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Abstract

In this thesis, we consider an amplify and forward half-duplex two-way-relay wireless

communication system. For such a system, we estimate the channel information using

a particular test signal set. The actual transmitted signal from a normalized square

QAM constellation is then detected by choosing the symbol in the QAM constella-

tion closest in distance to it. We derive an error probability which is found to be

signal dependent for this system. An optimum design problem under a transmission

power constraint based on this signal dependent asymptotic formula is then formu-

lated leading to the optimum transmission power condition. Simulations show that

under this optimum power transmission condition the system indeed yields optimum

performance.
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Acronyms

AF Amplify-and-Forward

DF Decode-and-Forward

QAM Quadrature Amplitude Modulation

SER Symbol Error Rate

IID Independent and Identically Distributed

MIMO Multiple Input Multiple Output

MISO Multiple Input Single Output

SNR Signal to Noise Ratio

LS Least Square
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Notation and abbreviations

a Scalar a, lowercase letter denotes scalar

a Vector a , boldface lowercase letter denotes column vector

A Matrix A , boldface uppercase letter denotes matrix

AT Transpose of Matrix A

AH Hermitian of Matrix A

E[·] Expectation operator

IT T by T identity matirx

ln Natural Logarithm

[s(1), s(2), ..., s(p)]T A length P vector

x ∼ CN (0,Σ) Complex vector x is Gaussian distributed with zero mean and

covariance matrix Σ

x∗ Conjugate of complex number x

j
√
−1
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Chapter 1

Introduction

1.1 Wireless Communications

Wireless communications involve the transference of information between two or more

points that are not physically connected. Distance between these points may be short,

such as few meters, or may be as long as thousands or even millions of kilometers

for which connection by wires is impractical. In wireless communication systems, sig-

nals are transmitted by electromagnetic wave propagations through the atmosphere.

The presence of reflectors in the surrounding of the transmitter and the receiver may

create multiple paths through which a transmitted signal may travel. The signals

transmitted through these multiple paths often interfere with each other. As a result,

the receiver sees the superposition of multiple copies of the transmitted signal, each

going through a different path. Each signal copy will experience different attenuation,

delay and phase shift while traveling from the source to the destination. This can

result in either constructive or destructive interference. Strong destructive interfer-

ence is frequently referred to as a deep fade. This is illustrated in Fig.1.1. Another
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kind of fading due to shadowing from obstacles may affect the wave propagation in

the transmission path and is referred to as shadow fading.

Figure 1.1: Multipath propagation

To mitigate channel fading, diversity techniques [15; 16; 17] which transmit and

process multiple copies of the same signal through different fading channels is often

employed. At the receiver, these different copies of the signal are then combined to

reconstruct the complete transmitted signal. The probability of experiencing fading

in this composite channel is then the probability when all the component channels

simultaneously experiencing a fade, which is an unlikely event. Well-known forms of

diversity include space diversity, time diversity, frequency diversity and polarization

diversity [18; 19; 20; 21].

Time diversity implies that the same data is transmitted over different periods, so

that different copies of the symbol undergo uncorrelated fading. Thus, there is a low

probability of experiencing deep fades for the same data. Another strategy to achieve

2



M.A.Sc. Thesis - Na He McMaster - Electrical Engineering

time diversity is to utilize bit-interleaving which adds a redundant error correction

code such that the message is spread in time. However, since the same data have to

be transmitted several times, the disadvantage of this technique is the decreasing of

the data rate.

Frequency diversity is achieved by modulating the transmission signal by different

carriers, thereby multiple copies of the signal appear in different frequency bands.

Thus, it is very unlikely that the signals will suffer the same level of channel fading.

Often, the receiver will rely on the strongest received signals as the reference of

transmission.

Polarization is a property describing the orientation of oscillations of propagating

waves. Polarization diversity combines pairs of antennas generating orthogonal polar-

izations, e.g. vertically and horizontally polarized waves. Different polarized signals

undergo different polarization changes depending on the transmission media. If the

channel fading over one polarized signal is severe, the signal may still be successfully

transmitted over other signal copies.

Space diversity is obtained by employing multiple antennas that are physically

separated from one another. Generally, a space in the order of several wavelengths is

sufficient to achieve uncorrelated signals at the transmitter and/or receiver antennas.

Therefore, the probability for experiencing deep fading for all uncorrelated signals is

low.

The above diversity techniques are all employed in wireless communication sys-

tems. The purpose of these techniques is to achieve a more reliable transmission. The

gain obtained by employing these diversity techniques, which is called diversity gain,

is often measured by the slope at which the logarithmic error probability decreases

3
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with increasing of logarithm of the signal to noise ratio at the receiver. The larger the

diversity gain, the steeper the slope, thus the more beneficial the diversity technique

to the communication system.

1.2 Cooperative System and Cooperative Proto-

cols

1.2.1 Cooperative System and Cooperative Diversity

In the previous section, various forms of diversities have been introduced. Among

these diversity techniques, spatial diversity technique is particularly attractive, since

it can be readily combined with other forms of diversity. The maximum gain ob-

tained by exploiting the spatial diversity is measured by the product of the number

of transmitter and receiver antennas. A system equipped with multiple transmitter

and receiver antennas is referred to as a Multiple Input and Multiple Output (MIMO)

system. Fig 1.2 illustrates a 2 x 2 MIMO system. A MIMO system offers significant

increase in data throughput and link range without additional bandwidth or increased

transmission power. It achieves this goal by spreading the same total transmission

power over the antennas to achieve diversity gain that improves transmission reli-

ability. Although MIMO system has such advantages, the requirement of multiple

antennas in both transmitter and receiver could be quite an inconvenience for the

mobile units in wireless communications, since installing multiple antennas would in-

crease the size, complexity and cost. To overcome this limitation, another form of

spatial diversity called cooperative diversity has recently been proposed for wireless

communications. Cooperative diversity is a virtual multiple antenna technique which

4
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exploits multiple antenna signal processing advantages using the virtually aggregated

multiple antennas each mounted on different user terminals. The basic idea of coop-

erative communications is that all mobile users in a wireless network can help each

other to send signals to the destination cooperatively, which means each user’s data

information is sent out not only by the user, but also by other users. Thus, it is

inherently more reliable for the destination to receive the transmitted information,

since from a statistical point of view, the chance of having all transmission links to

the destination failing is seldom. The discussion of cooperative communications can

be traced back to the relay systems in the work of E. van der Meulen, T.M. Cover

and A. El Gamal in 1970’s [22; 23; 24]. However, after these works, relay systems

received little attention for nearly two decades. A renewed interest has developed in

the context of wireless communication systems in recent years [25; 26].

Figure 1.2: MIMO system

5
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1.2.2 Cooperative Strategies

As pointed out in the previous section, in recent years cooperative systems have at-

tracted much research interest due to their potential applications. Techniques, such

as the designs of cooperative protocols or strategies for the cooperative systems have

been considered in [27; 28; 29]. Recently, there are mainly three types of coopera-

tive protocols: (i) fixed relaying schemes such as amplify-and-forward (AF) [7; 8; 9]

and decode-and-forward (DF) [10; 11] protocols, (ii) selection relaying schemes which

adaptively select the relays for transmission of the data based upon channel mea-

surements between the cooperating terminals, and (iii) incremental relaying schemes

that adaptively decide whether to transmit the data or not based upon the limited

feedback from the destination terminal. These protocols employ different types of

processing at the relay terminals, as well as different types of combining at the des-

tination terminals.

In a relay system, the source node first transmits the information signal to the

relay nodes and/or the destination node, then the relay nodes process and forward the

received signal to the destination. For an AF protocol, the relay nodes re-transmit a

scaled version of the signal that is received from the source node to the destination

node. To stay within the power budget, the amplifier gain has to remain under a

certain limit. This very much depends upon the fading environment. For a DF

protocol, the relay nodes decode the message first, then check if errors have occurred

or not. If the message is successfully decoded, it re-encodes the data symbol using a

different code book and transmit it to the destination. Both full decoding and symbol-

by-symbol decoding can be employed at the relay node. These options allow for

trading off performance and complexity at the relay terminal. Comparing these two
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protocols, because AF protocol does not have the encoding and decoding functions, it

has lower complexity than a DF protocol. Therefore, in most networks for which high

complexity is not acceptable, AF protocol is adopted. However, AF protocol has a

disadvantage of high noise especially when the channel between the source node and

relay node is in severe fading. The following strategy is to combat this limitation.

The conventional assumptions in a multiple relay system are that all relay nodes

participate in the transmission and that the available channel and power resources

are equally distributed over all nodes. This approach which neglects the difference of

performance of the relay, is clearly sub-optimal. On the other hand, selection relaying

scheme in which the best end-to-end path between source and destination among M

possible relays is first located before the transmission relays are selected has been

proposed. Fig.1.3 illustrates the operation of this scheme. In [30] a simple distributed

method for the selection relaying scheme is developed. This method requires no

explicit communication among the relays, assumes no prior knowledge of network

geometry and is based on instantaneous wireless channel measurements. The success

(or failure) to select the best available path depends only on the statistics of the

wireless channel. Utilizing this selection scheme, only the relay node which has the

’best’ channel gain will forward the scaled version of the signal to the destination.

So far we have seen that in both fixed and selection relaying schemes, the relays

repeat all the time. It does not make efficient use of the degrees of the freedom

of the channel. To overcome this, incremental relaying protocol has been proposed.

The main idea is that instead of repeating all the time, the transmission at the

relay node depends on the feedback from the destination terminal. For example, a

single bit may be used to indicate the success or failure of the direct transmission.

7
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Figure 1.3: Demonstrate the selection scheme

Consider the following scheme utilizing feedback and AF protocol: First, the source

node transmits the information signal to both relay and destination terminals. Then,

the destination terminal sends out a single bit of feedback to the source and relays to

indicate whether the direct transmission succeeds or fails. If the reception of the signal

is successful, then a bit is sent from the destination to the source and relays indicating

the success of the direct transmission, and the relays then do nothing. Otherwise,

the feedback of a different bit from the destination would indicate a failure and the

relays then forward the signal received from the source to the destination. Since the

relays perform a transmission only when the failure feedback is received, this scheme

make more efficient use of the degrees of freedom of the channel.

1.3 Motivation and Contribution of the Thesis

In the previous sections, we have introduced the background of wireless communica-

tions, especially the cooperative systems and cooperative protocols. In cooperative

systems, the in-cell mobile users share the use of their antennas to create a virtual

8
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array through distributed transmission and signal processing. When channel state

information (CSI) is available at the receiver, the performance for the coherent coop-

erative relay system with flat fading channels is characterized by the diversity gain

function. Full diversity can be achieved by utilizing well designed pre-coders or space-

time block codes.

However, full knowledge of channel state information at the relay nodes and the

destination nodes, in practice, may be difficult to attain. The fading coefficients in

mobile wireless communications may vary rapidly, thereby, full knowledge of CSI ne-

cessitates pilot test signals to be designed in the transmission scheme. In this thesis,

we consider a two-way relay system in which two source terminals communicate with

each other through a relay node using an AF protocol. The channel coefficients are

assumed to be fast changing. The end terminals estimate the channel information,

and then estimate the transmitted signals using the rest of the time slots. For this

two-way relay system, we estimate the CSI using a particular test signal set. The

main advantage of this system is that both end terminals can cancel the interference

generated by its own transmission. The information signal is selected from a normal-

ized square QAM constellation. This information signal is detected by choosing the

symbol in the QAM constellation closest in distance to it. In the thesis, we examine

the performance of such a system and derive a signal-dependent asymptotic formula

for the error probability. This asymptotic formula verifies that full diversity gain is

achieved. Finally, under a power constraint for the pilot signals, we formulate an

optimum design problem, for which a solution of the optimum transmission power for

the information signals can be obtained.

9
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1.4 Structure of this Thesis

The thesis is structured as follow:

• In Chapter 1, we introduce the background and previous works for the wireless

communication system, especially for the cooperative systems. We also present the

motivation and primary contributions of this thesis.

• In Chapter 2, we first introduce system models for the amplify-and-forward half-

duplex one-way relay systems which equipped with single relay. Then, we present the

system model for the half duplex two-way relay system. Finally, a comparison between

these systems and conventional MIMO system is discussed.

• Chapter 3, utilizing certain transmission scheme, a signal dependent asymptotic

formula for the error probability is derived. Then, under a power constraint for the

pilot signals, optimum design problems are formulated based on two different power

allocation considerations. Finally, solutions of the optimum transmission power for

both cases are calculated.

• In Chapter 4, simulation models and simulation results for both average-power-

loading case and worst-case power loading case are presented. Furthermore, we com-

pare these simulation results and the numerical results in previous sections.

• In Chapter 5, base on previous simulations and numerical results, we discuss

the conclusion for this thesis and some suggestions are made for future work.

• Appendix, the proof for the lemmas and theorems and also some detailed deriva-

tions have been put into this section.

10



Chapter 2

System Model

In the previous chapter, we have given a general review of wireless communication

systems, especially for relay systems. The earliest form of relay system is the one-

way relay system which is considered by E. van der Meulen, T.M. Cover and A. El

Gamal in 1970’s. However, this transmission system can only apply to one directional

transmission, in case users want to exchange information, then two-way transmission

systems are required. Due to these potential applications, research in one-way relay

systems have been extended to two-way relay systems in recent years. In this thesis,

we also examine the half-duplex two-way relay system and base our design on it. Since

the idea of two-way relay system is developed based on the one-way relay channel, for

the sake of clarity, we first review the property and possible transmission schemes for

half-duplex one-way relay systems before turning to the discussion of two-way relay

systems. Finally, comparisons between these two systems with conventional MIMO

systems are given.

11
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2.1 One-Way Amplify-and-Forward Half-Duplex Re-

lay System

Figure 2.1: A single relay system

Fig. 2.1 shows a single relay system which is composed of a source node S, a

destination node D and a relay node R. The relay node assists the transmission from

the source node to the destination node in a half-duplex mode. Half-duplex means

communications are supported in both directions, but only one direction at a time.

Typically, once a party begins receiving a signal, it must wait for the transmitter to

stop transmitting before replying, this requires the device to be a transceiver, so as

to perform both transmission and reception. An example of the half-duplex system

is a walkie-talkie. There are several benefits of using half-duplex over full-duplex, the

most important one is its lower implementation complexity, since for a full-duplex

system, simultaneous transmission and reception of signals requires precise design

for the component. This advantage is also the main reason for our focus on the

half-duplex mode in this thesis. In the last chapter, we have introduced cooperative

protocols such as, the amplify-and forward (AF) and the decode-and-forward (DF)

protocols. Since the AF protocol does not have the encoding and decoding functions,

it has lower complexity than a DF protocol. Again, our focus in this thesis will be on

12
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the simpler AF protocol.

As shown in Fig.2.1, in this system, all nodes are equipped with single antenna.

The channel gain from the source node to the destination node is denoted by hsd

, and those from the source node to the relay node and from the relay node to

the destination node are denoted by hsr and hrd respectively. All channel gains

are assumed to be independent, zero-mean, circularly symmetric, complex, Gaussian

(CSCG) random variables having unit variance. In addition, all channel coefficients

are assumed to be fixed during a period of observation. It is also assumed that

terminals only have knowledge of the first and second order statistics of the channel

state information (CSI), a term referred to the known properties of a communication

link. This information describes the signal propagation conditions and represents

the combined effect of the channel from the transmitter to the receiver. There are

basically two levels of CSI, namely instantaneous CSI and statistical CSI.

Instantaneous CSI is also referred to as the current channel condition, i.e., knowing

the impulse response of a channel. This instantaneous CSI gives an opportunity

to adapt the transmitted signal to the impulse response and thereby optimize the

received signal for spatial multiplexing or to achieve low bit error rates.

Statistical CSI means that a statistical characterization of the channel is known.

This description may include, for example, the type of fading distribution, the average

channel gain, the line-of-sight component, and statistics of the spatial correlation.

As with instantaneous CSI, this information can be used for partial transmission

optimization.

13
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CSI acquisition is practically limited by how fast the channel conditions are chang-

ing. In fast fading systems where channel conditions vary rapidly under the transmis-

sion of information symbols, estimation of instantaneous CSI needs to be performed

on a short-term basis. A popular approach is so-called training sequence (or pilot

sequence), where a known signal is transmitted and the channel matrix is estimated

using the combined knowledge of the transmitted and received signal.Let the training

sequence be denoted by p1, ....,pn, and combining the received training signals yi for

i = 1, ..., n, we obtain

Y = HP+W

with the training matrix P = [p1, ...,pn] and the noise matrix W = [w1, ...,wn].

Utilizing the least-square estimator [37], we have

Ĥ = YPH(PPH)−1

where (·)H denotes the conjugate transpose, and Ĥ denotes the estimated value for

H. This technique will be utilized in later chapter. Since we have mentioned before

that the CSI acquisition is practically limited by how fast the fading system is, let us

introduce the fading property and examine how it affects the transmission. In wireless

communications, there are two kinds of fading channels, flat fading and frequency-

selective fading. Flat fading transmission system means the coherence bandwidth

of the channel is larger than the bandwidth of the signal. Therefore, all frequency

components of the signal will experience the same magnitude of fading. In contrast,

for frequency-selective fading the coherence bandwidth of the channel is smaller than

the bandwidth of the signal. Therefore, different frequency components of the signal

14
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experience uncorrelated fading. Since different frequency components of the signal

are affected independently, it is highly unlikely that all parts of the signal will be

simultaneously affected by a deep fade. Certain modulation schemes such as OFDM

and CDMA are developed to employing frequency diversity to provide robustness to

fading. In this thesis we focus on flat fading transmission.

Based on all previous assumptions, we have following considerations of cooperative

strategies for the single relay AF system. There are mainly three different strategies

being proposed. The operations of these protocols are shown in Table.2.1. Protocol

1 is referred to as a non-orthogonal AF protocol. It has been shown [33] that this

protocol can achieve the optimal diversity-multiplexing tradeoff for relay systems

with single antenna. Protocol 2 is referred to as an orthogonal AF protocol [29], and

protocol 3 is proposed in [35]. For these three strategies, the signal transmission is

carried out in a block-based fashion. Now, if we denote the transmitting data block

by

x1 = [xT
I xT

II ]
T (2.1)

with

xI = [x(1), ..., x(T )]

xII = [x(T + 1), ..., x(T ′)]

The input-output relation of all three protocols can be expressed in the form of

z1=
√

Er

(
hsdA1 0

a1hsrhrdA2 hsdA3

)(
xI

xII

)
+

(
0 0

a1hrdB 0

)(
nI

nII

)
+

(
ηI

ηII

)
(2.2)
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where Er denotes the average power per transmitting symbol, a1 denotes the ampli-

fication coefficient at the relay node, z1 = [z(1), ..., z(T ′)]T represents the receiving

vector at the destination. The transmission signal vector x1 is given in Eq.(2.1).

Noise vectors nI, nII and ηI, ηII in Eq.(2.2) represent the i.i.d. Gaussian noise vectors

in the relay and direct paths during the 1st T and rest (T ′−T ) slots. A1 and A2 is a

T×T identity matrix, and A3 is (T ′−T )×(T ′−T ) identity matrix, with T ′ represent

the transmission symbol length in two consecutive data block, and T represent the

transmission symbol length in the first data block. B stands for a (T ′−T )×T identity

matrix. [33] shows that the only requirement on B such that the protocols described

by Eq. (2.2) could potentially achieve the optimal diversity-multiplexing tradeoff are

for B to be square (T=T’/2). Thus, it is means that there is a data receiving period

for the relay node before it forwards the received data to the destination. When

this period is half of the length of whole data block, the transmission achieves the

optimum diversity-multiplexing tradeoff.

Table 2.1: Three protocols for AF relay system
Time slots / protocols 1 2 3

1st
S → R
S → D

S → R
S → D

S → R

2nd
S → D
R → D

R → D
S → D
R → D

For Protocol 1 (non-orthogonal AF protocol), in the first T time slots (time slot

is defined as the time required for the transmission of one symbol), the source node

transmits T data symbols to both the destination and the relay node (each data sym-

bol takes 1 time slot). And in the second T time slots, the source transmits another

different T data symbols to the destination, and the relay node simply amplifies and

forwards what it received from the first T time slots to the destination. Therefore,
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in the second T time slots, the destination node combines whatever it received from

both source and relay node. The transmission rate which is defined as the number of

symbols transmitted per channel use is 1 for this transmission scheme.

For Protocol 2 (Orthogonal AF protocol), the operation is quite similar to Proto-

col 1. In the first T time slots, the source node transmits T data symbols to both the

destination and the relay node. In the second T time slots, the relay node amplifies

and forwards the signal to the destination. However, there is no transmission from

the source node to the destination, which means in 2T time slots there are only T

symbols being transmitted. Therefore, the transmission rate for this scheme is 1/2.

For Protocol 3, in the first T time slots, symbols are transmitted from source node

to the relay only. And in the second T time slots, the source node transmit the same

T symbols to destination, and the relay node amplifies and forwards what it received

from the first time slot to the destination. Therefore, the transmission rate for this

scheme is 1/2.

By comparing these three protocols, the non-orthogonal protocol provides high

symbol rate and it has the most general transmission pattern since the other two

protocols are just special cases of it. A detail analysis for the relay system having

this non-orthogonal protocol in terms of channel capacity and error performance can

be found in [7; 8; 9] .
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Figure 2.2: A two-way relay system

2.2 Two-Way Amplify-and-Forward Half-Duplex Re-

lay System

Fig. 2.2 illustrates the two-way relay channel which is composed of two source nodes

Tℓ, Tr and a relay node R. Each node is equipped with a single antenna. h and g

denote channel gains from Tℓ to R and from Tr to R respectively. Both h and g

are assumed to be independent, zero-mean, circularly symmetric, complex, Gaussian

(CSCG) random variables having unit variance. In addition, all channel coefficients

are assumed to be fixed during a period of observation. It is also assumed that only

the first and second order statistics of the channel gains are known at the terminals.

For this two-way amplify-and-forward half-duplex relay system, four protocols have

been proposed so far [4; 34]. Again, we consider the block-based communication in

which a time slot is defined as the time required for the transmission of 1 symbol.

Protocol I is also referred to as a traditional transmission scheduling scheme. For

this transmission scheme, interference is usually avoided by prohibiting the overlap-

ping of signals in the same time slot. A possible transmission schedule is given in
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Fig. 2.3(a). In the first T time slots, the node Tℓ transmits T data symbols to the

relay node R. In the second T time slots the relay node simply amplifies and for-

wards what it received from the first T time slots to Tr. This process finishes the

signal transmission from node Tl to node Tr. In the third and fourth T time slots,

transmission is just in the reverse direction to complete the signal transmission from

Tr to Tℓ. A total of four T time slots are needed for exchanging of 2T data symbols

in opposite directions.

Protocol II (straightforward network coding scheme), Fig.2.3(b) illustrates the

idea for this protocol. In the first T time slots, Tℓ transmits T data symbols to the

relay node R. In the second T time slots, node Tr transmits another T data symbols

to the relay node. Finally, in the third T time slots, the relay node first combines

what it received from those two terminals, and then forwards a scaled version of this

symbol to both Tℓ and Tr. A total of three T time slots are needed, for a throughput

improvement of 33 percents over the traditional transmission scheduling scheme.

Protocol III (physical-layer network coding (PNC)) is the most efficient transmis-

sion scheme among these three protocols. As shown in Fig.2.3(c), in this protocol

only 2T time slots are need to complete the information exchanging process. In the

first T time slot (the multiple access phase (MAC)), both Tℓ and Tr transmit data

symbols to the relay node R. Then, in the second T time slots (the Broadcasting

phase), the relay node forwards the received signals to both end terminals to complete

this information exchanging process.
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(a) traditional transmission scheduling scheme

(b) straightforward network coding scheme

(c) physical-layer network coding (PNC) scheme

Figure 2.3: Three protocols for two-way relay system
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Comparing these three protocols, since the system models are the same for every

protocol (two-way relay system without direct channel), the maximum diversity of all

three protocols should be the same. Therefore, one may conclude that Protocol III al-

ways outperforms Protocol I and Protocol II in terms of diversity-multiplexing trade-

off. Besides these three protocols (for the two-way relay system without direct

Figure 2.4: A two-way relay system with direct channel

channel between two end terminals), protocols for two-way relay systems with the

direct channels are also proposed [34]. Fig.2.4 illustrates the two-way relay system

which contains the direct link between the two end terminals. For this system, under

the same assumptions as the systems without direct link, the operation of the protocol

is shown as following. In the first time slot, node Tℓ transmits T data symbols to both

the relay node R and node Tr. In the second time slot, node Tr transmits another T

data symbols to the relay node R and node Tℓ. Finally, in the third time slot, relay

node R combines what it received from the first two time slots and forwards it to

both end terminals Tℓ and Tr. Comparing this protocol with protocol III, with the

benefit of the direct link, this protocol may achieve higher diversity than Protocol III

since signals might be transmitted through multiple path to achieve spatial diversity.

However, our consideration in this thesis is for the case when the two end terminals

want to exchange information, but they are out of range of each other. Thus, no

direct link is available. Therefore, Protocol III is the protocol on which our attention

21



M.A.Sc. Thesis - Na He McMaster - Electrical Engineering

is focused. For this protocol, if we denote respectively the transmitting data blocks

for Tℓ and Tr by

x = [x(1), ..., x(T )]

y = [y(1), ..., y(T )]

The input-output relation can be expressed as

zℓ(T + p) =
√

Eta2h[hx(p) + gy(p) + n(p)] + ηℓ(T + p) (2.3)

zr(T + p) =
√
Eta2g[hx(p) + gy(p) + n(p)] + ηr(T + p) (2.4)

where p = 1, ..., T , zℓ(·) and zr(·) denote the received signals for terminal Tℓ and Tr

respectively. n is the noise received at the relay node, and ηℓ(·) and ηr(·) respectively

denote the noise received at left and right terminals. All noise are independent and

identically distributed zero-mean circularly symmetric Gaussian with variance σ2.
√
Et represents the average power per transmitted symbol. a2 denotes the amplifica-

tion coefficient at the relay node. This amplification coefficient controls the strength

of relayed signal and is constrained such that the average power for the relayed signal

does not exceed the power budget available at the relay node. Writing Eq.(2.3) and

Eq.(2.4) in a matrix form, we have

z =

(
zℓ

zr

)
=
√

Eta2

(
h2IT hgIT

hgIT g2IT

)(
x

y

)
+a2

(
hIT 0

gIT 0

)(
n

0

)
+

(
ηℓ

ηr

)
(2.5)

=
√

Eta2Ht+ v (2.6)
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where the receiving vector zℓ = [zℓ(T ), ..., zℓ(2T )]
T and zr = [zr(T ), ..., zr(2T )]

T . The

transmitting data vector t is given by [x,y]T , and the noise vector n, ηℓ and ηr are

respectively the i.i.d. Gaussian noise vectors in MAC phase and broadcast phase.

This renders the equivalent noise at terminal Tℓ and Tr being the sum of the two

components such that v = [vℓ,vr]
T , with vℓ = a2hn + ηℓ, vr = a2gn + ηr and

vℓ,vr ∼ CN (0, σ2Σ), where Σ is the covariance matrix. The channel matrix is given

by

H =




h2IT hgIT

hgIT g2IT


 (2.7)

with the expression of this channel matrix H, if the transmitting data block t is a well

designed training sequence, then utilizing the estimation method given in Section 2.1

, estimated value of the channel coefficients could be obtained.

2.3 Comparison with ConventionalMIMO Systems

Figure 2.5: A two-way relay system

As pointed out in the previous chapter, a relay system is not a precise equivalence

to a conventional MIMO system, although it can be regarded as a virtual MIMO
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system in the sense that the collaborative users create a virtual array by distributed

signal processing and transmission. In this section, we present a comparison of the

models of relay systems to the conventional MISO system (2 transmitter antennas

and one receiver antenna). For the sake of clarity, the comparison is carried out using

the Alamouti STBC channel model for the MISO system. We assume that the MISO

system has the same symbol rate as the relay systems, i.e., 1 symbol per channel use.

The transmission is carried out by blocks of length 2 (T = 1). Fig. 2.5 illustrates this

MISO system. h1 and h2 are respective channel coefficients from Transmitters 1 and

2 to the receiver. Both h1 and h2 remain constant within a period of observation.

Then, the input-output relation for the this MISO system can be written as

zm = Hmxm + nm (2.8)

where the subscript (·)m indicates that the quantities are related to the MISO system.

zm is the 2 x 1 received data vector, xm is the 2 x 1 transmitted data vector, the

noise vector nm = [n1 n2]
T and the channel matrix Hm is given by

Hm =




h1 h2

h∗
2 −h∗

1


 (2.9)

The differences between models of relay systems and this MISO system are noted as

follows:

• Channel matrix: The channel matrix of both one-way relay and two-way relay

systems involve the products of Gaussian random variables. Therefore, the entries in

channel matrix for the relay systems are no longer Gaussian. In contrast, the channel
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matrix of the conventional MIMO system can still be assumed Gaussian.

• Noise: For both one-way and two-way relay systems, the equivalent noise at

the receiver is also a function of the channel gain from relay node to destination. In

addition, it may or may not be white any more. However, the noise in conventional

MIMO systems can usually be assumed to be white Gaussian and it is usually not a

function of the channel gains.
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Chapter 3

Performance Analysis of the AF

Two-way Relay System

In this chapter, the transmission scheme and probability of error for the AF two-way

relay system are discussed and analysed. Our attention is focused on Protocol III

which is the most efficient strategy for this system. Since in this thesis we assume

that terminals only has knowledge of the first and second order statistics of the channel

state information. We estimate the channel information using a particular test signal

set first. The transmitted information signal is selected from a normalized square

QAM constellation and is detected by choosing the symbol in the QAM constellation

closest in distance to it. Finally, we derive a signal dependent asymptotic formula for

the error probability.
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3.1 Channel Estimation

A diagram of a two-way relay system is presented in Fig. 2.2. In this system, the

relay node R assists information exchanging for the two end terminals Tℓ and Tr. All

nodes are equipped with a single antenna. h and g denote channel gains from Tℓ to

R and from Tr to R respectively. Both h and g are assumed to be independent, zero-

mean, circularly symmetric, complex, Gaussian (CSCG) random variables having unit

variance. As shown in Chapter 2, the transmission for this two-way relay system is

carried out in a block-based fashion, each block is of length 2T , T ≥ 1. In the following

discussion, we assume, for simplicity of illustration, that T = 1, i.e., one information

exchanging process in the opposite direction is complete in two time slots. Also, we

assume that the amplification coefficient a, is unity, i.e., a = 1. The information

signals transmitted are assumed to be equally probable from a normalized square

QAM constellation. The channel coefficients are fast changing, but are fixed for at

least 6 time slots, after which they may change to new independent values which are

then fixed for at least another 6 time slots, and so on. The end terminals estimate

the channel information within the first 4 time slots, and then detect the transmitted

signals using the rest of the time slots. Due to the symmetry of this two-way relay

system, the following discussion will focus on the reception of the signal at the left

terminal Tℓ only, knowing that the signal on the right terminal will have a similar

expression.

During the first time slot, both terminals transmit testing signals to the relay

node. The received signal at the relay node can be written as

r1 = hx1 + gy1 + n1 (3.1)
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where x1 and y1 are testing signals transmitted from terminal Tℓ and Tr respectively,

and n1 is the additive noise in the first time slot. In particular, we set x1 =
√
p1 and

y1 = 0, with p1 being the transmission power of signal x1.

During the second time slot, the relay node R amplifies and forwards its received

signal r1 of Eq. (3.1) to both terminals Tℓ and Tr. Thus the received symbol at left

terminal is

zℓ1 = h(hx1 + gy1 + n1) + ηℓ1

=
√
p1h

2 + hn1 + ηℓ1 (3.2)

where ηℓ1 is the noise in the transmission path from the relay node R to Tℓ during

the second time slot.

In the third and fourth time slots, we follow the same transmission pattern. How-

ever, we set the testing signal x2 = 0 and y2 =
√
q1 where q1 is the transmission power

of signal y2. Thus, the received signal at the relay and the subsequent received signal

at the left transmitter are respectively

r2 = hx2 + gy2 + n2 (3.3a)

zℓ2 = h(hx2 + gy2 + n2) + ηℓ2

=
√
q1hg + hn2 + ηℓ2 (3.3b)

where n2 is the total additive noise received by the relay node during the third time

slot transmission from both end terminals, and ηℓ2 is the noise in the transmission

path from R to Tℓ during the fourth time slot. We assume all additive noise in

the transmission channels to be independent and identically distributed (IID) zero
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mean circular Gaussian with variance σ2. The channel information h2 and hg can

now be estimated with these two received signals zℓ1 and zℓ2 using the least squares

method [38] such that

arg min
h2

|zℓ1 −
√
p1h

2| ⇒ ĥ2 =
zℓ1√
p1

(3.4a)

arg min
hg

|zℓ2 −
√
q1hg| ⇒ ĥg =

zℓ2√
q1

(3.4b)

where ĥ2 and ĥg are estimated value of h2 and hg respectively. After this chan-

nel estimation process, in the following two time slots we transmit the information

signals which are selected with equal probability from a normalized square QAM

constellation. Thus, following the same transmission manner, the received signal is

zℓ =
√
p2h

2x+
√
q2hgy + hn+ ηℓ

=
√
p2ĥ

2x+
√
q2ĥgy + η (3.5)

where

η = (h2 − ĥ2)x
√
p2 + (hg − ĥg)y

√
q2 + hn + ηℓ (3.6)

p2 and q2 are the transmission power for the signal x and y respectively such that

the constraints on the transmission power are p2 = 1− p1, q2 = 1− q1, and n and ηℓ

are respectively the noise in the transmission path from the two end terminals to the

relay node R and from R to Tℓ. We can regard η in Eq (3.5) as noise. Combining
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Eq.(3.2) and Eq.(3.4a)





zℓ1 =
√
p1h

2 + hn1 + ηℓ1

ĥ2 = zℓ1√
p1

⇒ ĥ2 − h2 =
h√
p1
n1 +

1√
p1
ηℓ,1

Combining Eq.(3.3b) and Eq.(3.4b), we obtain





zℓ2 =
√
q1hg + hn2 + ηℓ2

ĥg = zℓ2√
q1

⇒ ĥg − hg =
h√
q1
n2 +

1√
q1
ηℓ,2

Thus, under the assumption that all additive noise in the transmission channels to

be independent and identically distributed (IID) zero mean circular Gaussian with

variance σ2. And from the expression of η in Eq. (3.6), we can obtain the variance of

the noise as

σ2
η =

(
p2|x|2
p1

+
q2|y|2
q1

+ 1

)
(|h|2 + 1)σ2 (3.7)

3.2 Probability of Error

The probability of error for a standard QAM constellation can be found in [12]. Let

ξ = |h|2 and let Q being a normalized square QAM constellation. Then, for a given

channel realization ξ and a given received testing signal zℓ2, the error probability

which is defined as the probability of deciding in favor of ŷ 6= y, ŷ and y ∈ Q,

should be in the form of Q
(

d√
2ση

)
(Q(·) stands for the Q-function, we will give detail

expression later), where d is the minimum distance of this QAM constellation. ση

is the variance of the receiving noise. However, in section 3.1, Eq.(3.7) shows that
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the variance of the noise for this two-way relay system depends on the transmission

signal y, which means we have to consider different variances according to different

transmission signals. Therefore, we first examine the energy property of a square

QAM constellation first. Fig. 3.1 illustrates a 64-QAM constellation (in this particular

case M = 64, however, we derive all formulas in general case). Let us first group these

symbol points according to the different signal powers.

Figure 3.1: 64-QAM constellation (M = 64)

Corner points: In Fig. 3.1, those 4 points which are in red circles are corner

points, we denote this group by Qc. These symbols at the corners all have the same

transmission power |y|2 = 2
Ē
(
√
M − 1)2. If any of these corner point symbol is
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transmitted, the received noise all have the same variance. Then, for a given channel

realization and a given received testing signal zℓ2, the correct detection probability

for points in this group is given by

Pc,c|ξ, zℓ2 =
(
1−Q

(
d√
2ση

))2

(3.8)

where Pc,(·) indicates that this quantities represent the correct probabilities. d repre-

sents the minimal distance for the M-ary QAM constellation. The proof of Eq. (3.8)

is given in Appendix A. Eq. (3.8) shows that this correct probability is depending on

the noise variance ση which apparently depends on signal transmission energy |y|2.

Edge Points: In Fig. 3.1, those points which are circled by blue ellipses are

in the edge point group, we denote this group by Qe. Although all points are in

the same group, in this case, not all edge points have the same power. Each corner

point has 2 nearest points, totally we have 8 points, and they all have same power

|y|2 = 1
Ē
[(
√
M − 1)2+(

√
M − 3)2]. And for these 8 points, one nearest point for each

one on this layer, and these 8 point have the same variance again. Following this

manner, one could conclude that the edge points are divided into different groups,

each group contains 8 points. Signal powers for edge points follow the following

equation

|y|2 = 1

Ē
[(
√
M − 1)2 + (

√
M −m)2], m = 3, 5, 7...(

√
M − 1)

Although each 8 points have different variances, they all follow the same formula of
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correct detection probability which is given by

Pc,e|ξ, zℓ2 =
(
1−Q

(
d√
2ση

))
∗
(
1− 2Q

(
d√
2ση

))
(3.9)

The proof of Eq. (3.9) is given in Appendix A.

Inner Points: In Fig. 3.1, all points except that in out layer are inner points, we

denote the inner points group as Qi. Similar as the edge points group, for this group,

different points contain different signal powers, we list the formula below

|y|2 = 1

Ē
[(
√
M − n)2 + (

√
M −m)2], n = 3, 5, 7...(

√
M − 1), m = n, n+ 2...(

√
M − 1)

and the correct decision formula for points in this group is

Pc,i|ξ, zℓ2 =
(
1− 2Q

(
d√
2ση

))2

(3.10)

The proof of Eq. (3.10) is given in Appendix A. Taking average of all possible trans-

mission signals in an M-ary QAM constellation, the average correct probability is

given by

Pc|ξ, zℓ2 =
1

M
(
∑

y∈Qc

Pc,c|ξ, zℓ2 +
∑

y∈Qe

Pc,e|ξ, zℓ2 +
∑

y∈Qi

Pc,i|ξ, zℓ2)

=
1

M

( ∑

y∈Qc

(1−Q(
d√
2ση

))2 +
∑

y∈Qe

(1−Q(
d√
2ση

)) ∗ (1− 2Q(
d√
2ση

)) +
∑

y∈Qi

(1− 2Q(
d√
2ση

))2
)

= 1− 1

M

( ∑

y∈Qc

φ1(y)+
∑

y∈Qe

φ2(y)+
∑

y∈Qi

φ3(y)
)
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where

φ1(y) = 2Q

(
d√
2ση

)
−Q2

(
d√
2ση

)

φ2(y) = 3Q

(
d√
2ση

)
− 2Q2

(
d√
2ση

)

φ3(y) = 4Q

(
d√
2ση

)
− 4Q2

(
d√
2ση

)

Obviously, the error probability is given by 1− Pc|ξ, zℓ2, which is

P (e|ξ, zℓ2) =
1

M

( ∑

y∈Qc

φ1(y)+
∑

y∈Qe

φ2(y)+
∑

y∈Qi

φ3(y)
)

The average error probability is the expected value of P (e|ξ, zℓ2) taken with respect

to ξ and zℓ2, i.e.

P̄e = E

(
1

M

(∑

y∈Qc

[φ1(y)]+
∑

y∈Qe

[φ2(y)]+
∑

y∈Qi

[φ3(y)]
))

=
1

M

(∑

y∈Qc

E[φ1(y)]+
∑

y∈Qe

E[φ2(y)]+
∑

y∈Qi

E[φ3(y)]
)

(3.11)

To further simplify this expression, the first step is to take expected value of Q( d√
2ση

)

and Q2( d√
2ση

) with respect to ξ and zℓ2. By definition [39]

Q(t) =
1

π

∫ π
2

0

e−
t2

2 sin2 θ dθ (3.12)

Q2(t) =
1

π

∫ π
4

0

e−
t2

2 sin2 θ dθ (3.13)
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where

t2 =
d2

2σ2
η

(3.14)

From Eq.(3.5), zℓ − √
p2ĥ

2x =
√
q2ĥgy + η, comparing with the standard AWGN

channel model zstan = ystan + ηstan. The transmission signal y in our case is scaled by

factor
√
q2ĥg. Therefore, the minimal distance d should be scaled by the same factor,

we obtain

d =
2
√
q2ĥg√
Ē

=
2
√
q2√
Ē

zℓ,2√
q1

d2 =
4q2
Ēq1

|zℓ,2|2 (3.15)

Substitute Eq. (3.15) and Eq. (3.7) to Eq.(3.14), we have:

t2 =
d2

2σ2
η

=
2 q2
q1
|zℓ,2|2

Ē(p2|x|
2

p1
+ q2|y|2

q1
+ 1)(ξ + 1)σ2

Substitute the above equation to the Eq. (3.12) and (3.13), we obtain

Q(
d√
2ση

) =
1

π

∫ π/2

0

e

−
q2
q1

|zℓ,2|
2

Ē(
p2|x|

2

p1
+

q2|y|
2

q1
+1)(ξ+1) sin2 θσ2

dθ

Q2(
d√
2ση

) =
1

π

∫ π/4

0

e

−
q2
q1

|zℓ,2|
2

Ē(
p2|x|

2

p1
+

q2|y|
2

q1
+1)(ξ+1) sin2 θσ2

dθ
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From Eq. (3.3b), given ξ the probability density function of zℓ2 takes on the form

ϑ(zℓ2|ξ) =
1√

2π(q1ξ + (ξ + 1)σ2
re)

e
−z2

ℓ2re
2(q1|h|

2+(|h|2+1)σ2
re)

1√
2π(q1ξ + (ξ + 1)σ2

im)
e

−z2
ℓ2im

2(q1|h|
2+(|h|2+1)σ2

im
)

=
1

π(2q1ξ + (ξ + 1)σ2)
e

−|zℓ2|
2

2q1ξ+(ξ+1)σ2

Since h is a zero mean complex Gaussian random variable with unit variance, then

the PDF of ξ is exponential distributed [13], i.e., ϑ(ξ) = e−ξ for 0 ≤ ξ ≤ ∞. The

expected value of Q( d√
2ση

) and Q2( d√
2ση

) with respect to ξ and zℓ2 is given by

E[Q(
d√
2σ

)] =
1

π2

∫ π/2

0

∫ ∞

0

∫ ∞

−∞
e−

t2

2 sin θ2 ϑ(zℓ2|ξ)ϑ(ξ)dzℓ2dξdθ (3.16)

E[Q2(
d√
2σ

)] =
1

π2

∫ π/4

0

∫ ∞

0

∫ ∞

−∞
e−

t2

2 sin θ2 ϑ(zℓ2|ξ)ϑ(ξ)dzℓ2dξdθ (3.17)

Based on previous equations we immediately obtain the following two lemmas

Lemma 1. The approximate average of the Q-function with respect to the channel

estimation signal is given by:

E

[
Q

(
d√
2ση̄

)]
=α0ρ

−1 ln ρ+ α1ρ
−1 +O(ρ−2 ln ρ) (3.18)
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where ρ is the signal to noise ratio defined as 1
σ2 , and,

α0 =
A

8q2

α1 = −1

2

(
(γ − 1)A

4q2
+

A

4q2
(ln b− ln 2q2)

+
−A

2q2


− ln

1 +
√

q2
q1b

2
− 1

1 +
√

q2
q1b

+
1

2






with γ being the Euler constant and

A = Ē(
p2|x|2
p1

+
q2|y|2
q1

+ 1)

b = A+
q2
q1

Here, Ē denotes the average symbol energy for an M-ary QAM constellation.

Lemma 2. The approximate average of the Q2 function with respect to the channel

estimation signal is given by:

E

[
Q2

(
d√
2ση̄

)]
= β0ρ

−1 ln ρ+ β1ρ
−1 +O(ρ−2 ln ρ) (3.19)

where,

β0 =
A

16q2

β1 = −1

4

(
(
γ

2
− 1

2
− 1

π
)
A

2q2
+

A

4q2
(ln b− ln 2q2)

+
−A

2q2


− ln

1 +
√

q2
q1b

2
− 1

1 +
√

q2
q1b

+
1

2





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The proofs of the above lemmas are in Appendix B and C. Applying Lemma 1 and

Lemma 2 to Eq. (3.11), after some simplifications, we obtain the following theorem

and corollary:

Theorem 1. The error probability for the two-way-relay system be defined by Eq. (3.11).

With the results in Lemmas 1 and 2, this average error probability for the left terminal

receiver has the following asymptotic form:

P̄eℓ(x) = Cℓ0ρ
−1 ln ρ+ Cℓ1ρ

−1 +O(ρ−2 ln ρ) (3.20)

where,

Cℓ0 =
Ē

4q2

M − 1

M

(
p2|x|2
p1

+ 1

)
+

Ē

4q1

(
1− Ec

4M

)

Cℓ1 =
Ē

2q2
(
p2|x|2
p1

+ 1)

(
(−M

2
+

1

2
) ln 2q2 + (C02 −

1

2
)M

+(4C01 − 2C02 − 1)
√
M + 4C00 − 8C01 + 4C02 + 2

)

+
Ē

2q1

(
(C00 −

3

8
ln 2q2)Ec + (C01 −

1

2
ln 2q2)Ee

+(C02 −
1

2
ln 2q2)Ei

)

+
∑

y∈Qc

A

2q2

(
3

8
ln b− 3

4

(
− ln

1 +
√

q2
q1b

2
− 1

1 +
√

q2
q1b

))

+
∑

y∈Qe

A

2q2

(
1

2
ln b−

(
− ln

1 +
√

q2
q1b

2
− 1

1 +
√

q2
q1b

))

+
∑

y∈Qi

A

2q2

(
1

2
ln b−

(
− ln

1 +
√

q2
q1b

2
− 1

1 +
√

q2
q1b

))

with C00 = 3γ
8
− 3

4
+ 1

4π
, C01 = γ

2
− 1 + 1

2π
and C02 = γ

2
− 1 + 1

π
. Ec, Ee and Ei

are the corner energy, edge energy and inner energy respectively. This theorem can
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be verified by simple calculation and thus, its proof is omitted.

Corollary 1. Parallel to theorem 1, we obtain asymptotic formula of the error prob-

ability for the right side of the two-way relay system as:

P̄er(y) = Cr0ρ
−1 ln ρ+ Cr1ρ

−1 +O(ρ−2 ln ρ) (3.21)

where

Cr0 =
Ē

4p2

M − 1

M

(
q2|y|2
q1

+ 1

)
+

Ē

4p1

(
1− Ec

4M

)

Cr1 =
Ē

2p2
(
q2|y|2
q1

+ 1)

(
(−M

2
+

1

2
) ln 2p2 + (C02 −

1

2
)M

+(4C01 − 2C02 − 1)
√
M + 4C00 − 8C01 + 4C02 + 2

)

+
Ē

2p1

(
(C00 −

3

8
ln 2p2)Ec + (C01 −

1

2
ln 2p2)Ee

+(C02 −
1

2
ln 2p2)Ei

)

+
∑

x∈Qc

A

2p2

(
3

8
ln b̄− 3

4

(
− ln

1 +
√

p2
p1 b̄

2
− 1

1 +
√

p2
p1b̄

))

+
∑

x∈Qe

A

2p2

(
1

2
ln b̄−

(
− ln

1 +
√

p2
p1b̄

2
− 1

1 +
√

p2
p1b̄

))

+
∑

x∈Qi

A

2p2

(
1

2
ln b̄−

(
− ln

1 +
√

p2
p1b̄

2
− 1

1 +
√

p2
p1b̄

))

where b̄ = A+ p2
p1

The above theorem and corollary show us the asymptotic formulas of average

probability of error for a two-way relay system in which p1 and q1 are the power of

the testing signals x1 and y2 and p2 and q2 are the power of the transmitting signals

39



M.A.Sc. Thesis - Na He McMaster - Electrical Engineering

x and y.

Comparing the result in Theorem 1 and Corollary 1 with the asymptotic formula of

the error probability for a conventional MISO system, we can conclude that the error

probability for a conventional MISO system is often characterized by the diversity

gain which is defined as the slope at which the error probability decreases with the

logarithm of SNR. However, Theorem 1 and Corollary 1, show that the asymptotic

formula of the error probability for an AF two-way relay system is no longer simply

a power function of SNR, it involves the term ln(SNR) which is a function of the

logarithm of SNR. This is caused by the term which involves the product of two

Gaussian random variables in the channel matrix. Because of this term the entries of

the channel matrix of this two-way relay system are no longer Gaussian as in the case

for conventional MISO system. This ln(SNR) factor in the diversity gain function

has also been observed in [36]

40



Chapter 4

Optimum Transmission Power

In the last chapter we have derived the asymptotic formula of the error probability

for both terminals. Our goal in this chapter is to find a combination of transmission

power which yields minimum error probability subject to a total transmission power

constraint. Since these error probabilities depend on the transmission signals, in the

following, we divide the optimization problem into two separate cases: the average

power loading optimization, and the worst-case power loading optimization.

4.1 Average Power Loading Optimization

In this case, since we are transmitting from anM-ary QAM constellation in which each

signal may have different power, thus, we take the average of the error probability for

all signals from both left and right terminals. Substituting equations from Theorem 1

and Corollary 1. This results in a signal independent error probability equation such
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that,

P̄ea =
1

2

(
1

M

∑

x∈Q
P̄eℓ(x) +

1

M

∑

y∈Q
P̄er(y)

)

=
1

2

(
P̄eℓ + P̄er

)

= F (p1, p2, q1, q2)ρ
−1 ln ρ

where

P̄eℓ =
1

M

∑

x∈Q
Cℓ0ρ

−1 ln ρ =

[
Ē(M − 1)

4Mq2
(1 +

p2

p1
) +

Ē

4q1
(1− Ec

4M
)

]
ρ−1 ln ρ

P̄er =
1

M

∑

y∈Q
Cr0ρ

−1 ln ρ =

[
Ē(M − 1)

4Mp2
(1 +

q2

q1
) +

Ē

4p1
(1− Ec

4M
)

]
ρ−1 ln ρ

F (p1, p2, q1, q2) =
1

2

(
A1

(
p1 + p2

p1q2
+
q1 + q2

q1p2

)
+A2

(
1

q1
+

1

p1

))
(4.1)

with A1 =
Ē
4
M−1
M

and A2 =
Ē
4

(
1− Ec

4M

)
. Since we define ρ = 1

σ2 which is independent

of p1, p2, q1, q2, optimization of P̄ea is equivalent to optimization of F (p1, p2, q1, q2).

Therefore, imposing the power constraints p1 = 1− p2 and q1 = 1− q2 into Eq. (4.1),

our design problem becomes

min
p2,q2

F (p2, q2) (4.2)

Taking derivatives of Eq. (4.2) with respect to p2 and q2, and equating both results

to zero, we have

∂F (p2,q2)
∂p2

= 1
2

(
−A1

p22
+ A1

(1−p2)2q2
− A1q2

(1−q2)p22
+ A2

(1−p2)2

)
=0 (4.3)

∂F (p2,q2)
∂q2

= 1
2

(
−A1

q22
+ A1

(1−q2)2p2
− A1p2

(1−p2)q22
+ A2

(1−q2)2

)
= 0 (4.4)

42



M.A.Sc. Thesis - Na He McMaster - Electrical Engineering

Simplifying the above two equations, first, we subtract Eq. (4.4) from Eq. (4.3), we

have

∂F (p2, q2)

∂p2
− ∂F (p2, q2)

∂q2
= (p2 − q2)[A1(f1(p2, q2) + f2(p2, q2)) + A2f3(p2, q2)] = 0

(4.5)

where:

f1(p2, q2) =
p2 + q2
p22q

2
2

f2(p2, q2) =
1− p2q2

(1− p2)2(1− q2)2p2q2
+

p22 + p2q2 + q22 − p2q2(p2 + q2)

(1− p2)(1− q2)p22q
2
2

f3(p2, q2) =
2− p2 − q2

(1− p2)2(1− q2)2

Obviously, one of the solution for Eq.(4.5) is p2 = q2. Next, we have to check if this

solution is unique. Let us examine the second bracket in Eq. (4.5): A1(f1(p2, q2) +

f2(p2, q2))+A2f3(p2, q2). From the expressions of A1, and A2, it is easy to prove that,

they are all positive. Also, because 0 ≤ p2, q2 ≤ 1, obviously, both f1(p2, q2) and

f3(p2, q2) are positive. Now, let us check f2(p2, q2)

f2(p2, q2) =
1− p2q2

(1− p2)2(1− q2)2p2q2
+

p22 + p2q2 + q22 − p2q2(p2 + q2)

(1− p2)(1− q2)p22q
2
2

≥ 1− p2q2
(1− p2)2(1− q2)2p2q2

+
3p2q2 − p2q2(p2 + q2)

(1− p2)(1− q2)p
2
2q

2
2

≥ 1− p2q2
(1− p2)2(1− q2)2p2q2

+
3p2q2 − 2p2q2

(1− p2)(1− q2)p
2
2q

2
2

=
1− p2q2

(1− p2)2(1− q2)2p2q2
+

p2q2
(1− p2)(1− q2)p22q

2
2

≥ 0
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Since each term for the expression A1(f1(p2, q2)+ f2(p2, q2))+A2f3(p2, q2) is positive,

the whole equation is always positive. Therefore, we can conclude that p2 = q2 is the

unique solution for Eq.(4.5). Under this condition, solving Eq. (4.4) or Eq. (4.3), the

unique optimum solution is achieved when

p2 = q2 =
−A1 +

√
A2

1 + A1A2

A2
(4.6)

Next, let’s prove that the power constraint 0 < p2, q2 < 1 is satisfied. It is easy to see

from Eq. (4.6) that p2, q2 ≥ 0.Now, for

p2 = q2 =
−A1 +

√
A2

1 + A1A2

A2
< 1

⇒
√

A2
1 + A1A2 < A1 + A2

A2
1 + A1A2 < A2

1 + 2A1A2 + A2
2

0 < A1A2 + A2
2

since A1, A2 ≥ 0 , the above equation is true, p2, q2 ≤ 1 is proved. Combining the last

two inequalities, we conclude that 0 ≤ p2, q2 ≤ 1. Comparing Eq.(4.6) with the value

of the end points, we can observe from the objective function, at each endpoints this

function goes to infinite. Thus, we complete the proof that our optimum point is the

minimum point.

4.2 Worst-Case Power Loading Optimization

In this case we try to minimize the worst case error probability caused by a given

transmission signal. Referring to Eqs. (3.20) and (3.21), we see that the probabilities
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of error are dominated by the energy of the signals |x|2 and |y|2. Therefore, the worst

error probability is caused by the signal containing the maximum energy in the square

QAM, i.e., the signal at one of the corner points. Substituting the corresponding

energy equation to Eq. (3.20) and Eq. (3.21), we obtain

P̄eℓmax = Φℓ(p1, p2, q1, q2)ρ
−1 ln ρ

P̄ermax = Φr(p1, p2, q1, q2)ρ
−1 ln ρ

where

Φℓ(p1, p2, q1, q2) =
K1p2
p1q2

+
K2

q2
+

K3

q1
(4.7a)

Φr(p1, p2, q1, q2) =
K1q2
q1p2

+
K2

p2
+

K3

p1
(4.7b)

with K1 = ĒEc(M−1)
16M

, K2 = Ē(M−1)
4M

and K3 = Ē
4
(1 − Ec

4M
). Similar to the first case,

since ρ is independent of p1, p2, q1, q2, optimization of P̄ea is equivalent to optimization

of Φℓ(p1, p2, q1, q2) or Φr(p1, p2, q1, q2). We impose the power constraints p1 = 1− p2,

and q1 = 1− q2. This yields the objective functions for the worst-case power loading

case Φℓ(p2, q2) and Φr(p2, q2) respectively for the left and right terminals. We now

compare these two error probabilities so that we may obtain the conditions under

which one is greater than the other. Thus, we write

Φℓ(p2, q2)− Φr(p2, q2) = Kc(p2 − q2)Φc(p2, q2) (4.8)
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where

Kc =
1

(1− p2)(1− q2)p2q2

Φc(p2, q2) = K1(p2 + q2 − p2q2)−K3p2q2 +K2(1− p2 − q2 + p2q2)

Back to Eq. (4.8), in order to have P̄eℓmax greater than P̄ermax, we have to prove the

following inequality is true

Φℓ(p2, q2)− Φr(p2, q2) = Kc(p2 − q2)Φc(p2, q2) ≥ 0

Obviously, Kc is greater than zero. Therefore during the following derivation we just

neglect it at this moment.

1. If p2 ≥ q2,

K1(p2 + q2 − p2q2) +K2(1− p2 − q2 + p2q2)−K3p2q2 ≥ 0

⇒[(−K1 +K2 −K3)q2 + (K1 −K2)]p2 + (K1 −K2)q2 +K2 ≥ 0

(a) If

(−K1 +K2 −K3)q2 + (K1 −K2) > 0

⇒





q2 <
K1−K2

K1−K2+K3

p2 ≥ −(K1−K2)q2−K2

(−K1+K2−K3)q2+(K1−K2)

(4.9)
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since K1 ≥ K2 ≥ K3 > 0, we obtain

−(K1 −K2)q2 −K2

(−K1 +K2 −K3)q2 + (K1 −K2)
< 0

Combining Eq. (4.9) and the condition p2 ≥ q2 ≥ 0, we obtain the following

range

⇒





q2 <
K1−K2

K1−K2+K3

0 ≤ q2 ≤ p2 ≤ 1
(4.10)

(b) If

(−K1 +K2 −K3)q2 + (K1 −K2) < 0

⇒





q2 >
K1−K2

K1−K2+K3

p2 ≤ −(K1−K2)q2−K2

(−K1+K2−K3)q2+(K1−K2)

(4.11)

since we are under the condition p2 ≥ q2, the expression of p2 should be

greater than q2 as well.

−(K1 −K2)q2 −K2

(−K1 +K2 −K3)q2 + (K1 −K2)
− q2 ≥ 0

Solving this inequality, we have the following range for q2

K1 −K2 −
√
K2

1 −K1K2 +K2K3

K1 −K2 +K3
≤ q2 ≤

K1 −K2 +
√
K2

1 −K1K2 +K2K3

K1 −K2 +K3
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Combining Eq. (4.11) and the above inequality, we obtain the following

constraint for q2 and p2

K1 −K2

K1 −K2 +K3
≤ q2 ≤

K1 −K2 +
√

K2
1 −K1K2 +K2K3

K1 −K2 +K3

q2 ≤ p2 ≤
−(K1 −K2)q2 −K2

(−K1 +K2 −K3)q2 + (K1 −K2)

because

K1 −K2 +
√

K2
1 −K1K2 +K2K3

K1 −K2 +K3

> 1

⇒ K1 −K2

K1 −K2 +K3

≤ q2 ≤ 1

and

−(K1 −K2)q2 −K2

(−K1 +K2 −K3)q2 + (K1 −K2)
≥ 1

⇒ q2 ≤ p2 ≤ 1

Finally, we have the range in this case:

⇒





K1−K2

K1−K2+K3
≤ q2 ≤ 1

0 ≤ q2 ≤ p2 ≤ 1
(4.12)

Combining Eq. (4.10) and Eq. (4.12), we conclude that the range for P̄eℓmax

greater than P̄ermax under the condition p2 ≥ q2 is

0 ≤ q2 ≤ p2 ≤ 1 (4.13)
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2. If p2 ≤ q2

K1(p2 + q2 − p2q2) +K2(1− p2 − q2 + p2q2)−K3p2q2 ≤ 0

[(−K1 +K2 −K3)q2 + (K1 −K2)]p2 + (K1 −K2)q2 +K2 ≤ 0

(a) If

(−K1 +K2 −K3)q2 + (K1 −K2) > 0

⇒





q2 <
K1−K2

K1−K2+K3

p2 ≤ −(K1−K2)q2−K2

(−K1+K2−K3)q2+(K1−K2)

(4.14)

since Eq. (4.14) is negative for sure, obviously, p2 is out of range (0 ≤ p2 ≤

1).

(b) If

(−K1 +K2 −K3)q2 + (K1 −K2) < 0

⇒





q2 >
K1−K2

K1−K2+K3

p2 ≥ −(K1−K2)q2−K2

(−K1+K2−K3)q2+(K1−K2)

We have checked in case 1(b),that

−(K1 −K2)q2 −K2

(−K1 +K2 −K3)q2 + (K1 −K2)
≥ 1
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Therefore, p2 is out of range again.

According to above derivation, we can conclude that the condition for Φl(p2, q2) ≥

Φr(p2, q2) is expressed in Eq. (4.13). In this range, our design problem becomes

min
0≤q2≤p2≤1

Φℓ(p2, q2)

Taking derivative with respect to p2, we have

∂Φℓ(p2, q2)

∂p2
=

K1

(1− p2)2q2
(4.15)

Since Eq. (4.15) is always positive, we can conclude that Φℓ(p2, q2) is an increasing

function with respect to p2. Thus, the minimum error probability occurs at minimum

power p2. Now, q2 ≤ p2, hence minimum power occurs at p2 = q2. Substitute this

condition into Eq. (4.7a), we obtain

Φℓ(q2) =
K1 +K3

(1− q2)
+

K2

q2

Equating the derivative of Φℓ(q2) with respect to q2 to zero, we have

∂Φℓ(q2)

∂q2
=

−K2

q22
+

K1 +K3

(1− q2)2
= 0

This equation leads to the condition of minimum error probability so that

p2 = q2 =
−K2 +

√
K1K2 +K2K3

K1 −K2 +K3

(4.16)
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In the following discussion, we analyze the condition for P̄ermax greater than P̄eℓmax.

Following the manner as the last case, refer back to Eq. (4.8). In order to have P̄ermax

greater than P̄eℓmax, the following inequality has to be true

(p2 − q2)[K1(p2 + q2 − p2q2) +K2(1− p2 − q2 + p2q2)−K3p2q2] ≤ 0

1. If p2 ≤ q2, then

K1(p2 + q2 − p2q2) +K2(1− p2 − q2 + p2q2)−K3p2q2 ≥ 0

⇒[(−K1 +K2 −K3)q2 + (K1 −K2)]p2 + (K1 −K2)q2 +K2 ≥ 0

(a) If

(−K1 +K2 −K3)q2 + (K1 −K2) > 0

⇒





q2 <
K1−K2

K1−K2+K3

p2 ≥ −(K1−K2)q2−K2

(−K1+K2−K3)q2+(K1−K2)

these conditions has been checked in Eq. (4.9) already, thus, we will omit
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the proof and get the following range:

⇒





q2 <
K1−K2

K1−K2+K3

0 ≤ p2 ≤ q2 ≤ 1
(4.17)

(b) If

(−K1 +K2 −K3)q2 + (K1 −K2) < 0

⇒





q2 >
K1−K2

K1−K2+K3

p2 ≤ −(K1−K2)q2−K2

(−K1+K2−K3)q2+(K1−K2)

following the same argument as Eq. (4.11), and the range for this case will

be:

⇒





K1−K2

K1−K2+K3
≤ q2 ≤ 1

0 ≤ p2 ≤ q2 ≤ 1
(4.18)

Combining Eq. (4.17) and Eq. (4.18) , we can conclude that the range for

P̄ermax > P̄eℓmax is

0 ≤ p2 ≤ q2 ≤ 1 (4.19)

2. If q2 ≤ p2

We have proved in the previous case that this is exact the range for P̄eℓmax
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greater than P̄ermax.

From Eq. (4.13) and Eq. (4.19), we further prove the symmetry of this system. Thus,

due to the symmetry of this system, we can conclude that the range for Φr(p2, q2) ≥

Φℓ(p2, q2) is 0 ≤ p2 ≤ q2 ≤ 1 leading to the same optimum condition of q2 = p2

as in Eq. (4.16). Comparing Eqs. (4.6) and (4.16), we note that even the optimum

conditions for the two cases are similar such that p2 = q2, the actual transmission

power in the two cases are different due to different optimization criteria.
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Chapter 5

Simulation Result

5.1 Simulation Model

In this chapter, we compare the error performance of this two-way relay system oper-

ating at optimum transmission power for both cases of average and worst-case power

loadings with the error performance of same system operating at other transmission

powers values. The comparison is evaluated under different SNR. The system is tested

with transmitted signals being selected from 4-QAM and 16QAM constellations. The

channel g and h are assumed to be CSCG random variables with unit variance, and

the noise is IID with variance σ2. The SNR is defined as ρ = 1
σ2 . At the receiver,

we employ a detection such that we choose the QAM symbol closest to the received

signal as the detected symbol. The performance comparison of the different cases are

shown in Figs.2 to 4, for which the optimum transmission power are p2 = q2 = 0.414,

p2 = q2 = 0.414, p2 = q2 = 0.417, p2 = q2 = 0.376, respectively. It can be observed

that in all the cases, the optimized system yields the best performance, showing that

indeed, the transmission power obtained is the optimum value for the system.
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Figure 5.1: Performance comparison for 4-QAM in average power loading case
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Figure 5.2: Performance comparison for 16-QAM in average power loading case
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Figure 5.3: Performance comparison for 4-QAM: worst-case power loading
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Figure 5.4: Performance comparison for 16-QAM: worst-case power loading

58



M.A.Sc. Thesis - Na He McMaster - Electrical Engineering

0 0.2 0.4 0.6 0.8 1
10

−3

10
−2

10
−1

10
0

 

 

X: 0.414
Y: 0.001127

p2=q2

E
rr

or
 P

ro
ba

bi
lit

y

snr=35
snr=45

Figure 5.5: Performance comparison for 4-QAM in average power loading case
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Figure 5.6: Performance comparison for 16-QAM in average power loading case
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Figure 5.7: Performance comparison for 4-QAM: worst-case power loading
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Figure 5.8: Performance comparison for 16-QAM: worst-case power loading
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, the amplify-and-forward half-duplex two-way relay system is studied.

The system operates in a half-duplex mode. It is assumed that all channel gains are

zero mean, circularly symmetric Gaussian, and they do not change during the period

of observation. The short-term channel state information is not available at the end

terminals, only the second order statistics is available. The amplification coefficient

at the relay node is assumed to be unity. Noise is assumed to be zero mean, circular

Gaussian and independent and identically distributed. We analyzed the performance

of this AF half-duplex two-way relay system. In particular, we derive the probability

of error which is signal dependent. Utilizing this error probability expression, we also

examine the optimum transmission power design problem under a power constraint.

Since the error probability is signal dependent, the optimum transmission power prob-

lem is studied in two cases: average-power-loading optimization and worst-case power

loading optimization. The optimum solution for both cases are derived. Computer
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simulations verify that these conditions indeed yield optimum performance for the

system.

6.2 Future Work

There are several possibilities for future work in this area.

1. In this thesis, we are considering the case that two end terminals want to ex-

change the information, but they are out of range of each other. Therefore, we

consider the system in which a relay helps the information exchanging process

between these two end terminals, and there is no direct link between the ter-

minals. We may consider the system which contains a direct link between the

terminals, and develop a transmission strategy for such a system.

2. In this thesis we consider a symmetric system. However, in the future we

may consider the system that two end terminals are not exactly symmetric to

each other, i.e., noise variances are not the same. This may cause the final

optimization result becomes nonsymmetric as well.

3. Here, we consider the half-duplex two-way relay system with single relay. It is

possible to extend it to multiple relay case.
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Appendix A

Proof for Error Probability

Formula

The received signal expression for the left terminal for our system is given by Eq.

(3.5)

zℓ −
√
p2ĥ

2x =
√
q2ĥgy + η

For the sake of simplicity, let

zℓ −
√
p2ĥ

2x = zℓ

√
q2ĥgy = s

we obtain

zℓ = s+ η
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we regard zℓ as the received signal, s as the transmitting signal and η as noise, it is

proved that η has zero mean and variance σ2
η .

1. If s is independently and equally likely chosen from an M-ary PAM constellation

Qp.

Decision rule is given by:

ŝ = args∈Qp
min|zℓ − s|

Notice that M-ary PAM constellation can be represented by Q√ = {(k −
M−1
2

)d}M−1
k=0 . Let s = (k − M−1

2
)d. Then, the optimal estimate is given by

ŝ = (k̂ − M−1
2

)d.

Decision regions: The correct decision regions for detecting s = (k − M−1
2

)d

are given as follows:

Γ0 = {zℓ : zℓ ≤ −(M − 1)d

2
+

d

2
} for the left edge point

ΓM−1 = {zℓ : zℓ ≥
(M − 1)d

2
− d

2
} for the right edge point

Γk = {zℓ : (k − M − 1

2
)d− d

2
< y < (k − M − 1

2
)d+

d

2
} for the kth inner point

Symbol error probability: Note that the conditional probability density

function of the received signal zℓ given s = sk is given by

ϑ(zℓ|sk) =
1√
2πσ2

η

e
− (zℓ−sk)2

2σ2
η
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Hence, the conditional probability of making correct decision is determined by

Pc|sk =

∫

Γk

ϑ(zℓ|sk)dzℓ

In order to evaluate this integral, we consider the following three cases:

(a) For the left edge point, the conditional probability of making correct deci-

sion on s = s0 = − (M−1)d
2

is given by

Pc|s0 =

∫

Γ0

ϑ(zℓ|s0)dzℓ

=

∫ − (M−1)d
2

+ d
2

−∞

1√
2πσ2

η

e−(zℓ +
(M−1)d

2
)2

2σ2
η

dzℓ

= 1−Q(
d

2ση
)

(b) For the right edge point, the conditional probability of making correct

decision on s = sM−1 =
(M−1)d

2
is given by

Pc|sM−1
=

∫ ∞

(M−1)d
2

− d
2

1√
2πσ2

η

e−(zℓ − (M−1)d
2

)2

2σ2
η

dzℓ

= 1−Q(
d

2ση
)
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(c) For the kth inner point, the conditional probability of making correct de-

cision on s = sk = k − (M−1)d
2

is given by

Pc|sk =

∫ k− (M−1)d
2

+ d
2

k− (M−1)d
2

− d
2

1√
2πσ2

η

e−(zℓ − (M−1)d
2

− k)2

2σ2
η

dzℓ

= 1− 2Q(
d

2ση

)

2. If s is independently and equally likely chosen from an M-ary QAM constellation

Qq.

Decision rule is given by:

ŝ = args∈Qq
min|zℓ − s|

let zℓ = zℓre+jzℓim and s = sre+jsim. Since |zℓ−s| =
√

(zℓre − sre)2 + (zℓim − sim)2

and sre and sim are independent, the optimization problem is equivalent to the

following two optimization problems

ŝre = argsre∈Qp
min|zℓre − sre|

ŝim = argsim∈Qp
min|zℓim − sim|

where Qp denotes the
√
M -ary PAM constellation. If we let sre = (m−

√
M−1
2

)d

and sim = (n−
√
M−1
2

)d, where m,n = 0, 1, 2...,
√
M −1. Therefore, the optimal

estimate of s is given by ŝ = ŝre + jŝim, where
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ŝre = (m̂−
√
m− 1

2
)d

ŝim = (n̂−
√
m− 1

2
)d

Decision regions: The correct decision regions for detecting sm,n = (m −
M−1
2

)d+ j(n− M−1
2

)d are given as follows:

(a) For four corner points

Γ0,0 = Γ0 × Γ0

Γ√
M−1,0 = Γ√

M−1 × Γ0

Γ0,
√
M−1 = Γ0 × Γ√

M−1

Γ√
M−1,

√
M−1 = Γ√

M−1 × Γ√
M−1

where notation Γk denotes the kth decision region for the kth PAM con-

stellation point.
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(b) For edge points

Γ0,k = Γ0 × Γk

Γk,0 = Γk × Γ0

Γ√
M−1,k = Γ√

M−1 × Γk

Γk,
√
M−1 = Γk × Γ√

M−1

for 1 ≤ k ≤
√
M − 2

(c) For inner points

Γm,n = Γm × Γn

for 1 ≤ m,n ≤
√
M − 2

Symbol error probability: Note that the conditional probability density

function of the received signal zℓ given s = sm,n is the joint Gaussian distribution

ϑ(zℓ|sm,n) =
1

2πσ2
η

e
− ((zℓre−sm)2)+((zℓim−sn)2)

2σ2
η

where sm and sn denote the real and imaginary parts of sM,n, respectively.
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Hence, the conditional probability of making correct decision on the QAM sym-

bol is determined by

Pc|sm,n
=

∫

Γm,n

ϑ(zℓ|sm,n)dzℓredzℓim

=

∫

Γm

ϑ(zℓre|sm)dzℓre
∫

Γn

ϑ(zℓim|sn)dzℓim

= Pc|sm × Pc|sn

Now, we can make use of the result for the PAM constellation by considering

the following three cases

(a) For corner points

Pc,c = Pc|sm × Pc|sn = (1−Q(
d

2ση
))2

(b) For edge points

Pc,e = Pc|sm × Pc|sn = (1−Q(
d

2ση
))× (1− 2Q(

d

2ση
))

(c) For inner points

Pc,i = Pc|sm × Pc|sn = (1− 2Q(
d

2ση
))2
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Appendix B

Proof of Lemma 1

In this chapter, an asymptotic expression for the expected value of the Q-function

with respect to the channel estimation signal is derived. From Eq. 3.16, the expected

value of Q-function for the two-way relay system for this thesis can be written as

E

[
Q

(
d√
2ση̄

)]
=

1

π

∫ ∞

0

∫ π/2

0

∫ ∞

−∞
e−

t2

2 sin θ2 ϑ(zℓ2|ξ)ϑ(ξ)dzℓ2dθdξ (B.1)

where

t2 =
d2

2σ2
η

=
2 q2
q1
|zℓ,2|2

Ē(p2|x|
2

p1
+ q2|y|2

q1
+ 1)(ξ + 1)σ2

ϑ(zℓ2|ξ) =
1

π(2q1ξ + (ξ + 1)σ2)
e

−|zℓ2|
2

2q1ξ+(ξ+1)σ2

ϑ(ξ) = e−ξ
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Substituting the above expressions to Eq. 3.16, we obtain

E

[
Q

(
d√
2ση̄

)]
=

1

π2

∫ ∞

0

∫ π/2

0

∫ ∞

−∞

1

2q1ξ + (ξ + 1)σ2
e

−
q2
q1

|zℓ2|
2

Ē(
p2|x|

2

p1
+

q2|y|
2

q1
+1)(ξ+1) sin2 θσ2

e
−|zℓ2|

2

2q1ξ+(ξ+1)σ2 −ξ
dzℓ2

︸ ︷︷ ︸
dθdξ

Integrating the expression in the bracket first, we have

M =

∫ ∞

−∞

1

2q1ξ + (ξ + 1)σ2
e

−
q2
q1

|zℓ2|
2

Ē(
p2|x|

2

p1
+

q2|y|
2

q1
+1)(ξ+1) sin2 θσ2

e
−|zℓ2|

2

2q1ξ+(ξ+1)σ2 −ξ
dzℓ2

=
e−ξ

2q1ξ + (ξ + 1)σ2

∫ ∞

−∞
e
−





q2
q1

Ē(
p2|x|

2

p1
+

q2|y|
2

q1
+1)(ξ+1) sin2 θσ2

+ 1
2q1ξ+(ξ+1)σ2



|zℓ2|2

dzℓ2

=
e−ξ

2q1ξ + (ξ + 1)σ2

∫ ∞

−∞
e
−





q2
q1

Ē(
p2|x|

2

p1
+

q2|y|
2

q1
+1)(ξ+1) sin2 θσ2

+ 1
2q1ξ+(ξ+1)σ2



z2re

dzre

+
e−ξ

2q1ξ + (ξ + 1)σ2

∫ ∞

−∞
e
−





q2
q1

Ē(
p2|x|

2

p1
+

q2|y|
2

q1
+1)(ξ+1) sin2 θσ2

+ 1
2q1ξ+(ξ+1)σ2



z2im

dzim

Since
∫ ∞

−∞
e−Ax2

dx =

√
π

A

M =
πe−ξ

2q1ξ + (ξ + 1)σ2

[
q2
q1

Ē(p2|x|
2

p1
+ q2|y|2

q1
+ 1)(ξ + 1) sin2 θσ2

+
1

2q1ξ + (ξ + 1)σ2

]−1

Substituting the above equation to the original expression, we obtain

E

[
Q

(
d√
2ση̄

)]
(B.2)

=
1

π

∫ ∞

0

∫ π/2

0




q2
q1

Ē(p2|x|
2

p1
+ q2|y|2

q1
+ 1)(ξ + 1) sin2 θσ2

+
1

2q1ξ + (ξ + 1)σ2



−1

e−ξ

2q1ξ + (ξ + 1)σ2
dθ

︸ ︷︷ ︸

dξ

(B.3)
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Integrating the expression in the bracket in Eq. (B.2), and letting

Ψ =

q2
q1

Ē(p2|x|
2

p1
+ q2|y|2

q1
+ 1)(ξ + 1)σ2

Φ =
1

2q1ξ + (ξ + 1)σ2

we have

N = Φeξ
∫ π

2

0

[
Ψ

sin2 θ
+ Φ

]−1

dθ

= Φeξ
∫ π

2

0

sin2 θ

Φ sin2 θ +Ψ
dθ

= eξ
∫ π

2

0

[
1−

Ψ
Φ

sin2 θ + Ψ
Φ

]
dθ

=
π

2

(
1−

√
1

1 + Φ
Ψ

)
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Substituting the above integration result to Eq. (B.2), we obtain

E

[
Q

(
d√
2ση̄

)]
=

1

2

∫ ∞

0

e−ξ



1− 1√

1 +
Ē(

p2|x|
2

p1
+

q2|y|
2

q1
+1)(ξ+1)

(
2q2
σ2 +

q2
q1

)ξ+
q2
q1




dξ

=
1

2
− 1

2
[

∫ ∞

0

e−ξ 1√
1 + A(ξ+1)

(
2q2
σ2 +

q2
q1

)ξ+
q2
q1

]

=
1

2
− 1

2
[

∫ ∞

0

e−ξ

√
cξ + d

aξ + b
dξ]

=
1

2
− 1

2

√
c

a
[

∫ ∞

0

e−ξ

√
1 +

ad− bc

c(aξ + b)
dξ]

=
1

2
− 1

2

√
c

a
[

∫ ∞

0

e−ξ

√
1 +

−2Aq2ρ

acξ + bc
dξ]

with

ρ =
1

σ2

A = Ē(
p2|x|2
p1

+
q2|y|2
q1

+ 1)

c = 2q2ρ+
q2
q1

d =
q2
q1

a = A+ 2q2ρ+
q2
q1

b = A+
q2
q1
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We can employ binomial series to simplify this integration. Let’s review the concept

for binomial series first: Binomial series is the Taylor series at x = 0 of the function

f given by f(x) = (1 + x)a, where a is an arbitrary complex number. Explicitly,

(1 + x)a =

∞∑

k=0




a

k


 xk, |x| ≤ 1

Before applying the formula, let’s check the condition for convergence: which is

|−2Aq2ρ
acξ+bc

| ≤ 1.

ad− bc

c(aξ + b)
=

−2Aq2ρ

acξ + bc

>
−2Aq2ρ

cb

=
−2Aq2ρ

(2q2ρ+
q2
q1
)(A+ q2

q1
)

> −1

Because all values such as A, q2, ρ, a, b, c, ξ are nonnegative, we get:

−2Aq2ρ

acξ + bc
< 0

Combining previous two equations we proved the condition for convergence. Employ-

ing the binomial series to our equation, we can express the original equation in the
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form C0ρ
−1 ln ρ+ C1ρ

−1 +O(ρ−2 ln ρ).

E

[
Q

(
d√
2ση̄

)]

=
1

2
− 1

2

√
c

a
[

∫ ∞

0

e−ξ

∞∑

k=0




1
2

k


 (

−2Aq2ρ

acξ + bc
)kdξ]

=
1

2
− 1

2

√
c

a
(
−2Aq2ρ

ac
)k[

∫ ∞

0

e−ξ
∞∑

k=0




1
2

k



(

1

ξ + b
a

)k

dξ]

=
1

2
− 1

2

√
c

a


1− Aq2ρ

ac
(e

b
aEi(

b

a
)) +

∞∑

k=2




1
2

k


 (

−2Aq2ρ

ac
)k
∫ ∞

0

e−ξ

(
1

ξ + b
a

)k

dξ




where Ei(x) =
∫∞
x

e−u

u
du is the exponential integral and it can be evaluated as,

Ei(x) = −
(
γ + ln x+

∞∑

n=1

(−1)nxn

n!n

)

with γ being the Euler constant. Also by employing the following formula,

∫ ∞

0

e−x

(x+ β)k
dx =

1

(k − 1)!

k−1∑

m=1

(m− 1)!(−1)k−m−1β−m +
(−1)k−1

(k − 1)!
eβEi(β)

Then the original equation has the form

E

[
Q

(
d√
2ση̄

)]
=

1

2
− 1

2

√
c

a

(
1 +

γAq2ρ

ac
+

Aq2ρ

ac
ln

b

a
+

∞∑

k=2

( 1
2

k

)
(
−2Aq2ρ

c
)k

1

abk−1(k − 1)

)
+O(p−2 ln p)
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To simplify the above equation, we need to employ the follow formula

1

1 + x
= 1 + x+ x2 + x3 + ... |x| < 1

With the help of binomial expansion and the above formula, we expand 1
ac
, 1

c
, 1
a
and

√
a
c
in terms of ρ−n

1

c
=

1

2q2ρ+
q2
q1

=
1

2q2ρ

1

(1 + 1
2q1ρ

)
=

1

2q2ρ
+O(ρ−2)

1

a
=

1

A + 2q2ρ+
q2
q1

=
1

2q2ρ

1

(1 +
q2
q1

+A

2q2ρ
)
=

1

2q2ρ
+O(ρ−2)

1

ac
=

1

(A+ 2q2ρ+
q2
q1
)(2q2ρ+

q2
q1
)
=

1

4q22ρ
2

1

(1 + W
4q22ρ

2 )
=

1

4q22ρ
2
+O(ρ−3)

where

W = (A+
q2
q1
)2q2ρ+

q2
q1
(A + 2q2ρ+

q2
q1
)

√
c

a
=

√
2q2ρ+

q2
q1

A+ 2q2ρ+
q2
q1

=

√
1 +

−A

A+ 2q2ρ+
q2
q1

utilizing binomial expansion, we obtain

√
c

a
= 1− 1

2

( A

A+ 2q2ρ+
q2
q1

)
+Oρ2 = 1− 1

2

A

2q2ρ+Oρ2
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Substituting the above equations to the original equation, we can express the equation

in the form C0ρ
−1 ln ρ+ C1ρ

−1 +O(ρ−2 ln ρ).

E

[
Q

(
d√
2ση̄

)]

=
A

8q2
ρ−1 ln ρ− 1

2

(
(γ − 1)A

4q2
+

A

4q2
(ln b− ln 2q2) +

∞∑

k=2

( 1
2

k

)
(−A)k

2bk−1(k − 1)q2

)
ρ−1 +O(ρ−2 ln ρ)

=
A

8q2
ρ−1 ln ρ− 1

2

(
(γ − 1)A

4q2
+

A

4q2
(ln b− ln 2q2) +

−A

2q2

(
− ln

1 +
√

q2
q1b

2
− 1

1+
√

q2
q1b

+
1

2

))
ρ−1+O(ρ−2 ln ρ)

79



Appendix C

Proof of Lemma 2

From Eq. 3.16, the expected value of the function Q2 for the two-way relay system

for this thesis can be written as

E

[
Q2

(
d√
2ση̄

)]

=
1

π

∫ ∞

0

∫ π/4

0

∫ ∞

−∞
e−

t2

2 sin θ2 ϑ(zℓ2|ξ)ϑ(ξ)dzℓ2dξdθ

=
1

π2

∫ ∞

0

∫ π/4

0

∫ ∞

−∞

1

2q1ξ + (ξ + 1)σ2
e

−
q2
q1

|zℓ2|
2

Ē(
p2|x|

2

p1
+

q2|y|
2

q1
+1)(h2+1) sin2 θσ2

e
−|zℓ2|

2

2q1ξ+(ξ+1)σ2 −ξ
dzℓ2dξdθ

=
1

π

∫ ∞

0

∫ π/4

0

[
q2
q1

Ē(p2|x|
2

p1
+ q2|y|2

q1
+ 1)(h2 + 1) sin2 θσ2

+
1

2q1ξ + (ξ + 1)σ2

]−1
e−ξ

2q1ξ + (ξ + 1)σ2
dθdξ

=
1

π

∫ ∞

0

e−ξ



π

4
−

arctan

√
1 +

Ē(
p2|x|

2

p1
+

q2|y|
2

q1
+1)(ξ+1)

(
2q2
σ2 +

q2
q1

)ξ+
q2
q1√

1 +
Ē(

p2|x|
2

p1
+

q2|y|
2

q1
+1)(ξ+1)

(
2q2
σ2 +

q2
q1

)ξ+
q2
q1




dξ
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In order to simplify this expression, first, we should expand the arctan term which

will employ the the following formula

arctanx =
π

2
− arctan

1

x
, if x > 0

With the help of this formula and mathematical manipulation, we simplify the ex-

pression and extract the O(ρ−2) term

arctan

√√√√1 +
Ē(p2|x|

2

p1
+ q2|y|2

q1
+ 1)(ξ + 1)

(2q2
σ2 + q2

q1
)ξ + q2

q1

=
π

2
− arctan

1√
1 +

Ē(
p2|x|

2

p1
+

q2|y|
2

q1
+1)(ξ+1)

(
2q2
σ2 +

q2
q1

)ξ+
q2
q1

=
π

2
− arctan

√
c

a

√
1 +

−2Aq2ρ

acξ + bc

=
π

2
− arctan

√
c

a

(
1− Aq2ρ

acξ + bc

)
−
(
arctan

√
c

a

√
1 +

−2Aq2ρ

acξ + bc
− arctan

√
c

a

(
1− Aq2ρ

acξ + bc

))

Now, let’s look at the term arctan
√

c
a

√
1 + −2Aq2ρ

acξ+bc
− arctan

√
c
a
(1− Aq2ρ

acξ+bc
). Since

arctan is an odd function. By applying the arctangent addition formula which is list

below

arctan u+ arctan v = arctan
u+ v

1− uv
, uv 6= 1
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we have the following result

arctan

√
c

a

√
1 +

−2Aq2ρ

acξ + bc
− arctan

√
c

a

(
1− Aq2ρ

acξ + bc

)

= arctan

√
c
a

√
1 + −2Aq2ρ

acξ+bc
−√ c

a
(1− Aq2ρ

acξ+bc
)

1 +
√

c
a

√
1 + −2Aq2ρ

acξ+bc

√
c
a
(1− Aq2ρ

acξ+bc
)

≤
√

c

a

√
1 +

−2Aq2ρ

acξ + bc
−
√

c

a

(
1− Aq2ρ

acξ + bc

)

=

√
c

a


1 +

1

2

(−2Aq2ρ

acξ + bc

)
+

∞∑

k=2




1
2

k



(−2Aq2ρ

acξ + bc

)k −
(
1 +

1

2

(−2Aq2ρ

acξ + bc

))



=

√
c

a

∞∑

k=2




1
2

k



(−2Aq2ρ

acξ + bc

)k

= O(ρ−2)

which means

arctan

√√√√1 +
Ē(p2|x|

2

p1
+ q2|y|2

q1
+ 1)(ξ + 1)

(2q2
σ2 + q2

q1
)ξ + q2

q1

=
π

2
− arctan

√
c

a
(1− Aq2ρ

acξ + bc
) +O(ρ−2)
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After substituting the above expression into the original E
[
Q2
(

d√
2ση̄

)]
equation we

obtain

E

[
Q2

(
d√
2ση̄

)]

=
1

4
− 1

2

∫ ∞

0

e−ξ

√
1 + A(ξ+1)

(
2q2
σ2 +

q2
q1

)ξ+
q2
q1

dξ +
1

π

∫ ∞

0

e−ξ
arctan

√
c
a
(1− Aq2ρ

acξ+bc
)

√
1 + A(ξ+1)

(
2q2
σ2 +

q2
q1

)ξ+
q2
q1

dξ

=
1

4
− 1

2

∫ ∞

0

e−ξ

√
1 + A(ξ+1)

(
2q2
σ2 +

q2
q1

)ξ+
q2
q1

dξ +
1

π
arctan

√
c

a

∫ ∞

0

e−ξ 1√
1 + A(ξ+1)

(
2q2
σ2 +

q2
q1

)ξ+
q2
q1

dξ

+
1

π

∫ ∞

0

e−ξ
arctan

√
c
a
(1− Aq2ρ

acξ+bc
)− arctan

√
c
a√

1 + A(ξ+1)

(
2q2
σ2 +

q2
q1

)ξ+
q2
q1

dξ

Following the same argument as the last expression we can have:

arctan

√
c

a
(1− Aq2ρ

acξ + bc
)− arctan

√
c

a

≤
√

c

a
(

Aq2ρ

acξ + bc
)

= O(ρ−1)
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Also

1√
1 + A(ξ+1)

(
2q2
σ2 +

q2
q1

)ξ+
q2
q1

=

√
cξ + d

aξ + b

=

√
c

a

(√
ξ + d

c

ξ + b
a

+ 1− 1

)

=

√
c

a
+

√
c

a

(√
1 +

−2Aq2ρ

acξ + bc
− 1

)

=

√
c

a
+

√
c

a

∞∑

k=1




1
2

k


 (

−2Aq2ρ

acξ + bc
)k

=

√
c

a
+O(ρ−1)

The original E
[
Q2
(

d√
2ση̄

)]
can be expressed as the following expression:

E

[
Q2

(
d√
2ση̄

)]
=

1

4
− 1

2

∫ ∞

0

e−ξ

√
1 + A(ξ+1)

(
2q2
σ2 +

q2
q1

)ξ+
q2
q1

dξ +
1

π
arctan

√
c

a

∫ ∞

0

e−ξ 1√
1 + A(ξ+1)

(
2q2
σ2 +

q2
q1

)ξ+
q2
q1

+
1

π

√
c

a

∫ ∞

0

e−ξ(arctan

√
c

a
(1− Aq2ρ

acξ + bc
)− arctan

√
c

a
)dξ

=
1

4
− 1

2

∫ ∞

0

e−ξ

√
1 + A(ξ+1)

(
2q2
σ2 +

q2
q1

)ξ+
q2
q1

dξ +
1

π
arctan

√
c

a

∫ ∞

0

e−ξ 1√
1 + A(ξ+1)

(
2q2
σ2 +

q2
q1

)ξ+
q2
q1

− 1

π

√
c

a
arctan

√
c

a

∫ ∞

0

e−ξdξ +
1

π

√
c

a

∫ ∞

0

e−ξ arctan

√
c

a
(1− Aq2ρ

acξ + bc
)dξ
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In order to further simplify the equation, with the help of the following formula, we

can express arctan
√

c
a
(1− Aq2ρ

acξ+bc
) in the form of C0 + C1ρ

−1 +O(ρ−2),

arctan ξ =

∞∑

n=0

(−1)n

2n + 1
ξ2n+1, |ξ| ≤ 1 ξ 6= i,−i.

By applying this formula to the arctan term, we have the following expression:

arctan

√
c

a
(1− Aq2ρ

acξ + bc
) =

∞∑

n=0

(−1)n

2n+ 1
(

√
c

a
)2n+1

(
1− Aq2ρ

acξ + bc

)2n+1

=
∞∑

n=0

(−1)n

2n+ 1
(

√
c

a
)2n+1

(
1− (2n+ 1)

Aq2ρ

acξ + bc

)
+O(ρ−2)

Note:

− 1 ≤ −2Aq2ρ

acξ + bc
≤ 0

⇒− 1

2
≤ −Aq2ρ

acξ + bc
≤ 0

⇒1

2
≤ 1− Aq2ρ

acξ + bc
≤ 1

⇒
∣∣∣∣
√

c

a
(1− Aq2ρ

acξ + bc
)

∣∣∣∣ ≤ 1

Substituting this expression in the last E
[
Q2
(

d√
2ση̄

)]
equation, we get:
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E

[
Q2

(
d√
2ση̄

)]
=

1

4
− (

1

2
− 1

π
arctan

√
c

a
)

∫ ∞

0

e−ξ

√
1 + A(ξ+1)

(
2q2
σ2 +

q2
q1

)ξ+
q2
q1

dξ − 1

π

√
c

a
arctan

√
c

a

+
1

π

∞∑

n=0

(−1)n

2n+ 1
(

√
c

a
)2n+2

∫ ∞

0

e−ξ

(
1− (2n+ 1)

Aq2ρ

acξ + bc

)
dξ

=
1

4
− (

1

2
− 1

π
arctan

√
c

a
)

∫ ∞

0

e−ξ

√
1 + A(ξ+1)

(
2q2
σ2 +

q2
q1

)ξ+
q2
q1

dξ − 1

π

√
c

a
arctan

√
c

a

+
1

π

∞∑

n=0

(−1)n

2n+ 1
(

√
c

a
)2n+2 − 1

π

∞∑

n=0

(−1)n(

√
c

a
)2n+2Aq2ρ

ac

∫ ∞

0

e−ξ

ξ + b
c

dξ

=
1

4
− (

1

2
− 1

π
arctan

√
c

a
)

∫ ∞

0

e−ξ

√
1 + A(ξ+1)

(
2q2
σ2 +

q2
q1

)ξ+
q2
q1

dξ − 1

π

√
c

a
arctan

√
c

a

+
1

π

∞∑

n=0

(−1)n

2n+ 1
(

√
c

a
)2n+2 − 1

π

∞∑

n=0

(−1)n(

√
c

a
)2n+2Aq2ρ

ac
(e

b
cEi(

b

c
))

Since

1

π

√
c

a
arctan

√
c

a
=

1

π

∞∑

n=0

(−1)n

2n+ 1
(

√
c

a
)2n+2

1

π

∞∑

n=0

(−1)n(

√
c

a
)2n+2Aq2ρ

ac
(e

b
cEi(

b

c
)) = O(ρ−2)
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We have the final expression for E
[
Q2
(

d√
2ση̄

)]
as

E

[
Q2

(
d√
2ση̄

)]
=

=
1

4
− (

1

4
+

A

8πq2ρ
)

∫ ∞

0

e−ξ

√
1 + A(ξ+1)

(
2q2
σ2 +

q2
q1

)ξ+
q2
q1

dξ

=
A

16q2
ρ−1 ln ρ− 1

4

(
(
γ

2
− 1

2
− 1

π
)
A

2q2
+

A

4q2
(ln b− ln 2q2) +

∞∑

k=2

( 1
2

k

)
(−A)k

2bk−1(k − 1)q2

)
ρ−1+O(ρ−2 ln ρ)

=
A

16q2
ρ−1ln ρ− 1

4

(
(
γ

2
− 1

2
− 1

π
)
A

2q2
+

A

4q2
(ln b− ln 2q2)+

−A

2q2

(
− ln

1 +
√

q2
q1b

2
− 1

1 +
√

q2
q1b

+
1

2

))
ρ−1

+O(ρ−2 ln ρ)
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