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Abstract 

1,1-Dimethyl-3-phenyl-1-germacyclopent-3-ene (32) was  synthesized and it was used 

for the study of the reactivity of diphenylgermylene (GePh2) toward alkenes using 

steady state and nanosecond laser flash photolysis technique (nLFP) in hexanes 

solution.  

The reactivity of GePh2 toward several alkenes including 1-hexene, cis-2-hexene, trans-

3-hexene, cyclopentene, cyclohexene, cis-cyclooctene, methylcyclohexene, 2-methyl-2-

pentene, 2-methyl-1-pentene and trans-3-methyl-2-pentene has been investigated by 

nLFP method. In all cases, the equilibrium constant was measured and it was found that 

there is a direct correlation between the Gibbs free energy of the reaction (∆Gr) and the 

ionization potential (IP) of the involved alkene. This indicates that alkenes with higher 

IP, electron poor alkenes, should lead to more stable germiranes and consequently 

installation of electron withdrawing groups on alkenes should stabilize the resulting 

germirane. This is the first time such a quantitative predictor is reported.  

Steady state photolysis methods have been used to investigate same aspects of 

germirane reactivity. Photolysis of 32 in the presence of acrylonitrile and methanol in 

one experiment, and 3,3-dimethyl-1-pentene and methanol in another experiment, has 

provided more evidence for the presence of the corresponding germiranes which were 

trapped by methanol.   

Finally, the (1+2) cycloaddition reactions of GeH2, GeMe2 and GePh2 with a selection of 

alkenes were investigated computationally using different DFT methods and 6-

311+G(d,p) as the basis set. The results show that the reaction becomes less exergonic 
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moving from GeH2 to GeMe2 and then to GePh2. In addition, plots of calculated ∆Gr 

against the experimental IP of the involved alkene reproduced the observed 

experimental correlation from the laser studies. It was also concluded that ωB97XD and 

mPW1PW91 are the most reliable of the DFT methods that were investigated.  
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Chapter 1 - Introduction  

1.1. Thesis Overview  

Germylenes, the germanium analogues of carbenes, are typically short-lived 

reactive species having the general formula GeR2 (R = alkyl group, aryl group, halogen, 

hydrogen, etc). In the absence of a reactive substrate, they undergo dimerization to 

form digermenes of general formula R2Ge=GeR2 which subsequently oligomerize when 

R is an unhindered substituent such as hydrogen or methyl.1 In the presence of alkenes 

and alkynes however, cycloaddition reactions effectively compete with dimerization, 

forming the corresponding three membered germacycle (germirane).2 The lifetimes of 

the germylenes, digermenes and germiranes of interest to our group are within the 

range of microseconds to milliseconds, so a fast time-resolved spectroscopic technique 

needs to be employed in order to study their chemistry. This thesis presents the results 

of kinetic studies of the reaction of diphenylgermylene (GePh2) with various alkenes 

along with a computational investigation of this reaction. The results provide an 

experimental and computational predictor for the effect of alkene substitution on the 

stability of germiranes.  

1.2. Nomenclature 

The common name given to the Group 14 heavy analogues of carbenes (MR2, M 

= Si, Ge, Sn) is metallylenes.3 Similarly, the compounds containing carbon-metal and 

metal-metal double bonds, R2M=CR2 and R2M=MR2 (M = Si, Ge, Sn), are known as 

metallenes and dimetallenes respectively.4 Another less common nomenclature for 
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Group 14 divalent M(II) compounds (M = Si, Ge, Sn) is tetrellylene,5,6 which originated 

from the generic word for the Group 14 elements, tetrel.6 Table 1.1. lists some common 

terms given to compounds incorporating the Group 14 elements.7 

Table 1.1. Common names of some Group 14 compounds 

 
M 

Metallylene 

MR2 

Metallene 

R2C=MR2 

Dimetallene 

R2M=MR2 

Metallane 

MR4 

Si Silylene Silene Disilene Silane 

Ge Germylene Germene Digermene Germane 

Sn Stannylene Stannene Distannene Stannane 

 

1.3. Electronic Structure and Thermodynamics of Germylenes 

 There are two possible ground-state electronic configurations for germylenes 

due to the existence of a non-bonding pair of electrons: the triplet (two nonbonding 

electrons are unpaired and are in two different orbitals) and the singlet (two nonbonding 

electrons are paired in one orbital with high s-character, and the other p orbital is empty) 

(Figure 1.1).3  

 

 

 

In diaryl- and dialkylcarbenes, the energy difference between the lowest singlet 

and triplet configurations (∆EST = Etriplet-Esinglet) is typically very small and is influenced by 

Figure 1.1. General scheme of singlet 
and triplet states of divalent Group 14 
compounds. 
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substituent electronic and steric effects,8 as well as the solvent.9 Tomioka argued that in 

bent carbenes, the two p orbitals are not degenerate, and one of them gains s character 

and becomes stabilized.8 This separation of energy, which is sensitive to the steric and 

electronic effects of the substituents, plays the main role in determining ground-state 

multiplicity. That is, a separation barrier to relieve Coulomb repulsion is required for a 

triplet ground state configuration. As this energy separation increases, the barrier 

becomes large enough to compensate the repulsion energy. Electron donors lead to an 

increase in the energy separation; therefore halocarbenes tend to be ground state 

singlets. Substituents that favour conjugation, however lower the energy barrier and, as 

a result, most diarylcarbenes are ground state triplets. Steric effects of substituents on 

∆EST depend on the carbon-carbon bond angle. Steric hindrance increases the angle 

and consequently increases the energy barrier.8 

Table 1.2 summarizes the calculated ∆EST values of the parent metallylenes 

(MH2, M = Si, Ge, Sn), which shows that the singlet-triplet energy difference (∆EST) of 

the divalent Group 14 elements becomes more positive, meaning the singlet 

configuration becomes increasingly more favourable than the triplet (Table 1.2), as one 

proceeds down the group. The increasing ∆EST also indicates that the singlet state is 

more favourable for stannylenes than germylenes and silylenes with the same 

substituents. As a result, other than a few notable exceptions for silylenes,10,11,12 

metallylenes are found as ground state singlets. Apeloig et al. provided an explanation 

by comparing the singlet and triplet energies of CH2 and SiH2.
13 This computational 

study suggests that roughly 60% of the energy difference in the singlet-triplet splitting 

may be attributed to the reduced electron - electron repulsion between the two frontier 
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electrons due to the increasing size of orbitals. The remaining 40% could be assigned to 

a complex balance of electron-nuclear attraction, kinetic energy and repulsion of other 

electrons.13  

The divalent state stabilization energy (DSSE) is a thermodynamic term to 

describe the stability of divalent species.14,15 It is defined as the difference in homolytic 

bond dissociation enthalpies (∆H○) of MX4 and radical MX3 (equation 1.1).16 As the 

divalent species become more stable, it will have lower dissociation enthalpies which 

lead to higher DSSE values. The DSSE increases down Group 14 because the valence 

shell s electrons of the heavy element are getting increasingly lower in energy than the 

p electrons (Table 1.2).16 

 

 

 

 
Table 1.2. Calculated singlet-triplet energy gap (∆EST) and Divalent state stabilization 
energies (DSSE) of CH2 and parent metallylenes.7 Units: kcal/mol 
 
 

 ∆EST 
a DSSE 

CH2 -10.4 (1A1) -12 (1A1) 
b, -6 (3B1) 

b 

SiH2 +20.0 +19 c 

GeH2 +22.0 +26 d 

SnH2 +23.4 +26 e 

  
a. CCSD(T)/EC, Reference17; b. MP4SDTQ(FC)/6-311G**//MP2(FU)/6-31G*, Reference18; c. 
Experimental, Reference19; d. Experimental, Reference 20; e. BAC-MP4(298K), Reference 21. 

 

(1.1) 



M.Sc. Thesis – Y. Saeidi Hayeniaz   McMaster University - Chemistry 

5 
 

1.4. Generation of Germylenes 

1.4.1. Thermal Generation of Germylenes 

Compound (1) has been widely used for the generation of germylenes bearing 

different alkyl and aryl substituents. It has been shown that the photo- or pyrolytic 

cycloreversion of this compound generates free germylene and tetraphenylnaphthalene 

(eq 1.2).1,22 Moreover, the pyrolysis and photolysis of compounds of general structure 2 

yield free germylene and the corresponding digermene or germasilene (eq 1.3). 

Evidence for the intermediacy of the germylene was obtained from trapping experiments 

with methanol and 2,3-dimethyl-1,3-butadiene.23,24
  

 

 

 

 

 

 

 

 

1.4.2. Photolytic Generation of Germylenes 

In addition to the examples discussed above, other compounds have been 

employed to generate germylenes photolytically. Bis(trialkylsilyl)germanes (3), for 

(1.2) 

(1.3) 
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example, yield free germylene and hexamethyldisilane upon irradiation with UV light at 

254 nm (eq 1.4).25 The existence of the free germylene is supported by the 

corresponding transient UV spectrum in a hydrocarbon matrix at 77K26,27 as well as in 

hexanes solution at 23 ○C.28 However, it should be noted that interpretation of this 

reaction is not always straightforward, particularly with phenylated compounds, which 

undergo competing photorearrangements. For instance, a transient species observed 

from the photolysis of dimethylphenyl(trimethylsilyl)germane (4) was originally assigned 

to GeMe2, however it was later revealed that the transient is in fact germene 5, the 

product of [1,3]-silyl migration into the ortho position of the phenyl ring in 4 (eq 1.5).29  

 

 

 

 

 

 

Diazidogermanes such as (6) yield the corresponding germylene and nitrogen 

gas upon irradiation with 254 nm or 248 nm light. The dissociation of a stable leaving 

group, N2, is suggested to be the driving force for the reaction; however the observed 

yield of the reaction is low (ca. 30%) (eq 1.6).30 On the other hand, the photoreaction of 

germyl azides are reported not to be as clean as diazidogermanes, producing several 

compounds and in some cases different transient products than germylenes.31,32 

(1.4) 

(1.5) 
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Germacyclopentenes (7) undergo clean photolysis upon irradiation to yield the 

corresponding germylene and 2,3-dimethyl-1,3-butadiene (DMB) (eq 1.7).33 This 

reaction is particularly well suited for time resolved spectroscopic studies due to its high 

chemical and quantum yield.2,33  

 

 

 

 

 

1.5. Germylene Reactivity 

The common fate of simple germylenes is dimerization to form digermenes, 

which oligomerize further to yield polygermanes (GeR2)n.
1 The installation of bulky 

substituents on germylenes introduces kinetic stabilization due to a reduction in the 

polymerization rate. For example, the polymerization of bis(2,6-diethylphenyl)germylene 

stops at the dimer34 and Ge(CH(SiMe3)2)2 exists in equilibrium with its dimer in 

solution.35 It was shown that the introduction of thermodynamic stabilization in addition 

to the kinetic stabilization can completely prevent the polymerization of germylenes. For 

instance, both compound (8)36 and (9)37 are reported to be stable crystalline compounds 

at 25 ○C under inert gas, and their crystal structures have been obtained by x-ray 

crystallography. 

(1.6) 

(1.7) 
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Reactions of germylenes can be classified in the following general categories: a. 

complexation with Lewis bases, b. halogen atom abstraction, c. insertion into σ bonds, 

d. addition to π-bonds.1,3 The reactions studied in this thesis are discussed in more 

detail in the following sections. 

1.5.1. Insertion into OH Bonds  

Insertion into the OH bonds of alcohols and acetic acid is one of the most 

common trapping reactions of germylenes.1,38,39 Early evidence of the insertion product 

was obtained by the photolysis of bis(trimethylsilyl)germanes at 77 K in a hydrocarbon 

matrix containing methanol (eq 1.8). The reaction was proposed to proceed via a 

germylene-alcohol complex (10) to justify an observed absorption band at 330 nm in the 

acquired UV spectrum.27  

 

 

Detailed kinetic studies of the reaction of dialkyl- and diarylgermylenes (GePh2, 

GeMe2, and GeMes2) with alcohols (MeOH, t-BuOH) provided further evidence for a 

stepwise mechanism for the formation of the corresponding OH insertion product (13). It 

(1.8) 
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requires the initial formation of a Lewis acid-base complex (12) in a rapid and reversible 

reaction (eq 1.9). The complexes have been detected as discrete transients which show 

absorption maxima in the 290 nm - 360 nm region. The second step is a proton transfer 

from oxygen to germanium, which was proposed to proceed by a catalytic mechanism 

involving proton transfer and a second molecule of alcohol as the catalyst.40 The 

forward rate and equilibrium constants for the complexation step of the reaction of 

GePh2 with methanol (MeOH) were reported to be ca. 4 x 109 M-1 s-1 and ca. 2000 M-1 

in hexanes at 25 ○C, respectively, and the rate constant of the proton transfer step was 

estimated to be at least 2 orders of magnitude slower than complexation.40   

 

 

 

 

 

Insertions of germylenes into more acidic OH bonds (e.g. carboxylic acids) have 

also been studied. The insertion products of the reactions of GeMe2 with benzoic and 

cyclohexanecarboxylic acid (15) were isolated as stable colorless oils (eq 1.10).41 

Neumann and coworkers observed that with hydroxy-substituted carboxylic acids, 

insertion into the more acidic OH bond gives the more favored product. For instance, 

the reaction of GeMe2 with one equivalent of salicylic acid yields solely the insertion into 

the carboxylic group (16) and reaction with phenolic OH group proceeds only when 

GeMe2 is in excess (eq. 1.11).41 

(1.9) 
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Kinetic studies of the reaction of acetic acid with diarylgermylenes (GePh2 and 

GeMes2)
38 and methylphenylgermylene (GeMePh)42 showed that these reactions can 

be classified as irreversible reactions with no detectable intermediate. The same 

reaction with dimethylgermylene (GeMe2)
2 was reported to be clean and significantly 

faster than that with GePh2. The reported absolute rate constants for the reaction of 

acetic acid in hexane solution with GeMe2 and GePh2 are 7.5 x 109 M-1 s-1 and 3.9 x 109 

M-1 s-1 respectively.2  

1.5.2. (1+4) Cycloaddition Reactions 

The cycloaddition reactions of carbenes with double and triple bonds are well 

established in the literature. Early studies of the reaction of singlet carbenes with 1,3-

dienes showed that the major product of the reaction is that of (1+2) addition,43 however 

a small amount of (1+4) addition product was also detected in a limited number of 

cases.44 The (1+4) to (1+2)-product ratio was independent of the concentration of diene, 

and increased when the diene was forced into the z-conformation in sterically 

(1.10) 

(1.11) 
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congested compounds.44,45,46 The reason behind this preference was investigated in a 

theoretical study of the reaction of singlet methylene with butadiene. This study 

concluded that while both additions are symmetry allowed, the (1+2) addition is much 

more efficiently stabilized by charge transfer interaction.47 Another theoretical study 

suggested that the interaction between the HOMO of the carbene (the lone pair) and the 

LUMO of the diene (π*3), the frontier orbitals that are thought to take part in (1+4) 

cycloaddition, is weakened due to repulsion between the HOMO of the carbene and the 

π1 orbital of the diene.48 

The major product of the reaction of dimethylsilylene (SiMe2) with 1,3-butadiene 

was reported to be the (1+4) cycloaddition product.49,50 The mechanism of this reaction 

has been studied by several researchers, and it was proposed that the direct concerted 

(1+4) addition is not the major pathway of the reaction. Instead, the formation of 

vinylsilirane resulting from (1+2) addition (18) followed by isomerization to give the (1+4) 

cycloadduct (19) was suggested to be the dominant mechanism of the reaction (eq 

1.12). This mechanism is consistent with the lack of stereospecificity that has been 

observed for this reaction.49,50,51 However in the case of germylenes, the observed 

stereospecificity of the reaction of GeMe2 with different dienes argues in favour of a 

concerted mechanism for the (1+4) cycloaddition process.52,53,54  

 

 

 

(1.12) 




