point particle with

mass MA in General Relativity, it is well-known that

LA = −MAc , (4.52)

while the point-particle Lagrangian of an extended body generically contains

infinitely many correction terms describing the internal structure. Equation

(4.51) suggests a natural way of organizing these terms — expanding in num-

bers of derivatives, which is related35 to an expansion in powers of the size-to-

separation ratio ε ∼ RA/D for the two-body problem, since the coefficient of

a term with k derivatives36 has dimension MLk+1T−1. The terms in LA with

this scaling will be denoted by L(k)
A , so that

LA =
∞∑
k=0

L(k)
A . (4.53)

Carrying out this expansion in General Relativity, one finds that L(0)
A

is given by37 (4.52), L(1)
A vanishes38, and

L(2)
A = a1R + a2Rµνu

µuν + a3u̇
µu̇νgµν , (4.54)

35This relation is not always a simple one, particularly when the orbital dynamics depends

on a length scale other than D. Such a situation will be considered in section 5.
36This term is built from the objects listed in the square brackets on the right-hand side

of equation (4.51). The Riemann tensor is counted as having two derivatives, while the

velocity is counted as having zero derivatives.
37Note that uµuνgµν = −1.
38Note that (Duµ/ds)uνgµν = 1

2
D
ds (uµuνgµν) = 0.
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where u̇µ is short-hand notation for the covariant derivative Duµ/ds, and the

body labels A on uµ, s, and ai have been suppressed for brevity. Since the

variation of the gravitational action
∫
d4x
√
−gR is a linear combination of Rµν

and R (see equation (A.46)), a re-definition of the metric may be employed to

remove the a1 and a2 terms from L(2)
A , as explained in the appendix of [76].

A power-counting argument [78] demonstrates that the a1 and a2 terms may

only appear in the equations of motion at orders v6/c6 and higher, explaining

why the traditional approaches ran into difficulties at this order, while the fact

that a1 and a2 may be removed explains why it was possible to surmount these

difficulties39.

Turning to the a3 term quadratic in u̇, one finds that it may be removed

by redefining the dynamical variables zλA, since the variation of
∫
L(0)
A dsA with

respect to the worldline is proportional to u̇ [37]. Continuing the derivative

expansion to third order, one finds a plethora of terms involving R, ∇R, u̇,

ü, and
...
u , which the present author has not seen discussed anywhere in the

literature. For instance, Goldberger and Rothstein [76, 79, 80] state that the

first non-redundant terms arise at fourth order in the derivative expansion,

and may be put into the canonical form

L(4)
A = cEEµνE

µν + cBBµνB
µν , (4.55)

where Eµν := Cµρνσu
ρuσ andBµν := C̃µρνσu

ρuσ are the ‘electric’ and ‘magnetic’

parts of they Weyl tensor, respectively, where C̃µρνσ := 1
2
εµρκλC

κλ
νσ is the dual.

Turning to Scalar-Tensor gravity, it is found that L(0)
A is given by the

Eardley Lagrangian (4.13), whereas L(1)
A is a total derivative,

L(1)
A =

dF (ϕ)

dsA
, (4.56)

contributing only a boundary term to the action. Although eight terms are a

39The fact that a1 and a2 may be removed is also an explicit illustration of the principle

of effacement briefly mentioned in section 2.1.1.
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priori possible at second order,

L(2)
A = a1(ϕ)R + a2(ϕ)Rµνu

µuν + a3(ϕ)u̇µu̇νgµν

+a4(ϕ)gµν∇µϕ∇νϕ+ a5(ϕ)uµuν∇µϕ∇νϕ

+a6(ϕ)gµν∇µ∇νϕ+ a7(ϕ)uµuν∇µ∇νϕ

+a8(ϕ)u̇µ∇µϕ , (4.57)

the field redefinition procedure described above may be employed to remove

the a3, a6, and a8 terms, and absorb the a1 and a2 terms into the a4 and a5

terms, respectively [53]. In the latter reference, it was demonstrated that for

bodies which are static and spherically-symmetric when unperturbed, the a4

term is the dominant one in the Post-Newtonian limit.

In summary, the formalism of Effective Field Theory demonstrates that

a derivative expansion of the point-particle Lagrangian is related to an expan-

sion in powers of the size-to-separation ratio ε ∼ R/D for a binary inspiral.

The next section considers an astrophysically interesting situation where the

Eardley Lagrangian (4.13) is inadequate, and it is necessary to go beyond

the zeroth order in this derivative expansion to correctly describe the orbital

dynamics.

63



PhD Thesis - M. W. Horbatsch McMaster - Physics and Astronomy

5 Miracle Hair Growth

5.1 Introduction

The purpose of this section is to construct an astrophysically interesting exam-

ple of a binary inspiral in which the Eardley Lagrangian (4.13) is inadequate to

describe the orbital dynamics, and the derivative expansion explained in 4.7.3

must be taken to higher orders. This may be accomplished by introducing a

new scale into the problem, and the natural candidate is the time scale T over

which the asymptotic background scalar ϕ∞ evolves, which may physically

arise either due to a cosmological embedding [70, 16], or a relative velocity to

an external scalar gradient, such as that sourced by the dark matter distri-

bution of a galaxy. In addition to the size-to-separation ratio ε ∼ R/D, the

orbital dynamics will then depend on the ratios Torb/T and Tint/T, where Torb

is the orbital time scale40, and Tint is the internal time scale41 of the bodies. It

turns out that O(Tint/T) effects cause black holes to grow scalar hair, which

is the subject of the next section.

5.2 Jacobson’s Formula

As discussed in section 3.3, black holes in Scalar-Tensor gravity often fail to

have ‘scalar hair’, and reduce to those of General Relativity. Although it is

not difficult to obtain hairy black-hole solutions, most of these constructions

are irrelevant for astrophysics, since they employ higher dimensions, electro-

magnetic charge, scalar potentials, and combinations thereof42. An interesting

exception is Jacobson’s Miracle Hair Growth Formula, discovered back in 1999

[96], which states that a Schwarzschild43 black hole subject to time-dependent

boundary conditions for the scalar field at spatial infinity grows hair, in other

words, acquires a non-zero scalar charge44 QA. More precisely, if the asymp-

40This quantity may be related to other orbital variables by equation (4.8).
41For a black hole of mass M , Tint = GM/c3.
42For a few examples, see [165, 156, 5, 111].
43The result generalizes to a wide class of black holes in a fairly straightforward manner.
44Recall that QA is defined by the integral in equation (3.7), or equivalently by the asymp-

totic expansion (3.4).
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totic value of the scalar ϕ∞ evolves linearly in time with scale T, that is,

ϕ(t, r = ∞) = t/T + const, and one works to linear order in the ratio45

δ := GMA/Tc
3, then the dimensionless quantity characterizing the amount of

hair grown46 is given by

αA :=
QA

MA

= 4δ =
4GMA

Tc3
. (5.1)

On a technical level, the vacuum field equations to be solved boil down

to the wave equation 2ϕ = 0 in a Schwarzschild background upon linearization

in δ, and the scalar field profile giving rise to the hair is the following globally-

defined zero mode of the d’Alembertian operator:

ϕ(t, r) =
t

T
+ 2δ log

∣∣∣∣1− 2GMA

rc2

∣∣∣∣ , (5.2)

where both terms individually satisfy the linear wave equation, and coefficients

are chosen so that the breakdown of the time coordinate at the horizon is

precisely cancelled by the singularity in the second term, as explained in [96,

91].

5.3 Double-Black-Hole Binaries

In the context of a double-black-hole binary, Jacobson’s formula implies that

both black holes acquire scalar charges given by (5.1) at linear order in δ, and

thus a scalar interaction between the black holes arises at order δ2. To find

the orbital corrections induced by this interaction, it is insufficient to use the

Eardley Lagrangian (4.13), because the mass (or any other physical property)

of a black hole in Scalar-Tensor gravity is invariant under shifts of the scalar

field, implying that the source term δSEardley
m /δϕ in the scalar field equation

vanishes.

It follows from the discussion in 4.7.3 that the appropriate point-particle

Lagrangian from which the O(δ2) orbital corrections may be derived has the

45In taking this quantity to be small, one is assuming that the cosmological or galactic

time scale T associated with the evolution of ϕ∞ is much longer than the light crossing time

scale GMA/c
3 of the black hole.

46This quantity, initially defined in section 4.5, enters into the power loss formulas (4.33)-

(4.36).
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general form

LA = −MAc+ (a4g
µν + a5u

µuν)∇µϕ∇νϕ+ a7u
µuν∇µ∇νϕ , (5.3)

where the coefficients ai do not depend on ϕ on account of the scalar-shift

symmetry of black holes, and may be determined by a matching calculation.

This calculation is reserved for future work, and attention is restricted to the

simpler problem of finding the dipole flux emitted by the accelerating scalar

charges. To leading order in δ and leading Post-Newtonian order, this flux is

given by the second term on the second line of equation (4.31), where the scalar

dipole moment ψi(U) is calculated by means of equation (4.24), in which the

source j is given by (4.28), with zA(t) being the O(δ0) unperturbed trajectory,

and M ′
A(ϕ∞) being replaced by QA = αAMA as given by the Jacobson formula

(5.1). Putting everything together yields the final radiated scalar dipole power

F dip
ϕ =

G3M2
1M

2
2

3r4c3
[α1 − α2]2 +O

(
v5

c5

)
+O(δ3) , (5.4)

for a double-black-hole binary in Scalar-Tensor gravity subject to the boundary

conditions ϕ(t, r =∞) = t/T + const.

5.4 The Quasar OJ287

The result (5.4) has a nice application to quasar OJ287, whose light intensity

as a function of time is quasi-periodic, with two ‘bursts’ occurring every 12

years. In 1988, this system was modelled by Sillanpää and collaborators [157]

as a supermassive black hole binary, with an outburst occurring whenever

the orbit of the lighter black hole punctures the accretion disc of the heavier

companion. Work on the model continued following the outbursts of 1994-5

[107, 176, 167, 178, 143], and the first outburst of 2007 [182, 179, 177, 174]. In

particular, a prediction was made for the date of the second outburst, which

was subsequently verified by observations to within 6% [185]. Further work on

the model [183, 180, 184] has led to an estimate of the spin of the heavier black

hole [187, 181, 175], and it is expected that observations of future outbursts

will yield a test of the no-hair theorem [186].
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The agreement of the general-relativistic quadrupolar flux F quad
g (given

by (4.20)) with the observations of OJ287 implies a bound on the ratio F dip
ϕ /F quad

g ,

which by means of equations (5.4), (5.1), and (4.20) may be translated into the

bound T & 16 days [91]. Although not impressive by cosmological or galactic

standards, it is quite remarkable that such a bound is even possible, given that

it is completely independent of any assumptions about how the scalar couples

to matter.
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6 Summary and Prospects

In this thesis, strong-field effects in Scalar-Tensor gravity were investigated,

and two novel results have been presented — The Weak Central Coupling

(WCC) framework for describing neutron star scalarization perturbatively, and

the Miracle Hair Growth in double-black-hole binaries induced by cosmological

and/or galactic effects.

The former has been worked out in the ‘quadratic’ model with confor-

mal factor (3.81) and Einstein-frame scalar-matter coupling (3.82) for simplic-

ity. However, since pulsar timing observations have already ruled out a large

region of the quadratic-model theory-space in which scalarization is allowed

[68, 66, 67, 65, 64, 53, 63, 52, 49, 20, 106, 74, 89], it would be worthwhile to

extend the WCC formalism to more complicated coupling functions, as well

as more general Scalar-Tensor theories such as Einstein-Dilaton-Gauss-Bonet

(EDGB) gravity [116, 126], in which a detailed study of stellar structure has

recently been undertaken [125].

A calculation of the scalar dipole flux emitted by a double-black-hole

binary has led to a bound on galactic and cosmological effects in quasar OJ287

which is interesting in principle, but not very useful in practice. However,

observations of future OJ287 outbursts, as well as direct gravitational wave

observations by second-generation detectors may yield better bounds.

A calculation of theoretical interest which has not yet been under-

taken, is the determination of the coefficients ai in the effective point-particle

Lagrangian (5.3) describing a ‘Jacobson’ black hole with ‘miracle hair’.
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A Mathematical Preliminaries

The purpose of this section is to establish conventions and notation, and list

the mathematical formulae that are used throughout the thesis.

A.1 Units

The speed of light is denoted by c. In the Einstein-frame formulation of Scalar-

Tensor gravity, the gravitational constant is denoted by G and scalar fields

are denoted by ϕ, while in the Jordan-frame formulation, the gravitational

constant (which is measured in a Cavendish experiment) is denoted by G̃

while scalar fields are denoted by φ. Geometrical units are not used, and all

factors of G and c are explicitly written. Note that ϕ is dimensionless, while

φ has units of 1/G, where G has units of Ld−1/MT 2 in d dimensions.

A.2 Basic Differential Geometry

The number of space-time dimensions is denoted by d. Although the case d = 4

is of physical interest, results are derived for arbitrary d whenever possible.

Space-time coordinates are denoted by xµ = (x0, xi), where x0 = ct is the time

coordinate, and xi are spatial coordinates. Greek indices run from 0 to d− 1,

and latin indices run from 1 to d − 1. The partial derivative with respect to

xµ is denoted by ∂µ.

The space-time metric is denoted by gµν , and its inverse is denoted by

gµν , so that gµνg
νλ = δλµ. Differentiating this identity relates partial derivatives

of the metric to partial derivatives of the inverse metric:

∂λg
µν = −gµρgνσ∂λgρσ , ∂λgµν = −gµρgνσ∂λgρσ . (A.1)

Unless stated otherwise, indices are raised and lowered with gµν and gµν , re-

spectively. Signs are chosen so that time-like vectors have negative norm, and

space-like vectors have positive norm. In other words, the metric is ‘mostly

plus’. MTW [114], Carroll [37], and Weinberg [191] all use this same choice of

sign, but some other authors use opposite signs.
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The flat Minkowski metric is denoted by ηµν . In canonical coordinates

on Minkowski space-time, it takes the form ηµν = diag(−1, 1, . . . , 1). The

notation for symmetrization and antisymmetrization of tensors is given by

T(µ1···µk) =
1

k!

∑
σ∈Sk

Tµσ(1)···µσ(k) , (A.2)

T[µ1···µk] =
1

k!

∑
σ∈Sk

(sgnσ)Tµσ(1)···µσ(k) . (A.3)

Note that some authors may omit the factor of k!.

The determinant of the metric, which is negative-definite, is denoted

by g. It appears in the canonical volume element of the space-time manifold,

dV =
√
−gdx0 · · · dxd−1 ≡

√
−gddx , (A.4)

and its derivative may be computed by using the matrix identity log det =

tr log and equation (A.1):

∂λ
√
−g =

1

2

√
−ggµν∂λgµν = −1

2

√
−ggµν∂λgµν . (A.5)

The completely antisymmetric Levi-Civita tensor is defined to be

εµ1···µd =
√
−g · sgn(µ1 · · ·µd) , (A.6)

and its raised-index form is given by

εµ1···µd = − 1√
−g
· sgn(µ1 · · ·µd) (A.7)

When the partial derivative operator ∂µ acts on a tensor, the resulting

object is generally not a tensor. However, it is possible to define a covariant

derivative operator ∇µ, which maps tensors to tensors, annihilates the metric,

and reduces to the partial derivative operator when acting on scalars. Its

action on single-index tensors is given by

∇µV
ν = ∂µV

ν + ΓνµλV
λ , ∇µVν = ∂µVν − ΓλµνVλ , (A.8)

and its action on multi-index tensors is given by straightforward generaliza-

tions of (A.8), with a +Γ correction term for each upper index, and a −Γ

correction term for each lower index.
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The Γλµν are called Christoffel symbols. They are not tensors, and they

are constructed to cancel the ‘non-covariant’ parts of ∂µ. An explicit formula

for them may be found by writing out the metric compatibility condition

∇λgµν = 0:

Γλµν =
1

2
gλσ (∂µgνσ + ∂νgµσ − ∂σgµν) . (A.9)

Contracting equation (A.9) and combining the result with equation (A.5)

yields

Γµµλ =
1

2
gµν∂λgµν = −1

2
gµν∂λg

µν =
∂λ
√
−g√
−g

. (A.10)

The d’Alembertian wave operator is defined by 2 ≡ ∇µ∇µ. By means

of equation (A.10), the d’Alembertian of a scalar function f may be written

explicitly in coordinates as

2f = ∂µ∂
µf + Γµµν∂

νf

=
1√
−g

∂µ
(√
−ggµν∂νf

)
. (A.11)

When acting on a scalar function f , covariant derivatives commute:

∇µ∇νf = ∇ν∇µf . However, this need not be the case when covariant deriva-

tives act on tensors of higher rank. The failure of covariant derivatives to

commute is quantified by the Riemann curvature tensor Rρ
σµν , so that for

single-index tensors,

[∇µ,∇ν ]V
ρ = Rρ

σµνV
σ , [∇µ,∇ν ]Vρ = −Rσ

ρµνVσ , (A.12)

and for multi-index tensors, the action of [∇µ,∇ν ] is given by a straightforward

generalization of equation (A.12), with a +R term for each upper index, and

a −R term for each lower index.

The curvature conventions used are those of MTW [114], Wald [189],

and Carroll [37]. They differ from those of Weinberg [191] by a sign. The

advantage of this choice is that the Ricci scalar curvature (A.18) is positive

on spheres and negative on hyperboloids, in line with intuition. However,

the disadvantage is that in an action, the gravitational kinetic term has the

opposite sign of the kinetic terms of other fields.
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Using (A.8) to evaluate the left-hand side of one of the equations in

(A.12) yields the following expression for the Riemann tensor in coordinates:

Rρ
σµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ . (A.13)

It may be shown that the Riemann tensor has the following symmetry prop-

erties under the interchange of two indices:

Rρσµν = −Rρσνµ = −Rσρµν = Rµνρσ . (A.14)

The first equality in (A.14) follows immediately from the definition (A.12),

whereas it takes more work to derive the other two equalities. The Riemann

tensor also satisfies two Bianchi identities, which involve antisymmetrization

over three indices. The first of these is given by

Rρ[σµν] = 0 , (A.15)

and the second is given by

∇[λRρσ]µν = 0 . (A.16)

On account of the symmetries (A.14), there exists only one independent

non-vanishing contraction of the Riemann tensor. It is called the Ricci tensor,

and is defined by

Rµν = Rλ
µλν . (A.17)

It follows from (A.14) that the Ricci tensor is symmetric: Rµν = Rνµ. It may

be further contracted, to define the Ricci scalar:

R = Rµ
µ . (A.18)

Writing out and contracting the second Bianchi identity (A.16) yields the

following differential relation between the Ricci tensor and scalar:

∇µ

(
Rµν −

1

2
Rgµν

)
= 0 . (A.19)

The trace-free part of the Riemann tensor, with the Ricci tensor and scalar

‘subtracted out’, is called the Weyl tensor, is given by

Cρσµν = Rρσµν−
2

d− 2

(
gρ[µRν]σ − gσ[µRν]ρ

)
+

2

(d− 1)(d− 2)
gρ[µgν]σR , (A.20)
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and has the same symmetry properties (A.14)-(A.15) as the Riemann tensor

under interchange of indices.

By means of equations (A.13), (A.9), and (A.1), the Ricci tensor (A.17)

may be written explicitly in terms of the metric and its partial derivatives as

Rµν =
1

2
gρσ(∂ν∂σgµρ − ∂ρ∂σgµν + ∂µ∂ρgνσ − ∂µ∂νgρσ)

+
1

4
gκλgρσ

(
2∂κgµν∂σgρλ − ∂κgµν∂λgρσ

− 2∂νgµκ∂σgρλ + ∂νgµκ∂λgρσ

− 2∂µgνκ∂σgρλ + ∂µgνκ∂λgρσ

+ 2∂σgνλ∂ρgκµ − 2∂σgνλ∂κgρµ

+ ∂µgρλ∂νgσκ
)
. (A.21)

In order to write the above expression as a non-linear wave operator acting

on the metric, it is useful to introduce harmonic coordinates, defined by the

condition

0 = 2xµ =
1√
−g

∂ν(
√
−ggµν) . (A.22)

It follows from equation (A.5) and (A.1) that the harmonic coordinate condi-

tion (A.22) is equivalent to

1

2
gµν∂ρgµν = ∂σgρσ . (A.23)

Equation (A.23) may be used to simplify equation (A.21), and obtain the

following expression for the Ricci tensor in harmonic coordinates:

Rµν = −1

2
gρσ∂ρ∂σgµν

+
1

4
gκλgρσ

(
2∂νgρλ∂σgµκ + 2∂µgρλ∂σgνκ

+ 2∂σgνλ∂ρgκµ − 2∂σgνλ∂κgρµ

− ∂µgρλ∂νgσκ
)
. (A.24)
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A.3 Static Spherically-Symmetric Metrics

In this section, coordinates for describing static spherically-symmetric bodies

are introduced, and the various curvature tensors are explicitly computed in

these coordinates.

The most general static spherically-symmetric metric may be written

as

ds2 = gµνdx
µdxν = −f(r)c2dt2 + h(r)dr2 + k(r)dΩ2 , (A.25)

where the coordinates are xµ = (ct, r, θ1, . . . , θd−2), and dΩ2 is the canonical

line element on Sd−2 in hyperspherical coordinates, namely,

dΩ2 = dθ2
1 + sin2 θ1dθ

2
2 + sin2 θ1 sin2 θ2dθ

2
3 + · · ·

+(sin2 θ1 · · · sin2 θd−3)dθ2
d−2 . (A.26)

Note that the functions f and h are dimensionless, while the function k has

units of length squared.

Given this choice of coordinates, it follows from equation (A.9) that

the independent non-vanishing Christoffel symbols are given by

Γ0
0r =

f ′

2f
, (A.27)

Γr00 =
f ′

2h
, (A.28)

Γrrr =
h′

2h
, (A.29)

Γrθiθi = − k
′

2k
· gθiθi
h

, (A.30)

Γθirθi =
k′

2k
, (A.31)

Γ
θj
θiθi

=

{
− cot θjg

θjθjgθiθi : j < i

0 : j ≥ i
, (A.32)

Γ
θj
θjθi

=

{
cot θi : i < j

0 : i ≥ j
, (A.33)

where primes denote derivatives with respect to r, and it follows from equa-

tions (A.13) and (A.14) that the independent non-vanishing components of

74



PhD Thesis - M. W. Horbatsch McMaster - Physics and Astronomy

the Riemann tensor are given by

R0
r0r = −f

′′

2f
+
f ′2

4f 2
+
f ′h′

4fh
, (A.34)

R0
θi0θi

= −f
′k′

4fk

gθiθi
h

, (A.35)

Rr
θirθi

=

(
−k

′′

2k
+
k′2

4k2
+
h′k′

4hk

)
gθiθi
h

, (A.36)

Rθi
θjθiθj

=

(
h

k
− k′2

4k2

)
gθjθj
h

(i 6= j) . (A.37)

Carrying out the contraction (A.17) yields the following expressions for the

non-vanishing independent components of the Ricci tensor:

R00 =
f

h

(
f ′′

2f
− f ′2

4f 2
− f ′h′

4fh
+

(d− 2)f ′k′

4fk

)
, (A.38)

Rrr = −f
′′

2f
+
f ′2

4f 2
+
f ′h′

4fh
+ (d− 2)

(
−k

′′

2k
+
k′2

4k2
+
k′h′

4kh

)
, (A.39)

Rθiθi =

[
d− 3 +

k

h

(
−k

′′

2k
− (d− 4)k′2

4k2
+
k′h′

4kh
− k′f ′

4kf

)]
gθiθi
k

. (A.40)

A.4 Variations of the Metric

In order to derive the field equations from the action in a relativistic theory

of gravity, it is necessary to consider a variation of the metric gµν → gµν +

δgµν , and compute how the various curvature tensors transform under such a

variation. The variations of the metric and its inverse are related by

δgµν = −gµρgνσδgρσ , δgµν = −gµρgνσδgρσ , (A.41)

which is analogous to equation (A.1). The variation of the determinant of the

metric is given by

δ
√
−g = −1

2

√
−ggµνδgµν =

1

2

√
−ggµνδgµν , (A.42)

which is analogous to equation (A.5). It follows from equations (A.9), (A.8),

and (A.41) that the variation of the Christoffel symbols is given by

δΓλµν =
1

2
gλσ (∇µδgνσ +∇νδgµσ −∇σδgµν) . (A.43)
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The variation of the Riemann curvature tensor is given by

δRρ
σµν = ∇µδΓ

ρ
νσ −∇νδΓ

ρ
µσ

=
1

2
gρλ
(
[∇µ,∇ν ]δgσλ +∇µ(∇σδgνλ −∇λδgνσ)

−∇ν(∇σδgµλ −∇λδgµσ)
)
, (A.44)

where the first equality follows equations (A.13) and (A.8), and the second

equality follows from equation (A.43). Taking variations of the contractions

of the Riemann tensor, one obtains

δRµν = ∇λδΓ
λ
µν −∇νδΓ

λ
λµ

= ∇λ∇(µδgν)λ −
1

2
2δgµν −

1

2
gλρ∇µ∇νδgλρ (A.45)

for the variation of the Ricci tensor, and

δR = −(Rµν + gµν2−∇µ∇ν)δgµν

= (Rµν + gµν2−∇µ∇ν)δg
µν (A.46)

for the variation of the Ricci scalar.

A.5 Conformal Transformations

Scalar-tensor theories of gravity have two different mathematical representa-

tions, called the Einstein and Jordan frames. In order to convert between

them, it is necessary to know how the various curvature tensors transform

when the metric is re-scaled by a conformal factor:

g̃µν = Ω2gµν , g̃µν = Ω−2gµν , (A.47)

where Ω is a function of space-time. Let Γ̃λµν , ∇̃µ, 2̃, R̃ρ
σµν , R̃µν , and R̃ be

the Christoffel symbols, covariant derivative, d’Alembertian, Riemann tensor,

Ricci tensor, and Ricci scalar, respectively, which are constructed using the

re-scaled metric (A.47). In particular, this means that the indices on Γ̃λµν ,

∇̃µ, R̃ρ
σµν , and R̃µν are raised and lowered with the re-scaled metric (A.47).

For example, R̃ = g̃µνR̃µν , and R̃ρσµν = g̃ρλR̃
λ
σµν .
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In order to obtain the transformation of the Christoffel symbols, one

uses equations (A.9) and (A.47) to find that

Γ̃λµν =
1

2
g̃λσ (∂µg̃νσ + ∂ν g̃µσ − ∂σg̃µν)

= Γλµν + (δλµ∂ν + δλν∂µ − gµνgλρ∂ρ) log Ω . (A.48)

Now to find the transformation of the Riemann tensor, the above result is

combined with equations (A.13) and (A.8), yielding

R̃ρ
σµν = ∂µΓ̃ρνσ − ∂νΓ̃ρµσ + Γ̃ρµλΓ̃

λ
νσ − Γ̃ρνλΓ̃

λ
µσ

= Rρ
σµν + 2(δβσδ

α
[µδ

ρ
ν] − g

ρβδα[µgν]σ)∇α∇β log Ω

+2(δρ[µδ
α
ν]δ

β
σ − gρβgσ[µδ

α
ν] + gσ[µδ

ρ
ν]g

αβ)∇α log Ω∇β log Ω .(A.49)

Contracting equation (A.49) gives the transformation of the Ricci tensor,

R̃µν = Rµν −
(
(d− 2)δρµδ

σ
ν + gρσgµν

)
∇ρ∇σ log Ω

+(d− 2)(δρµδ
σ
ν − gρσgµν)∇ρ log Ω∇σ log Ω , (A.50)

and contracting again gives the transformation of the Ricci scalar,

R̃ = Ω−2 [R− 2(d− 1)2 log Ω− (d− 2)(d− 1)gµν∇µ log Ω∇ν log Ω] .(A.51)

Note that in equations (A.48)-(A.50), indices may not be freely moved up and

down, because on the left-hand sides, the re-scaled metric (A.47) is used to

raise and lower indices, whereas on the right-hand sides, the original metric is

used to raise and lower indices.

Let g̃ be the determinant of the re-scaled metric g̃µν . Its scaling is given

by √
−g̃ = Ωd

√
−g , (A.52)

and therefore, the d’Alembertian operator acting on a scalar function, (A.11),

transforms according to

2̃f = ∇̃µ∇̃µf

=
1√
−g̃

∂µ

(√
−g̃g̃µν∂νf

)
= Ω−2 [2f + (d− 2)gµν∇µ log Ω∇νf ] . (A.53)

77



PhD Thesis - M. W. Horbatsch McMaster - Physics and Astronomy

This relation may be inverted to write 2f in terms of re-scaled quantities:

2f = Ω2
[
2̃f − (d− 2)g̃µν∇̃µ log Ω∇̃νf

]
. (A.54)

Now, equation (A.54) may be combined with equation (A.51) to write R in

terms of re-scaled quantities:

R = Ω2
[
R̃ + 2(d− 1)2̃ log Ω− (d− 1)(d− 2)g̃µν∇̃µ log Ω∇̃ν log Ω

]
. (A.55)

It is also useful to write the relation between R and R̃ in the form

R− 2(d− 1)2 log Ω = Ω2
[
R̃ + (d− 2)(d− 1)g̃µν∇̃µ log Ω∇̃ν log Ω

]
, (A.56)

since the second term on the left-hand side is a total derivative.

A.6 Wave Equations and Green’s Functions

A useful tool for solving wave equations is the Green’s function G(x, y), which

is defined to be a solution of the wave equation with a point source:

2xG(x, y) = δy(x) , (A.57)

where δy is the Dirac distribution centered on y, which is defined by the con-

ditions δy(x) = 0 for x 6= y, and∫
dVxf(x)δy(x) = f(y) (A.58)

for all functions f . The subscripts x on 2 and dV denote that the differ-

entiation and integration is with respect to the coordinate x. Given a wave

equation of the form 2f = j, a solution may be written in terms of Green’s

function as

f(x) =

∫
dVyG(x, y)j(y) . (A.59)

Note that in order to uniquely determine G, it is necessary to supplement

equation (A.57) with appropriate boundary conditions.

For a general manifold, the calculation of G is a difficult problem. Even

in flat d-dimensional Minkowski space-time, there is no simple expression for
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G. However, in the special case d = 4, the Green’s function with ‘retarded’

boundary conditions is given by

G(x, y) = − 1

2π
Θ(x0 − y0)δ[(xµ − yµ)(xµ − yµ)] , (A.60)

where Θ is the Heaviside step function, which ensures that ‘signals propagate

forward in time’, and δ is the one-dimensional Dirac distribution on R, which

ensures that ‘signals propagate at the speed of light’.

Writing equation (A.60) explicitly in terms of the space and time com-

ponents of the coordinates yields

G(x, y) = − 1

4π

δ[y0 − (x0 − |~x− ~y|)]
|~x− ~y|

. (A.61)

Another operator whose Green’s function has a simple formula is the

d’Alembertian constructed out of the flat metric on the N -dimensional Eu-

clidean space RN , in other words, the Laplacian ∆. It may be shown that

G∆
N(~x, ~y) = − 1

(N − 2)ΩN−1|~x− ~y|N−2
(A.62)

is a Green’s function for ∆, that is,

∆xG
∆
N(~x, ~y) = δ(N)(~x− ~y) . (A.63)

where δ(N) is the Dirac distribution on RN . In equation (A.62), ΩN−1 denotes

the area of the sphere SN−1, and is given by

ΩN−1 =
2πN/2

Γ(N/2)
. (A.64)

A.7 Hypergeometric and Heun Functions

In this section, the hypergeometric and Heun differential equations are in-

troduced. Their solutions are needed to describe constant-density stars in

Scalar-Tensor gravity by means of perturbation theory.

Given a linear second-order differential equation with three regular sin-

gular points, it is possible to find a fractional linear transformation which maps
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the singular points to 0, 1, and ∞, and thus brings the differential equation

into the canonical form

d2y

dz2
+

(
γ

z
+

δ

z − 1

)
dy

dz
+

αβy

z(z − 1)
= 0 , (A.65)

where the coefficients are related by

γ + δ = α + β + 1 . (A.66)

Equation (A.65) is the famous hypergeometric equation, which shows up through-

out theoretical and mathematical physics, and reduces to many well-known

special functions for particular values of α, β, and γ. The regular solution

about z = 0 has the series expansion

2F1(α, β; γ; z) =
∞∑
k=0

(α)k(β)k
(γ)k

zk

k!
, (A.67)

where

(x)k =
Γ(x+ k)

Γ(x)
= x(x+ 1) · · · (x+ k − 1) (A.68)

is the Pochhammer symbol.

Similarly, given a linear second-order differential equation with four

regular singular points, it is possible to find a fractional linear transforma-

tion which maps the singular points to 0, 1, ∞, and a, and thus brings the

differential equation into the canonical form

d2y

dz2
+

(
γ

z
+

δ

z − 1
+

ε

z − a

)
dy

dz
+

αβz − q
z(z − 1)(z − a)

y = 0 , (A.69)

where the parameters are related by

γ + δ + ε = α + β + 1 . (A.70)

Equation (A.69) is called the Heun equation [144]. It was first studied by Karl

Heun in 1889, and is not nearly as well-known as the hypergeometric equation.

The regular solution about z = 0 has the series expansion

HeunG(a, q;α, β, γ, δ; z) =
∞∑
r=0

crz
r , (A.71)
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where the coefficients cr satisfy the recursion relations

−qc0 + aγc1 = 0 , (A.72)

Prcr−1 − (Qr + q)cr +Rrcr+1 = 0 (r ≥ 1) , (A.73)

where

Pr = (r − 1 + α)(r − 1 + β) , (A.74)

Qr = r[(r − 1 + γ)(1 + a) + aδ + ε] , (A.75)

Rr = (r + 1)(r + γ)a . (A.76)
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