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Abstract

Hypercholesterolemia is the presence of high levels of cholesterol in the blood, and it is one

of the major factors for the development of long-term complications in T1D patients.

In the thesis, we studied 1303 Caucasians with type 1 diabetes in the Diabetes Control and

Complications Trial (DCCT). With the experience of diabetes study, many factors are associ-

ated with diabetes complications, they are age, gender, cohort, treatment, diabetes duration,

body mass index (BMI), exercise, insulin dose, etc. We mainly focus on which factors are

associated with total cholesterol (CHL) analysis in the thesis.

Many measures were collected monthly, quarterly or yearly for average 6.5 years from 1983

to 1993. We used annually lipid measures of DCCT because of their values are sufficient and

complete, and they belong to longitudinal data.

Different methods are discussed in the study, and linear mixed effect models are the ap-

propriate approach to the study. The details of model selection with CHL model analysis are

shown, which includes fixed effect selection, random effects selection, and residual correlation

structure selection. Then the SNPs were added on three models individually in GWAS.

We found locus (rs7412) is not only genome-wide associated with CHL, but also genome-

wide associated with LDL.

We will assess whether these SNPs are diabetes-specific in the future, and we will add

dietary data in the three models to identify locus are associated with the interaction of diet

and SNPs.
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Chapter 1

Introduction

1.1 Introduction to the problem

Today, more than 250 million people worldwide are living with diabetes, and approximately

seven million people around the world are diagnosed with diabetes every year. In Canada, the

number of patients living with diabetes or prediabetes has reached 9 million, so approximately

30 percent of the total Canadian population (around 30 million) (Canada Diabetes Association

report, 2012). Diabetes can lead to serious complications, e.g. heart, kidney, eye disease, nerve

damage, etc.

There are three main types of diabetes: Type 1 diabetes (T1D), Type 2 diabetes (T2D)

and Gestational diabetes. T1D is a disease in which the insulin-producing cells of the pancreas

are destroyed by the immune system of the human body, it is usually diagnosed in children

and adolescents. Approximately 10 per cent of people with diabetes have T1D. T2D occurs

when the cells of human body fail to use the produced insulin properly or the immune system
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itself is insulin-resistant. T2D usually develops in adulthood, although increasing numbers of

children are being diagnosed. Gestational diabetes is a kind of diabetes found in pregnant

women who have never had diabetes before and experience high blood glucose level during

pregnancy (JDRF report, 2011). We focus only on T1D in this work.

We focus on four lipid measures as our outcomes, because abnormal lipid levels are an

important risk factors for heart disease and nephropathy which are major complications of

diabetes. In this work we focus in particular on total cholesterol (CHL).

The Human Genome Projects finished in 2003, the International HapMap finished in 2005

and 1000 Genomes Project are still in progress. These projects have identified approximately 52

million Single Nucleotide Polymorphism (SNPs) on the human genome [NCBI, 2012]. Genome

Wide Association Studies (GWAS) are useful in finding common genetic variants that contribute

to common, complex diseases. As of 2011, GWAS have examined over 200 diseases and traits,

almost 4,000 SNP associations have been found [Trompet & Jukema,2012]. We are doing

quantitative trait GWAS to identify novel SNPs which are significantly associated with lipids

in T1D.

In the project, we used the Diabetes Control and Complications Trial (DCCT) data set.

There are total of 1441 patients followed for on average 6.3 years from 1983 to 1992, of which

1303 Caucasians were studied in the thesis. Many measurements were collected over time,

quarterly or annually, for instance, body mass index (BMI) and hemoglobin A1c (HbA1c) were

collected each three months and other measures such as CHL, high density lipoprotein (HDL),

low density lipoprotein (LDL), triglycerides (TRG), insulin dose, C-peptide, exercise were all

collected yearly. We used annual data in the study because our response variables and most
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covariates were measured yearly.

Longitudinal data analyses are widely conducted in various applications as diverse as indus-

try, agriculture, biology, economics, etc. There is a big difference with traditional cross-sectional

analysis, because observations have correlation within-subject. So some commonly methods,

such as ANOVA and MANOVA, cannot solve these problems [Mavidian, 2011]. We will use

linear mixed-effects to analysis our longitudinal data set in this thesis.

1.2 Genetics background acknowledge

1.2.1 Gene, DNA and Protein

The genome is made up of 2 copies of 23 pairs of chromosomes of deoxyribonucleic acid (DNA),

and each chromosome consists of two long polymers of nucleotides which bind together to form

a double-stranded helix. Each nucleotide is one of 4 bases, they are Adenine (A), Cytosine (C),

Guanine (G) and Thymine (T). The two strands are complementary and usually bind according

to Watson-Crick base-pairing in which A binds with T and G binds with C.

DNA carries the genetic information of a cell and consists of thousands of genes. A gene

can be thought of as a section of DNA on a chromosome. Transcription is the process by which

this DNA is turned into the related single-stranded ribonucleic acid (RNA). In the process

of translation, groups of 3 consecutive RNA nucleotides join together to form an amino acid

which join together in various ways to form a protein. In any cell only about 60 percent of

the genes produce RNA for translation and production of proteins, and these are called the

expressed genes for that cell. For those that are expressed, there can be different amounts of
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RNA produced and so different protein levels. Higher gene expression usually results in higher

abundance of the protein which has implications for biological functions, including disease

[Lodish, 2000].

1.2.2 Single Nucleotide Polymorphism

A single-nucleotide polymorphism (SNP) is a single base pair variation at a specific locus which

consist of two alleles in a DNA sequence among individuals, groups, or populations. An allele is

an alternative nucleotide located at a specific position on a specific chromosome. Minor allele

frequency (MAF) refers to the frequency at which the less common allele occurs in a given

population [Pagon R, 1993].

Although more than 99% of human DNA sequences are the same, variations in DNA se-

quence can have impact on human disease or response to a drug. Scientists believe many SNPs

are associated with some human phenotype traits, such as cancer, diabetes, heart disease, etc.

SNPs can be used to track the inheritance of disease genes within families, so people have been

trying to identify SNPs associated with complex diseases for many years.

SNPs are the most common polymorphism and can occur in coding or non-coding regions

of the genome. SNPs occur once in every 300 nucleotides on average.

1.2.3 GWAS

A Genome-wide association study (GWAS) is a study of genetic variation across the entire

human genome designed to identify genetic association with observable traits or the presence

of a disease. A GWAS uses high-throughout genotyping technologies to assay hundreds of
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thousands of SNPs and relate them to clinical conditions and measurable traits [Burton et al.,

2007].

By examining the image produced from the microarray, we can deduce the participants

genotype at each SNP location. Normally, genotype is coded as 0, 1, or 2, which is a count

of the number of copies of the rarer (minor) allele present and describes the genotype, such as

T/T, T/C and C/C [Syvanen, 2005].

1.3 Organization of thesis

The thesis is organized as follows: Chapter 2 discusses some general methods for longitudinal

data analysis, with emphasis on linear mixed-effect models. Chapter 3 shows the application

of linear mixed effects model to the DCCT dataset. The details of analysis were listed for

discovering which covariates are associated with CHL. Chapter 4 describes the GWAS for

CHL in DCCT. In Chapter 4, some software and applications are introduced, such as PLINK,

Haploview which are useful for GWAS analysis. Chapter 5 summaries our findings and discusses

ongoing and future work.
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Chapter 2

Longitudinal Data Analysis

Longitudinal studies have a lot of advantages compared to cross-sectional designs which study

many observations at a given time. Longitudinal studies consider both the between-subject

and within-subject time-related variations, and provide more efficient estimators than cross-

sectional designs with the same number and patterns of observations [Little, 2000]. Longitudinal

studies also can separate aging effects from baseline effects, while cross-sectional designs can

not handle this. Furthermore, longitudinal studies provide more information about individual

changes over time, since in real world it has more practical meaning for individuals [Davidian,

2011].

2.1 Challenges

There are also some challenges associated with longitudinal data analysis. Observations are

made sequentially on the same individual, and are not independent. Therefore these obser-

vations must be considered as dependent observations in data analysis. Different correlation
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patterns should be considered and compared using Akaike information criteria (AIC) [Sakamoto,

1986] or Bayesian information criteria (BIC) [Schwarz, 1978]. It is very difficult to analyze lon-

gitudinal data under some situations, such as, unbalanced designs, missing data, etc. Moreover,

in longitudinal studies, we may need to consider some time-varying covariates.

2.2 General Approaches for longitudinal data

Normally a longitudinal data set can be shown as Table 2.1. The meaning of notations are

explained below:

i indexes 1, 2, ..., N subjects;

j indexes 1, 2, ..., ni observations (e.g. yearly data over time) where ni is the total number of

observations for subject i. Total numbers of observations =
∑N

i=1 ni.

yi indexes ni × 1 vector of responses for subject i.

xij indexes p × 1 covariate vector of subject i at time j where p is the number of covariates.

These covariates can be either time-independent (between-subject) or time-dependent (within-

subject).

For longitudinal data, the potential sources of variation usually are of two main types:

• Between-subject variation

• within-subject variation

By separating between-subjects variation from within-subject variation, the response can

be expressed as below (2.1),

yij = µij + bij + eij (2.1)

17



Table 2.1: Longitudinal Data Layout

subject observations response covariates

1 1 y11 x111 ... x11p

1 2 y12 x121 ... x12p

- - - -

1 n1 y1n1 x1n11 ... x1n1p

- - - -

- - - -

- - - -

N 1 yN1 xN11 ... xN1p

- - - -

N nN yNnN
xNnN1 ... xNnNp

where we assume E(bij)=0, E(eij)=0. The meaning of notations used in the model is listed

below

• bij is the deviation representing between subject variation at time tj.

• eij represents the additional deviation due to within-subject fluctuations about the trend.

There are several commonly used methods for analyzing longitudinal data, which are repeated

measures ANOVA, multivariate MANOVA, mixed-effects regression models, covariance pattern

models, which are very popular for analyzing binary, count and categorical longitudinal data

[Hedeker, 2006]. In the following sections, the methods of repeated measure ANOVA and

Multivariate ANOVA will be described and compared to mixed-effects models.
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Table 2.2: Univariate Repeated Data Layout

Time point

Subjects 1 2 ... n

1 y11 y12 ... y1n

2 y21 y22 ... y2n

- - - -

- - - -

N yN1 yN2 ... yNn

2.2.1 Repeated Measures using ANOVA

First let us look at the univariate ANOVA repeated model, in which each individual observations

are considered independent. A even simpler data set is used to explain the repeated measures

model and listed in Table 2.2, where tj is specified in the model as the time point.

yij = µ+ bi + tj + eij (i = 1, ..., N ; j = 1, ...,m) (2.2)

where µ represents the grand mean of N × n observations; bi is a random effect representing

the individual deviation from the grand mean, and assumed to have the following distribution

bi
iid∼N(0, σ2

b ) with σ2
b as a between-subjects variance; tj represents the effect of time; eij is the

error for subject i at time j and follows eij
iid∼N(0, σ2

e) with σ2
e as a within-subject variance.

Assumptions:

(1)
∑m

j=1 tj = 0;
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(2) E(yij) = µ+ tj;

(3) Var(yij) = Var(µ+ tj + bi + eij) = σ2
b + σ2

e ;

(4) Cov(yij,yi′j) = 0 for i 6= i
′

and Cov(yij,yij′ ) = σ2
b for j 6= j

′
.

In summary, the fourth assumption shows that the observations from different subjects are

independent, but those within the same subject are dependent.

The covariance between observations on the same subject is σ2
b , which has the following

corresponding correlation

Cor(yij,yij′ ) =
σ2
b

σ2
b + σ2

e

. (2.3)

Then we can obtain the variance-covariance matrix Σ for the observations in subject i, that is

Σ =



σ2
b + σ2

e σ2
b σ2

b ... σ2
b

σ2
b σ2

b + σ2
e σ2

b ... σ2
b

... ... ... ... ...

σ2
b ... σ2

b σ2
b + σ2

e σ2
b

σ2
b σ2

b ... σ2
b σ2

b + σ2
e


where this structure is also called compound symmetry structure.

ANOVA Table

Later an ANOVA table is need to test the variance components σ2
b and σ2

e :
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Table 2.3: ANOVA Table. ȳ.. indicate total mean of Nn observations, ȳi. indicate subject means

(i = 1, ..., N), ȳ.j indicate time point mean (j = 1, ...,m)[Hedeker, 2006]

Source df SS MS F

Subjects N-1 SSS = m
∑N

i=1(ȳi. − ȳ..)2
SSS

N−1
MSS

MSR

Time m-1 SST = N
∑N

i=1(ȳ.j − ȳ..)2
SST

m−1
MST

MSR

Residual (N-1)×(m-1) SSR =
∑N

i=1

∑m
j=1(yij − ȳi. − ȳ.j + ȳ..)

2 SSR

(N−1)(m−1)

Total N×m-1 SSy =
∑N

i=1

∑m
j=1(yij − ȳ..)2

Hypothesis test

In order to perform statistical inference, two hypothesis tests can be set up, and then we have

the following results:

(1) When the hypothesis Hs: σb = 0 is true, we have FS = MSS

MSR

HS∼FN−1,(N−1)(m−1);

(2) When the hypothesis HT : t1 = t2 = ... = tm=0 is true, we have FT = MST

MSR

HT∼Fn−1,(N−1)(m−1).

In this kind of univariate model analysis, we note that the analysis of variance is only valid

if the assumption of compound symmetry structure holds for the covariance matrix. However

it is not a reasonable assumption for most situations. In reality, the variance within subjects

often changes over time, and the covariances of two closer observations in time are usually

greater than those of two observations that are far away of time point [Frees, 2004].
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2.2.2 Multivariate Analysis of Variance Using MANOVA

Compared to the univariate repeated measure ANOVA, using MNOVA to analyze repeated mea-

sures requires less restrictive assumptions. However, these two methods have many similarities.

For instance, both repeated-measures ANOVA and MANOVA assume that time intervals are

equally spaced, the response is normally distributed, but both approaches are robust against

violations of normality. Both approaches require complete data for all subjects, i.e. no missing

observations for any subjects. The only difference is that repeated-measures ANOVA assumes

sphericity, or compound symmetry [Davidian, 2011].

With the same notations used before, the model for MNOVA is written as

yi = Xiβ + εi, i = 1, ..., N, εi ∼ Nm(0,Σ) (2.4)

And Σ is an arbitrary covariance matrix with no particular structure, that is ,
σ2
1 σ12 · · · σ1m

...
...

...
...

σm1 σm2 · · · σ2
m


2.3 Limitation of Repeated Measures ANOVA and MANOVA

Based on the discussion with the two classical methods: repeated measures ANOVA and

MANOVA, some assumptions and restrictions of these two classical methods are highlighted

below [Davidian, 2011].

(1) The basic and characteristic of both ANOVA and MANOVA methods is that all subjects

should be observed at the same m time points. But in reality, it is unachievable to have
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perfect balance due to various reasons. For instance in DCCT dataset, some patients had

participated for 10 years, while some other patients had only participated 3 year.

(2) The repeated measures ANOVA has the assumption of compound symmetry, which im-

plies a very specific pattern of correlation among observations within a subject at different

time points. It means that the correlation among all observations on a give subject is

the same regardless of how near or far apart the observations are taken in time. The

multivariate methods make no assumption about the covariance matrix. They allow the

possibility that covariance structure could be anything rather than the random variation

between-subject and possible correlation within-subject variation.

(3) Both methods assume that the covariance matrix of observations within each subject is

same for all subjects. In DCCT, people were randomly assigned to two different treatment

groups, conventional treatment, and intensive treatment. We cannot assume that yi’s

from different groups have the same covariance matrix Σ which would be inappropriate.

Even for the subjects within the same treatment groups, assuming the same covariance

matrix for each individual may not be appropriate either.

(4) There are also some problems related with other covariates. In DCCT, we believe that

the age at diagnosis of diabetes may play a role in the lipid level, and the covariate, age

of diagnosis, is not time-varying as being measured only once. On the other side, such

as the covariate, HbA1c, was measured at each of the same time points as the response

lipid measures, and thus is time-dependent. Therefore we need more flexible approaches

to catch the patterns of the data.
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2.4 Linear Mixed-effects Model

Mixed-effects models provide a flexible and powerful tool for the analysis of longitudinal data.

It has been a popular method to model the between-subject and within-subject correlations,

to handle both balanced and unbalanced scenarios, and allows the inclusion of covariables.

In the previous section, we described a model (2.2), which is a special example of mixed-

effect model. As before β is defined as the column vector containing µ and b
′
i s, while Xi to be

a matrix of 0
′
s and 1

′
s with n rows each for element of yi. With these notations, the regression

model can be displayed as below

yi = Xiβ + εi, for i = 1, . . . , N ; (2.5)

where εi is the overall error vector with Cov(εi)=Σi. Note that both the univariate and

multivariate ANOVA models could be written in this way also. The alternative definition (2.5)

allows for fitting unbalanced data, and can incorporate time-varying and none time-varying

covariates.

In mixed-effects models, response variables are assumed to be a function of fixed effect,

non-observable random effect, and error term. When both the fixed and the random effects

contribute linearly to the response, the model is called linear mixed-effects model, and when

some of the fixed and/or random effects occur nonlinearly in the response function, then the

model is called nonlinear mixed-effect model [Frees, 2004]. In the thesis, we only discuss the

application of linear-mixed effect model in DCCT and GWAS analysis and consider the models

in which the error terms and the random effects are normally distributed.
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2.4.1 Linear Mixed-Effects Model (LME)

The LME model described by Laird and Ware (1982) can be written as

yi = Xiβ + Zibi + εi, i = 1, . . . , N. (2.6)

Where yi is a ni dimensional response vector for the ith subject; β is a p-dimensional vector

including all the fixed effects; bi is the q-dimensional vector of random effects; Xi (ni × p)

is the known (ni × q) fixed-effects coefficient matrix; Zi is the known (ni × q) random-effects

coefficient matrices; εi is the ni-dimensional within-subject error vector.

Furthermore, there are some model assumptions:

(1) The random effect bi and within-subject error εi are independent for different subjects and

independent of each other for the same subject. i.e. Cov(bi,bj)=0 if i6=j, Cov(εi, εj)=0

if i 6= j, and Cov(bi, εi)=0.

(2) bi ∼ MVNq(0, D), where D is a general (q × q)covariance matrix with (i, j) element

σij = σji.

(3) εi ∼MVNni
(0,Σi ), where Σi is an ni × ni covariance matrix.

2.4.2 Likelihood Estimation for LME Models

We focus on two general estimation methods: maximum likelihood (ML) and restricted maxi-

mum likelihood (REML) in the thesis [Verbeke and Molenberghs, 1997].

Formula 2.6 can be written as
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yi|bi ∼MVN(Xiβ + Zibi,Σi), bi ∼MVN(0,D)

It is therefore called a hierarchical model, in which a conventional density of yi follows a

multivariate normal. This model can be shown as below [Verbeke and Molenberghs, 2000],

yi ∼MVN(Xiβ,ZiDZ
′

i + Σi) (2.7)

Let α denote the vector of all variance and covariance parameters (usually called variance

components) in Vi = ZiDZ
′

i + Σi, i.e. α consists of the all different elements in D and all

parameters in Σi. Let θ = (β
′
,α
′
)
′

be the vector of all the parameters in the model 2.7 for

yi. The classical approach to inference is based on estimators obtained from maximizing the

likelihood function 2.7

LML(θ) = ΠN
i=1{(2π)−ni/2|Vi(α)|−

1
2 × exp(−1

2
(yi −Xiβ)

′
V −1
i (α)(yi −Xiβ)} (2.8)

with respect to θ. There are two situations about α, known or unknown.

1. Assume α to be known

We directly get Wi = V−1
i (α), then the maximum likelihood estimator (MLE) of β can

be shown as

β̂ =

(
N∑
i=1

X
′

iWiXi

)−1 N∑
i=1

X
′

iWiyi (2.9)

.

2. Assume α is unknown

In most cases, α is not known, and needs to be replaced by an estimate α̂. As for

obtaining α̂, two commonly used methods are ML and REML.
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(1) ML Maximizing LML(α, β̂(α)) with respect to α, to obtain α̂ML, then estimate

β̂(α̂ML). α̂ML and β̂ML can also be obtained from maximizing LML(θ) with respect

to θ, i.e. , with respect to α and β simultaneously.

(2) REML The REML estimator for the variance components α is obtained from max-

imizing the likelihood function of a set of error contrasts [Harville, 1974], U = K
′
Y ,

where K is a n×(n-p) full-rank matrix with columns orthogonal to the columns of X

matrix. Then we combine all models yi ∼ N(Xiβ, Vi) into one model y ∼ N(Xβ, V ),

where

y =


y1

...

yN

 , X =


X1

...

XN

 , V (α) =


V1 · · · 0

...
. . .

...

0 · · · VN


So we can obtain,

U =



y1 − y2

y2 − y3

...

yN−2 − yN−1

yN−1 − yN


= K

′
Y ∼ N(0, K

′
V (α)K)

Then the MLE of α, which is based on U is called the REML estimate, and denoted

by α̂REML. Similarly, resulting estimate β(α̂REML) for β will be denoted by β̂REML.
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α̂REML and β̂REML can also be obtained from maximizing (2.10)

LREML(θ) = |
N∑
i=1

X
′

iWi(α)Xi|−
1
2LML(θ) (2.10)

with respect to all parameters simultaneously (α and β). Here note that LREML(θ)

is not the likelihood for our original data Y.

In general, ML and REML both have the same merits of being based on the likelihood

principle which leads to useful properties such as consistency, asymptotic normality, and

efficiency. But the REML produces less biased estimators for many special cases [Verbeke

& Molenberghs, 1997]. In R software, the default method is REML.

2.4.3 Inference for Marginal Model Parameters

In practice, inference on the parameters in a fitted model is often of a primary interest, due

to the generalization of results from a specific sample to general population [Verbeke and

Molenberghs, 2000]. Inference for the parameter vector β in the mean structure and variance

component α in D and in all Σi is described below.

Inference for Fixed-effects Parameters

As discussed in Section 2.4.1, the vector β of fixed effects is estimated by

β̂(α) =

(
N∑
i=1

X
′

iWiXi

)−1 N∑
i=1

X
′

iWiYi (2.11)

where Wi = V −1
i (α), the unknown α of variance component is replaced by its ML or REML

estimate.
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Under the marginal model (2.7), and conditionally on α, β̂(α) follows a multivariate normal

distribution with mean vector β and the variance-covariance matrix

var(β̂) =

(
N∑
i=1

X
′

iWiXi

)−1( N∑
i=1

X
′

iWiVar(yi)WiXi

)(
N∑
i=1

X
′

iWiXi

)−1

(2.12)

=
(∑N

i=1X
′
iWiXi

)−1 (∑N
i=1X

′
iWiVWiXi

)(∑N
i=1X

′
iWiXi

)−1

=
(∑N

i=1X
′
iWiXi

)−1 (∑N
i=1X

′
iWiXi

)(∑N
i=1X

′
iWiXi

)−1

=
(∑N

i=1X
′
iWiXi

)−1

Considering general linear hypotheses of the fixed effects, i.e., testing problems of the form

H0 : H
′
β = 0 versus H1 : H

′
β 6= 0,

with β a (p× 1) vector and H a (p× q) matrix (q ≤ p) of full rank (rank(H)) = q) Then the

statistic

(H
′
β)
′
(H

′
(X

′
WX)−1H)(H

′
β)

rank(H)

approximately follows a F-distribution with rank(H) as degrees of freedom for the numerator

[Helms, 1992]. The denominator degrees of freedom is the total numbers of observations minus

1 and minus q.

Inference for Variance Component

With respect to the estimates of the variance components α, it is necessary to construct sta-

tistical tests for the significance of the random effects in the model [Verbeke and Molenberghs,

2000].

When testing the variance components against 0, i.e. the null hypothesis:
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H0 : α ∈ Θα,0

Θα,0 is a subspace of parameter space Θα of the variance components α, the value 0 of the

parameters under hypothesis H0 are on the boundary of the parameter space. Therefore, the

well-known asymptotic normality for estimators and the asymptotic chi-squared null distribu-

tion for the likelihood ratio tests (LRT), are not necessarily valid any longer.

We used α to represent the covariance component in the model, which is estimated with ML

method or REML method. REML is used in estimating covariance components by maximizing

the likelihood function of a set of error contrasts rather than maximizing the likelihood function

of the data [Stram and Lee, 1994]. So, when comparing two nested models with equal mean

structure (fixed effects), but different covariance structure, the REML likelihood are comparable

because the same mean structure leads to the same error contrasts [Verbeke and Molenberghs,

2000].

Stram and Lee (1994) give details of the more general models, and the asymptotic results

of likelihood tests would be adjusted for the boundary conditions. Consequently, LR test

statistics under the null often follow a mixture of chi-squared distributions instead of one single

chi-squared distribution [Stram and Lee, 1994]. Pinheiro and Bates (2000) also used simulations

to demonstrate the effect of these adjustments.

This LRT was derived under the assumption of conditional independence, i.e., assuming

that all residual covariance Σi are of the form σ2Ini
[Pinheiro & Bates, 2000]. However it

is likely conservative, as the p-values are normally larger than they should be [Verbeke and

Molenberghs, 2000]. Therefore, the test is still useful if p-values show the significant results.

Let LML denote the likelihood function (2.9) and let −2lnλN be the likelihood ratio test statistic
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defined as

−2lnλN = −2ln

[
LML(θ̂ML,0)

LML(θ̂ML,0)

]

where θ̂ML,0 and θ̂ML,1 are the maximum likelihood estimates under the null-hypothesis and

under the alternative hypothesis respectively.

2.4.4 Residual Correlation Structures for Modeling Dependence

In longitudinal data analysis, when subjects are followed over time, there is a natural ordering

of the data for each subject. Correlation structure are used to model dependence among

observations, in mixed-effect model, it is used to model dependency among the within-group

errors [Pinheiro and Bates, 2000]. There are up to ten observations per subject in our DCCT

data set, the time is yearly integer variable. The correlation between two within-group errors

εij, εij′ is assumed to depend on some distance between them [Cressie, 1993], and ρ is a vector

of correlation parameters. Jones (1993) described the serial correlation structures in detail of

the linear mixed-effects models, The general serial correlation model is defined as cor(εij, εij′ ) =

h(ρ), where h(·)indexes autocorrelation function. Some of the most common serial correlation

structures used in practice are shown below, and all of which are implemented in the R nlme

library [Pinheiro, 2011].

Compound Symmetry

Compound symmetry is the simplest serial correlation structure, which assumes equal corre-

lation among all within-group errors of same subject. The corresponding correlation model

is
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cor(εij, εij′ ) = ρ, ∀j 6= j
′
, h(k, ρ) = ρ, k = 1, 2, ...

While the compound symmetry correlation model tends to be too simplistic for practice appli-

cations.

General (Unstructured)

The general correlation structure represents the other extreme in complexity to the compound

symmetry structure. Each correlation is shown by a different parameter, the correlation function

is h(ρ) = ρk, k = 1, 2, ... While the general correlation model tends to over parameterized model.

It is useful for few observations per subject, that leads to precise correlation with observations.

Autoregressive (AR)

Box et al.(1994) described the family of correlation structure which includes different classes

of linear stationary models: autoregressive models, moving average models, and mixture of

autoregressive-moving average models. We use εt indexes an observation taken at time t, µt

indexes a noise term with E[µt] = 0, and assumed independent of the previous observations.

εt = φ1εt−1 + · · ·+ φpεt−p + µt, |φ| < 1

p is called the order of the autoregressive model, which denoted by AR(p). There are p correla-

tion parameters in an AR(p) model, given by φ = (φ1, · · · , φp). The AR(1) model is the simplest

and one of most useful autoregressive model. Its correlation function is h(k, φ) = φk, k = 0, 1, ...

For autoregressive models of order greater than 1, the correlation function was defined as

below equation (Box et al., 1994).

h(k, φ) = φ1h(|k − 1|, φ) + · · ·+ φph(|k − p|, φ), k = 1, 2, ...
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Moving Average Correlation (MA)

Moving average correlation models assume that the current observation is a linear function

of independent and identically distributed noise terms. The MA(q) model is called the first

order moving average correlation model, in which the current observation is modeled as a linear

function.

εt = θ1µt−1 + · · ·+ θqµt−q + µt

q is called the order of the moving average model, which is denoted by MA(q). There are q

correlation parameters in an MA(q) models, given by θ = (θ1, · · · , θq). The correlation function

for an MA(q) model is

h(k, θ) =


θk+θ1θk−1+···+θk−qθq

1+θ21+···+θ2q
, k=1,...,q;

0, k=q+1,q+2,....

Mixed Autoregressive-moving Average Models (ARMA)

Mixed autoregressive-moving average models are combined together an autoregressive model

and a moving average model. In ARMA(1, 1) model, for instance,

εt =

p∑
i=1

φtεt−i +
n∑
j=1

θjµt−j + µt,

By convention, ARMA(p,0)=AR(p), and ARMA(0,q)=MA(q), so that both autoregressive and

moving average models are particular examples of the general ARMA model. Information crite-

ria can used to evaluate two models based on their maximized log likelihood values. The model

with the smaller information criterion is usually preferred. Two commonly used information
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criteria are Akaike Information Criterion (AIC) [Sakamoto, 1986] and the Bayesian Information

Criterion (BIC) [Schwarz, 1978]. These are model comparison criteria evaluated as

AIC=-2log Likelihood + 2npar,

BIC=-2log Likelihood + npar log(N),

Where npar denotes the total number of parameters in the model and N is the total number

of observations used to fit the model. If we use AIC to compare models for the same data, we

prefer the model with the smaller AIC. Similarly, when using BIC we prefer the model with

the lowest BIC.

2.5 Model Diagnostics

After selecting the proper covariance structure, evaluation of the final model is necessary. In the

linear model, the collinearity of predictors may affect the residual distribution, so collinearity

among covariates needs to be checked [Cheng et al, 2011]. And, we need to check the distri-

butional assumptions of the LME model with random effects and residual terms. The nlme

library library provides several methods for assessing the validity of these assumptions.

2.5.1 Assess Collinearity among Covariates

When the degree of multicollinearity arises, the estimates of the coefficients become unstable

and the standard errors of the coefficients can be inflated [UCLA,web book]. Stinnett (1993)

gave a detailed discussion of diagnostics and collinearity in mixed model to avoid inflated

variances covariates’ coefficients in fixed effects. We say that there exist multicollinearity among
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the predictors if there exist a linear combination of the regressors which is almost zero:

∃cj : c0 +

p−1∑
j=1

cjXj ≈ 0, j = 1, ..., p− 1.

A formal method for diagnosing the multicollinearity is by means of variance inflation factors

(VIF) or tolerance which is defined as 1/VIF.

VIFj =
1

1−R2
j

, j = 1, ..., q.

where R2
j is the squared correlation of predictor j with the remaining q− 1 predictors (q− 2 if

the design matrix X includes an intercept). The value of (1-R2
j ) is often called the tolerance.

There is strong multicollinearity if the largest VIF is larger than 10, or tolerance value lower

than 0.1. Often centering and scaling can substantially reduce collinearity [Cheng et al, 2011].

2.5.2 Assess LME Assumption

(1) Assumption of Random Effect

In practice, histograms of empirical Bayesian estimates are often used to check the normality

assumption for the random effects [Pinheiro and Bates, 2000]. In nlme library, qqnorm can

be used to get normal plot of estimated random effects for checking marginal normality and

identifying outliers.

(2) Assumption of Residual Terms

There are two kinds of residuals in the mixed model, marginal residual and conditional residual.

Marginal residual is a deviation of a subject from group mean, and the conditional residual

is a deviation of one measurement within a subject from the mean of that subject over time.
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Gurka et al. (2006) claim only normality of marginal residuals is needed. The studentized

residual follows a t distribution [Kleinbaum et al, 1988] and its distribution corresponds to the

distribution of a predicted future observation [Atkinson, 1985]. Cheng et al, (2011) recommend

using jackknifed studentized residual histograms, box plots, and scatter plots of jackknifed

studentized residuals versus predicted values over time to help the assessment.

2.6 Fitting the LME Model with R

There are several packages in R for fitting LME model. In this thesis, analysis were performed

using R version 2.13.0 with nlme package version 3.1-102 [Pinheiro et al., 2011]. Some codes

we used in the thesis are listed in appendix.
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Chapter 3

The Analysis of the Diabetes Control

and Complications Trial (DCCT) Data

In this chapter, we used a real example to illustrate the procedure and strategies discussed in

this thesis. 1303 Caucasian probands with T1D in DCCT were followed from 1983 to 1993.

LME model will be constructed with function of fixed effects, random effects and correlation

structure.

3.1 Introduction of the DCCT Data Set

The DCCT was a randomized clinical trial which was designed to determine if intensive dia-

betes management, with the goal of normalizing glycaemia levels, would prevent or delay the

progression of long-term diabetic complications [DCCT, 1995]. Based on scientific consider-

ations, many factors have a potential impact on the four lipid measures (CHL, HDL, LDL,

TRG)(Table 3.2). Some of the factors are non-time varying covariates including cohort, treat-
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ment, gender, duration of diabetes prior to diabetes, age of diagnosis, and baseline C-peptide

which is a protein that is produced in the body along with insulin (Table 3.1), and time-varying

covariates consisting of BMI, HbA1c, insulin dose, and exercise (Table 3.3).

There were two cohorts in the study: the primary prevention cohort included 650 subjects,

whose diabetes durations prior to entry into the trial were in the range of 1 to 5 years, with no

retinopathy and Albumin Excretion Rate (AER) < 40mg/day, which is an important predictor

of diabetes nephropathy; the secondary intervention cohort included 653 subjects, whose prior

diabetes durations were between 1 and 15 years, with mild retinopathy and AER < 200mg/day.

Patients in each cohort were randomly assigned to one of two treatment groups: conventional

treatment and intensive treatment. The intensive therapy aimed at maintaining glycaemia

levels measured by Haemoglobin A1c (HbA1c) as close as possible to the normal value of 6%

or less, while the conventional therapy aimed at maintaining clinical well-being with no specific

glucose targets [Singer, et al., 1992].

3.2 Data Analysis

In DCCT data set, some observations need to be cleaned or removed [Rahm and Do, 2000].

For example, one patient had amputation at DCCT year 6 because of diabetes complication,

and then his body mass index (BMI) was 60. Therefore we considered his BMI values for the

following years as missing values. The lipid profile did not measure LDL cholesterol directly but

instead estimated them using the Friedewald equation by subtracting the amount of cholesterol

associated with other particles LDL = CHL − HDL − 0.2 × TRG [Friedewald et al., 1972].

However there are some limitations for this method: LDL can not be calculated if plasma
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Table 3.1: Mean and standard deviation of diabetes duration prior to diabetes and centered

age of diagnosis. Numbers of patients were grouped by Male and Female in different cohort,

treatment and baseline C-peptide.

Covariate Primary cohort Secondary Cohort

Cohort (number) 650 653

Treatment Conventional Intensive Conventional Intensive

Gender (M:F) 188 :185 152 :155 174 :149 180 :150

Diabetes duration (month) 31.8(16.6) 32.4(16.8) 104.7(44.7) 105.1(45.2)

Age of diagnose 23.5(7.8) 24.2(7.6) 18.4(7.5) 18.7(7.6)

C-peptide(ng/ml) (number)

(0,0.03] 84 72 199 221

(0.03,0.2] 142 126 103 94

(0.2,1] 117 106 21 15

Table 3.2: Mean and standard deviation of four lipid measures for DCCT Data

Lipids(mg/dl) Primary cohort Secondary Cohort

Treatment Conventional Intensive Conventional Intensive

CHL 179.25(17.03) 183.84(18.16) 178.17(17.44) 179.54(17.48)

HDL 52.08(5.71) 49.70(5.63) 52.68(5.76) 50.63(5.66)

LDL 111.92(13.9) 116.81(5.19) 110.65(13.97) 112.78(14.62)

TRG 80.66(25.2) 86.57(25.54) 73.84(22.63) 80.54(24.35)

39



Table 3.3: Mean and standard deviation of time-varying covariates for DCCT Data

Covariates Primary cohort Secondary Cohort

Treatment Conventional Intensive Conventional Intensive

BMI(kg/m2) 24.17(1.09) 24.48(1.04) 25.07(1.53) 25.29(1.43)

Insulin(u/kg/day) 0.66(0.09) 0.67(0.08) 0.70(0.13) 0.72(0.12)

HbA1c(%) 9.14(0.96) 8.89(0.86) 7.45(0.97) 7.51(0.94)

Exercise(1-4) 2.96(0.55) 2.99(0.58) 2.98(0.54) 3.09(0.55)

triglyceride is > 400mg/dl, so in such a case, LDL cholesterol should be set as missing values.

The four lipid measures (CHL, HDL, LDL, TRG) are the response outcomes of interest,

and are treated as continuous variables. The distributions illustrated in Figure 3.1 clearly show

the four lipid measures all have long tails skewed to the right. To minimize the impact of these

extreme observations, we winsorized the four lipid values at 99.5 percentile [Sheskin D, 2003].

In this thesis, we only provide the detailed analysis for CHL measure.

3.2.1 Linear Mixed-effects Model

Figure 3.2 shows that CHL values of 50 random patients change over DCCT years. There was

a lot of variation of CHL values among patients, and also a lot of variation for each patient over

time. Since some patients participated the DCCT project for 4 years, some for 10 years, the

data are unbalanced. Therefore we can not analyze the data set with either repeated-measure

ANOVA or MANOVA due to the limitations we have discussed in the previous chapter.

We used linear mixed-effects model to analyze data with random intercept and time since
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Figure 3.1: Distribution of four lipid measures

Figure 3.2: 50 Samples of CHL changes over time in two treatment groups

patients have different baseline values and also values increase or decrease randomly over time

based on Figure 3.2. Figure 3.3 displays change of the mean CHL value (the solid line) over time
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Figure 3.3: Mean CHL changes over time with standard error in DCCT years

with corresponding standard error (the vertical bars). The numbers of x-label are the number

of patient visit each year. It shows the increasing tendency with minor fluctuations (from year

2 to 5 and from year 7 to 9), so a quadratic time may be required. Then we considered the

fitted model with the quadratic time as a random effect.

3.2.2 Selection of Fixed Effects

The criteria of selecting covariates are based on both statistical consideration and scientific

supportance in a specific area [Cheng et al., 2010].
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From Section 3.1, two cohorts were distinguished by diabetes duration, these two variables

were highly correlated. However, the cohort was a design variable, patients were randomly

assigned to two different treatments in each cohort, so cohort as a covariate should be included

in the model. Diabetes complications are highly associated with diabetes duration, and the

purpose of DCCT was to prevent or stop the diabetes complication, so diabetes duration also

should be modeled.

Figure 3.3 indicates that the time and the square of time could be included in the model,

although they are highly correlated (VIF=9.57). To avoid collinearity, we centered the time by

subtracting the mean so that the centered time and the squared centered-time (VIF=1.27, later

is called the time square) could be covariates in the model. A likelihood ratio test confirmed

that the squared centered-time should be in the model as a fixed effect (p-value=0.00017), and

the coefficient β̂ for the time square equals -0.17 with p-value=0.0002 [Pinheiro and Bates,

2000].

We then centered the age of diagnosis by subtracting the mean for the purpose of avoiding

collinearity with diabetes duration prior to DCCT (VIF=1.30). Therefore the variable “centered

age of diagnosis” is included as a covariate in the model.

Furthermore we also considered some non-time varying covariances as fixed effects in the

model, they are gender, treatment. The baseline indicator was 1 at baseline year, then changed

to 0 in other DCCT years. We studied treatment and baseline indicator interaction, because

every patient was treated with conventional treatment at baseline, and then was assigned to

two different treatment in other DCCT years, therefore the effect of two different treatments

should start from DCCT year 1. That is the reason of baseline indicator and its interaction
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with treatment should be included in the model. In conclusion, we used time, time square,

gender, cohort, treatment, diabetes duration, age of diagnose, and baseline indicator as fixed

effects in the model.

3.2.3 Selection of Random Effects and Correlation Structure

After determining the fixed effects, we need to select a set of random effects which can help

defining a model. Verbeke and Molenberghs (2000) discussed that the random effects for time-

independent covariates can be interpreted as subject-specific correlation to the overall mean

structure, which makes them hard to distinguish from random intercepts. Therefore, one often

includes random intercepts, and random effects only for time-varying covariates. In this case,

the only time-varying variable are linear time and squared time themselves. We decided to

use random intercept and random linear time and squared time as random effects in the fitted

model.

Then the model is shown by

yi,j = β0 + b0,i + (β1 + b1,i)ti,j + (β2 + b2,i)t
2
i,j +

p∑
k=3

βkXk,i,j + εi,j. (3.1)

where yi,j’s are winsorized CHL values.

i indexes the subjects i = 1, 2, . . . , 1303.

j indexes the time visit for subject i, j = 1, 2, . . . , ni. ni represents the overall visits of subject

i.

ti,j indexes the centered visit time yearly from baseline, while t2i,j indexes the squared centered-

time.

β0, . . . , βp are the fixed effect coefficient parameters.
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Xk,i,j are other covariates.

We also assume that (b0,i, b1,i, b2,i)
iid∼MVN3(0,D), where D is the random effect variance-

covariance matrix with 3× 3 dimensions that can be written as below

D = Var


b0,i

b1,i

b2,i

 =


σ2
0 σ01 σ02

σ01 σ2
1 σ12

σ02 σ12 σ2
2


The error terms εi,j’s are assumed independent among individuals but dependent within

each patient, i.e. cov(εi,1, εj,1) = 0 of i 6= j and (εi,1, εi,2, ...εi,ni
)∼MVNni

(0,Σi) where Σi is the

covariance matrix within each patient.

Then, the next important job is selecting an appropriate covariance or correlation structure

for the model, which can explain the correlation among the error terms [Cheng et al.,2010]. In

model 3.1, the within-subject random vector εi ∼MVN(0,Σi). So both the covariance matrix

of random effects (D) and residual errors (Σi) were used to describe the covariance structure

overall for the data.

V=Var(yi) = ZiDZ
′
i + Σi

where Zi is known matrix for D, and D is often treated as an unstructured covariance matrix

since only 6 parameters need to be estimated. However, based on the data set, it is not prac-

tical to use unstructured residual error covariance, because each subject has highly correlated

observations.

Pinheiro (2000) wrote that the random effects and residual correlation structure are com-

petition pairs, and different random effects affect residual correlation structure and also the
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model, vice versa. For instance, if time square is included as a fixed effect in the model, then

we need to consider whether time square should also be a random effect included in the model.

We first assumed the conditional independence of the residuals, i.e., given the random effects

(the intercept, time, and time square), the covariance of the residuals are a constant matrix.

We considered 3 models with the same fixed effects but different random effects:

Model 1: random intercept.

yi,j = β0 + b0,i +

p∑
k=1

βkXk,i,j + εi,j.

Model 2: random intercept and time.

yi,j = β0 + b0,i + (β1 + b1,i)ti,j +

p∑
k=2

βkXk,i,j + εi,j.

Model 3: random intercept, time, and time square.

yi,j = β0 + b0,i + (β1 + b1,i)ti,j + (β2 + b2,i)t
2
i,j +

p∑
k=3

βkXk,i,j + εi,j.

Table 3.4 shows the results of LRT test for the three models with different random effects.

Comparing Models 1 and 2, Models 2 and 3, we can see that Model 3 is the best fit for the

model. After including the fixed and random effects of Model 3, the correlation structures can

be compared and shown in Table 3.5. Through comparing with AIC and BIC, AR(1) correlation

structure should be more appropriate than others.

3.2.4 Inference for Fixed Effects

Table 3.6 displays the mean structure of the fixed effects in CHL primary model. Time is

significantly associated with CHL in the model (ptime = 6.5× 10−5, pquadratic time = 1.4× 10−2).

46



Table 3.4: LRT for Random Effects with Assumption of Constant Residual Correlation Struc-

ture using REML

Model DF AIC BIC Loglik Test L.ratio p-value

Model 1 12 86830 86916 -43403

Model 2 14 86610 86710 -43291 1 vs 2 224 2.28×−49

Model 2 14 86610 86710 -43291

Model 3 17 86538 86660 -43252 2 vs 3 78.1 7.74×10−17

Table 3.5: the Comparison of Covariance Structure for CHL in Primary Model.

Residual Covariance Structure AIC BIC Log-Likelihood

CS 86540.67 86669.46 -43252.33

AR(1) 86537.61 86666.41 -43250.81

AR(2) 86539.17 86675.12 -43250.58

MA(1) 86537.78 86666.56 -43250.86

MA(2) 86539.17 86675.12 -43250.58

ARMA(1,1) 86539.34 86675.29 -43250.67

47



Table 3.6: Total cholesterol (CHL) analysis in Primary Model

β̂ Stand.Error DF t-value p-value

(Intercept) 175.2 1.7 8167 99.4 0.1E-30

Centered year 0.5 0.1 8167 3.9 6.5E-05

(Centered year)2 -0.1 0.1 8167 -2.4 1.4E-02

Intensive Treatment -4.6 1.5 1297 -2.9 2.7E-03

Baseline Indicator -3.7 1.1 8167 -3.5 4.6E-04

Secondary Cohort 2.4 2.2 1297 1.1 2.8E-01

Female 6.8 1.5 1297 4.4 9.1E-06

Centered age of diag 0.8 0.1 1297 7.7 2.1E-14

DURATION 0.1 0.1 1297 2.8 5.0E-03

Intensive trx:baseline 5.8 1.2 8167 4.8 1.6E-06
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When diabetes duration is included in the model, the cohort is not significantly associated

with CHL in the model, while when the cohort is in the model, diabetes duration still has a

significant impact on CHL. When all other covariates were fixed in the model, the intensive

treatment was significantly associated with CHL after baseline year.

3.2.5 Inference for Variance Components

It may be of interest to test whether random time and random time square effects are both

needed after we fixed the correlation structure with AR(1), even though we tested them when

correlation structure with constant matrix in Section 3.2.4. The corresponding hypothesis is

to test whether the variance component is zero, which is also clearly on the boundary of the

parameter space Θα, and results the classical likelihood-based inference cannot be applied (see

the discussion in Section 2.4.3).

We considered the below 3 models which based on same fixed effects and AR(1) correlation

structure. The results from LRT are listed in Table 3.7, which further confirmed that random

intercept, random time and random time square effects are all necessarily needed in the model.

Model 1: random intercept.

Model 2: random intercept and random time effect.

Model 3: random intercept, random time, and random time square effect.
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Table 3.7: LRT for Variance Component with AR(1) Residual Correlation Structure using

REML

Model DF AIC BIC Loglik Test L.ratio p-value

Model 1 13 86681 86774 -43327

Model 2 15 86587 86695 -43278 1 vs 2 97.81 9.5× 10−9

Model 2 15 86587 86695 -43278

Model 3 18 86537 86666 -43250 2 vs 3 56.13 0.0008

3.3 Model Assumption Diagnostics

For linear mixed effects models, the assumption of normality needs to be assessed by looking

at residual errors. In the study, marginal residual which is a deviation of a subject from the

group mean needs to be checked [Gurka et al, 2006]. Cheng et al. (2000) recommended using

jackknifed studentized residual histograms, and scatter plots of jackknifed studentized residuals

versus predicted values over time to help the assessment of normality.

3.3.1 Diagnostics for Random Effects Assumption

Figure 3.4 displays the normal plots of the estimated random effects (random intercept, random

time, and random squared time effects). It is plausible to say that these random effects follow

the assumption of normal distribution, although some outliers were also identified such as

patients 11001, 20003 and 42086. CHL values of patient 20003 in the ten DCCT years were

between 64 to 85, which are at the lower bound of overall CHL values, while for patient 42086

which were measured for four years, its CHL values are at the upper bound of overall CHL
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Figure 3.4: Random effect assumption assessment

values. For patient 11001 which were measured ten years, its CHL value started from 165 in

first year, then finished at 268 in the last DCCT year, which increased 62% in ten years.

3.3.2 Diagnostics for Residual Errors Assumption

The studentized residual histogram for each year were plotted in order to see whether the

model meets the normal distribution assumption. Figure 3.5 contains the jackknife studentized

residual histogram for only DCCT year 0 and 1, which indicate the normality assumption is

valid. Figure 3.6 displays the predicted values versus jackknife studentized residuals for DCCT

year 0 and 1, which also indicate the normality assumption is valid. The other years residual

plots are attached in Appendix.

In conclusion, we proposed a linear mixed-effects model with fixed effects (time, squared
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Figure 3.5: Studentized residual histograms for year 0 and year 1
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Figure 3.6: Predicted value versus studentized residual plot for year 0 and year 1
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time, treatment, cohort, gender, baseline indicator, duration prior to DCCT, age of diagnosis),

and random effects (random intercept, random time, random squared time) along with the spe-

cific residual correlation structure (AR(1)) to sufficiently catch the pattern and characteristics

of the lipid measures of DCCT.
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Chapter 4

Lipid Genome Wide Association Study

(GWAS)

Abnormal lipid levels are the important risk factors of heart disease and nephropathy which are

long-term complications of T1D. T1D Sibling patients cross-sectional studies showed genetic

factors may be contribute to specific complications. Recently, specific genetic loci which are

associated with differences in lipoprotein have been identified, and they are also associated with

complications [Freeman (1994), Zannis (1981)]. In this Chapter, LME model with genetics data

will be used to identify novel loci which are highly associated with lipid measures.

4.1 Some Preparation for GWAS Analysis

Genotyping was performed using the Illumina 1M beadchip assay. Filtering genotype data

should be undertaken before GWAS analysis. We removed SNPs with a minor allele frequency

(MAF) <1% and removed SNPs that failed a test of Hardy-Weinberg Equilibrium (HWE).
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HWE theorem states both allele and genotype frequencies in a population remain constant, so

testing for HWE is maybe the most common quality control procedure in all human genetics

[Cutler & Abecasis, 2010]. After filtering, 841,000 autosomal SNPs were analyzed in the present

study. In GWAS association study, we added each SNP individually as a fixed effect covariate

to the model from Chapter 3 for CHL and LDL (LDL Primary GWAS results are shown in

Appendix C). The other two lipid measures GWAS will be done in the near future.

Because of the huge dataset, advanced information technology support, the limitation of

the system compatibility and memory size of personal computer, we used the high performance

computer cluster at the Hospital for Sick Children in Toronto. Since the number of SNPs

analyzed is quite large, we divided it into pieces so that we can submit each subset to the

cluster. Specifically, we cut data set into 434 batches which contain approximately 2000 SNPs

each. We used PLINK version 1.07 , an open-source C/C++ GWAS tool set [Purcell et al,

2007 a,b] with an R plug in (details of R code in appendix B), in order to obtain the analysis

results of our LME with four lipid measures.

At the conventional P< 0.05 level of significance, an association study of 1 million SNPs

will show 50 000 SNPs to be “associated” with the phenotype, almost all of which will be false-

positive. The most common method of dealing with this problem is to reduce the false-positive

rate by applying the Bonferroni correction, in which the conventional p-value is divided by

the number of tests performed [Pearson & Manolio (2008, Yang et al., (2005)]. 1 million SNP

survey would use a threshold of P < 0.05/106, or 5×10−8, which is the genome-wide significant

threshold.
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4.2 Total Cholesterol (CHL) GWAS

In a genome-wide association study, while we hope for some true associations, nearly all the

SNPs will not have any association with the outcome, so almost all the p-values should come

from a uniform distribution.

4.2.1 QQ Plot and Histogram

Once GWAS analysis is complete, we need to look at a histogram of p-values to assess the

distribution, and a quantile-quantile (QQ) plot resulting from each lipid measure. QQ plot is

a graphical diagnostic tool that is used to compare the observed probability distributions of

the data to the assumed to assess if the assumptions are valid [Wilk & Gnanadesikan, 1968].

In this study, the null hypothesis is set up as “there is no association between the SNP and

lipid measures”, i.e. βSNP = 0. We plotted the observed − log10 p-values along the Y -axis for

every SNP tested versus the expected − log10 p-values under the null hypothesis on the X-axis,

which makes it easier to focus on the very low p-values [Pearson & Manolio, 2008]. So, if the

null hypothesis is true for every single case, the result of a QQ plot will be close to the line

y = x. Deviations from this line in the upper tail indicate SNPs are smaller than expected

p-values by chance.

A numerical summary of the departure from the uniform distribution is so-called “genomic

control coefficient” λ [Devin and Roeder, 1999]. Let β̂ and SE represent the coefficient estimate

and the corresponding standard error, then

λ̂ =
Median[( β̂

SE
)2]

0.4549
(4.1)
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Figure 4.1: QQ plot and Histogram of CHL primary GWAS

assesses whether the square of the test statistic follow a chi-square distribution with the degree

of freedom 1, which has the median equal 0.4549.

Figure 4.1 show the histogram of p-values of SNPs and the QQ plot as well. The right plot of

Figure 4.1 clearly shows that the distribution of p-values are very close to the specified uniform

distribution, which indicates most of the SNPs have no deviation from the null hypothesis.

The QQ plot (the left of Figure 4.1) shows the observed p-values resulting from CHL primary

GWAS model versus the expected uniform p-values with λ = 1.013336. We can see that SNPs

p-values do follow a uniform distribution.

4.2.2 Manhattan Plot

We used Haploview version 4.2, which is a Java based tool for the Manhattan plot [Barrett,

2007]. The Manhattan plot represents the significance of the association between a SNP and the

trait being measured. The different colors from left to right display the different chromosomes

within the range of 1 to 22. The X-axis shows the SNPs ordered by the physical position within
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Figure 4.2: Manhattan Plot of CHL primary GWAS

chromosome while the Y-axis displays − log10 transformed p-values, which represent the degree

of association.

In our Manhattan plot, there are two important lines in the plot, the red line with Y-value

is approximately 7.3, which was calculated with − log 10(p = 5 × 10−8) = 7.3, and the blue

line with Y-value is 5 shows the suggestive significant threshold SNPs, and the reason we used

the blue line is to find more potential suggestive SNPs which could be associated with lipid

measures.

Figure 4.2 illustrates the Manhattan plot of total cholesterol (CHL) GWAS model. At

chromosome 19, the highest dot (rs7412) represents the SNP whose p-value is the smallest, and

it reaches to the genome-wide significant line (p = 4.55× 10−8).

4.2.3 Top SNPs of CHL Primary GWAS

Table 4.1 describes the top 20 SNPs whose p-values are smaller than the suggestive cut off value

10−5. Among the SNPs in the table, only SNP rs7412 is genome-wide significant associated

with CHL , which is near APOE gene at 19q13.2.
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Table 4.1: Top SNPs of CHL Primary GWAS

SNP CHR BP A1 A2 MAF β̂ Se STAT P

rs7412 19 50103919 T C 0.0813 -11.0509 2.00863 -5.50173 4.55E-08

rs6511720 19 11063306 T G 0.1018 -9.42115 1.80197 -5.22824 1.99E-07

rs11083751 19 50105073 T G 0.0791 -10.3337 2.00774 -5.14694 3.06E-07

rs2164883 3 69094955 C A 0.1222 7.95934 1.59736 4.98282 7.11E-07

rs1995222 8 118298943 A G 0.4646 5.35298 1.08234 4.94576 8.59E-07

rs11098654 4 123128865 T C 0.0695 10.4887 2.16116 4.85328 1.36E-06

rs2801328 1 72188872 G A 0.4349 5.24827 1.08927 4.81814 1.62E-06

rs6787753 3 69078627 A C 0.1141 7.77633 1.63047 4.76938 2.06E-06

rs7005140 8 118303328 G A 0.4693 5.12008 1.08243 4.73015 2.49E-06

rs7544722 1 72179997 T C 0.434 5.15637 1.0915 4.7241 2.57E-06

rs4420638 19 50114786 G A 0.1669 7.02865 1.49626 4.69747 2.92E-06

rs6785239 3 69084092 G A 0.116 7.63624 1.62712 4.6931 2.98E-06

rs2768395 1 72174618 A G 0.4351 5.07898 1.08925 4.66282 3.44E-06

rs1016126 1 72208991 G A 0.4351 5.07898 1.08925 4.66282 3.44E-06

rs1426173 1 72157184 A G 0.4343 5.07519 1.09019 4.65534 3.57E-06

rs9571417 13 64992897 C T 0.1256 7.52243 1.63548 4.59952 4.65E-06

rs994732 6 87234971 T C 0.3132 5.40259 1.18159 4.57231 5.29E-06
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4.2.4 Genotype of Top SNP in CHL Primary GWAS

Figure 4.3 illustrates the Box and Whisker plots of the top SNP rs7412 in CHL primary GWAS.

The Y -axis shows the mean of winsorized CHL over time for each patient, while the X-axis

shows the minor and major allele and the count numbers of them. The SNP rs7412 is in APOE

gene, located at 19q13.32. The minor allele is noted by T, and major allele is represented by C.

The minor allele frequency is 0.0813. 1073 patients have major homozygote C/C, 193 patients

have heterozygote C/T, and 7 patients have minor homozygote T/T. There are 30 patients

with missing genotypes. The rare homozygote T/T genotype is associated with lower mean

CHL level.

Figure 4.3: Box and Whisker Plot of Top SNPs rs7412 in CHL primary GWAS
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4.2.5 Region Plot of Top SNP in CHL Primary GWAS

Genome-wide associations studies frequently identify associations with many highly correlated

SNPs in a chromosomal region, due in part to linkage disequilibrium (LD) among SNPs. LD
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occurs when genotypes at the two loci are not independent of each other.

In a region plot [Diabetes Genetics Initiative of Broad Institute of Harvard and MIT, Lund

University, and Novartis Institutes of BioMedical Research, 2007], there are two Y -axis, the

left side axis shows the observed − log 10 transformed p-value resulting from the lipid GWAS,

while the right side axis displays the recombination rate (cM/Mb), estimated using HapMap

2 Utah Resident with Northern and Western European Ancestry (CEU) samples. Genetic

recombination is the breaking and rejoining of DNA strands to form new molecules, and the

recombination rate is the number of observed recombination events divided by the total number

of events.

The X-axis in the plot illustrates the chromosome physical positions which are based on

build 35 (released on May 2004) of National Center for Biotechnology Information (NCBI)

of the human genome. Pairwise LD estimates between SNPs (measured as r2) are calculated

with our data set using PLINK. Estimated recombination rates are plotted to reflect the LD

structure around the most significant SNP. In the plot, the bright red indicates the SNPs that

are highly correlated, while white indicating weakly correlated. Also the dark blue diamond-

shaped points represent the index of SNPs, as well as white color indicates r2 < 0.2, gray blue

indicates 0.2 < r2 < 0.5, orange color indicates 0.5 < r2 < 0.8, and red color indicates r2 > 0.8.

The bottom panel of the region plot displays the name and location of genes in the University of

California Santa Cruz Genome Browser (UCSC), which can be found at http://genome.ucsc.edu

[Kent et al., 2002].

Figure 4.4 is a region plot in the APOE locus group at a 100-kb region surrounding the

SNP rs7412 on chromosome 19. The dark blue diamond-shaped data points represent − log10 p-
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value of the top SNP in CHL simple GWAS, rs7412 ( p = 4.55× 10−8). One SNP rs11083751

(p = 3.06× 10−7, BP: 50105073) which is highly correlated with index SNP rs7412.

Figure 4.4: Region plot of rs7412 in CHL simple GWAS.
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Chapter 5

Discussion and Future Work

5.1 Discussion of the Thesis

In this thesis, we proposed both non-genetic and genetic analysis of lipid measure (CHL) for

1303 T1D patients in the study of DCCT. We considered a LME model with AR(1) covariance

structure to fit each lipid measure, then added SNPs as covariates to fit each lipid GWAS in

three specified models. The purpose of the study was to obtain the SNPs which are highly

associated with four lipid levels in patients with T1D.

5.1.1 Non-genetics Results

In the non-genetic analysis, we performed primary model, in which linear time, quadratic

time, gender, cohort, treatment, duration of diabetes, age of diagnosis, baseline indicator and

baseline-treatment interaction as the fixed effects, intercept, linear time, quadratic time as ran-

dom effects, and AR(1) residual correlation structure. We added some time-varying covariates
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(BMI, insulin dose, HbA1c, and exercise) and one non-varying covariate (C-peptide) to primary

model as our complex model. After testing the variance component and comparing correlation

structure, then we still used intercept, time, time square as random effects, and with AR(1)

correlation structure. We emphasized to see whether and which fixed effects are significant

associated with CHL when more information (BMI, Insulin, Cpep, exercise) added in (Table

5.1). When other covariates were fixed in the model, time is not significant for CHL. BMI,

Insulin dose, and HbA1c are highly significant associated with CHL when other covariates are

in the model. When we fixed other fixed effects, the interaction of treatment and baseline

indicator is not significant for CHL, i.e. there is no significant difference of intensive treatment

with baseline year and after. C-peptide was treated as categorical and three levels factor. It

was not significantly associated with response variable, but C-peptide was kept in the complex

model because it measures insulin production and is correlated with HbA1c.

5.1.2 Genetics Results

In the genetic analysis, we performed a genome-wide association study to identify the SNPs

which are significantly associated with CHL and LDL. We compared the three different linear

mixed effect models with SNPs added as a fixed effect. We note that rs7412 is not only the top

significant SNP in CHL primary GWAS and complex GWAS, but also the top significant SNP

of LDL simple GWAS and complex GWAS. Rs7412 is located at 19q13.2, in APOE gene which

is in a cluster with APOC1 and APOC2. APOE, APOC1, and APOC2 were reported to be

highly associated with CHL and LDL by Zannis VL et al, (1981) and highly associated with

LDL cholesterol by Burkhardt et al, (2008), Kathiresan et al,(2008) and Willer et al, (2008).
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Table 5.1: Total cholesterol (CHL) analysis in Complex Model

β̂ Stand.Error DF t-value p-value

(Intercept) 60.58 5.07 7693 11.96 1.16E-32

Centered year -0.24 0.15 7693 -1.53 1.25E-01

(Centered year)2 -0.06 0.05 7693 -1.15 2.50E-01

Intensive Treatment 0.17 1.57 1295 0.11 9.13E-01

Baseline -3.27 1.05 7693 -3.10 1.94E-03

Second Cohort 0.88 2.20 1295 0.40 6.89E-01

Female 7.85 1.50 1295 5.25 1.80E-07

Centered age of diag 0.93 0.11 1295 8.65 1.47E-17

Diabetes duration 0.11 0.03 1295 4.17 3.32E-05

BMI 2.67 0.15 7693 18.00 5.18E-71

Insulin 6.98 1.60 7693 4.38 1.23E-05

C-peptide(0.2, 1] 0.99 2.16 1295 0.46 6.47E-01

C-peptide(0, 0.03] -1.34 1.86 1295 -0.72 4.71E-01

Exercise 0.27 0.32 7693 0.84 4.04E-01

HbA1c 4.47 0.23 7693 19.86 1.29E-85

Intensive trx:baseline 0.37 1.25 7693 0.29 7.69E-01
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Rs2164883 is a suggestive SNP in CHL Primary (P = 7.11 × 10−7)GWAS. It is located at

3p14.1 in chromosome 3, and is upstream of C3orf64 gene and downstream of FAM19A4. This

region was reported by Cho et al. (2011) to be involved in fasting glucose levels for T2D east

Asian populations. This SNP seems to be a novel locus for association with CHL of patients

with T1D.

Rs10866235 is a suggestive SNP in LDL primary (P = 1.15× 10−7) GWAS, the P value is

very close to geno-wide significant threshold. It shows highly significant with LDL level, but

according to our knowledge, no literature has ever proved the association with this SNP and

LDL, so rs10866235 seems a promising and novel SNP.

5.2 Future Work

I will shortly complete the primary model GWAS with HDL and TRG, and complex model

GWAS study with four lipid measures.

In GWAS analysis, we discussed the SNPs from chromosome 1 to chromosome 22. There

are four more chromosome in our dataset, they are X chromosome, Y chromosome, XY chro-

mosome which is pseudo-autosomal region of chromosome X, and chromosome MT (Mito-

chondrial). We will analyze SNPs on the X chromosome separately by the gender and on the

Y chromosome for males only. We already discussed the association with gender and lipid

measures, then we are going to identify top SNPs in sex chromosome that are genome-wide

associated with lipid measures.

When DCCT closeout in 1993, all subjects were encouraged to adopt intensive treatment

and 93% of them participated in the Epidemiology of Diabetes Interventions and Complications
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(EDIC) study which is still ongoing. The top SNPs which we found in DCCT will be examined

for association with lipid measures during the study of EDIC. To avoid false positive results of

our lipid GWAS in DCCT, we are going to replicate our results in two other cohorts of T1D

(Wisconsin Epidemiologic Study of Diabetic Retinopathy (WESDR) and Genetics of Kidneys

in Diabetes study (GoKinD)). We will test our top SNPs in simple GWAS of each lipid measures

with these two studies, in order to confirm whether the associated SNPs randomly in DCCT

study or have the prevalent association with four lipid measures in all population with T1D.

WESDR measures CHL and HDL each year except for baseline, while LDL and TRG were

measured at visit 5. GoKind study also measures CHL and HDL at the same lab used by

DCCT/EDIC, so we want to examine whether the top SNPs in DCCT simple CHL and HDL

GWAS are associated with CHL and HDL in GoKind.

Furthermore, we are going to discuss genotype imputation with missing SNPs and ungeno-

typed SNPs in Lipid GWAS [Jeffrey et al., 1997]. We used Illumina 1M beadchip to obtain

the genotype data, and missing SNP data is common in GWAS, sometimes with rates as high

as 5 − 10% [Dai et al, 2006]. Imputation uses the correlation between markers present in the

reference sample for making predictions of genotypes present in an experimental sample [Jeffrey

et al, 2009].

Different dietary habit and usage can affect the lipid levels of T1D patients, such as calories,

alcohol or sugar in the body are converted into TRG and stored in fat cells throughout the

body. Several dietary measures were collected in our DCCT data set, they are calories intake,

alcohol and smoking consumption. We will examine whether these covariates have significant

effect on four lipid measures, and we will take GWAS analysis for identify loci which have
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association between lipid measures and diet-SNP interactions.

GWAS has successfully identified some genetic risk factors for diseases, such as diabetes,

cardiac diseases, Alzheimer’s disease etc, but it has several limitations which need to be ad-

dressed in the future. The false-positive results, insufficient information on gene function, and

small sample sizes, are the major limitations of GWAS [Pearson & Manolio, 2008]. People are

still working on the environment exposures and other non-genetic risk factors on GWAS.
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Appendix A

Primary LME model with AR(1)

correlation structure

> attach(lipid.data)

> library(nlme)

> sim.model.chl <- lme(chl.win ~ cyear+cyear2+factor(OBSEX)+ factor(cohort)

+ +factor(trx)*bline

+ + DURATION + cagediag,

+ random = ~ 1+cyear+cyear2|PATIENT,na.action=na.omit,corr=corAR1())
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Appendix B

Some Plots Code in GWAS

# 1. R Plug in with PLINK

cd /adp/home/taowang/dbp_analysis

export PATH=$PATH:/tools/R/2.10.0/bin/:/tools/plink/current/

R CMD /tools/R/2.10.0/lib64/R/bin/Rserve --vanilla

plink --bfile ill1M_filter --remove Removesample.txt --extract /adp/home/taowang/cutfile/file${1}.txt --R myscript.r --out chl_file${1}

# 2. calculate LD in plink

# calculate LD using the data from all patient

plink --bfile /adp/home/taowang/ill1M_filter --r2 --ld-snp rs7412 --ld-window-kb

1000 --ld-window 99999 --ld-window-r2 0

# 3. Data management in R -- combine the file with LD and the file with P value

# import data
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ldl_7412<-read.table("rs7412.ld",head=T)

# take other snps and r2, so drop CHR_A BP_A SNP_A,

bp_A <- ldl_7412$BP_A[1]

chr_A <- ldl_7412$CHR_A[1]

SNP_A <- as.character(ldl_7412$SNP_A[1])

ldl_7412<-ldl_7412[,c(4:7)]

names(ldl_7412)<-c("CHR","BP","SNP","R2")

# import data p value

ldl_reg_p<-read.table("ldl_sim_p.txt",head=T)

# sort by bp first for two data

merge<-merge(ldl_reg_p,ldl_7412,by.x="SNP",by.y="SNP")

merge.1<-merge[,c(1,2,3,4,7)]

names(merge.1)<-c("SNP","CHR","POS","PVAL","RSQR")

p_A <- merge.1$PVAL[merge.1$SNP==SNP_A]

m<-which(abs(merge.1$POS-bp_A)<=2.5e5)

ldl<-merge.1[m,-2]

names(ldl)

TYPE <- rep("typed", length(m))

ldl <- cbind(ldl, TYPE)

row.names(ldl) <- ldl$SNP

ldl <- ldl[,c("POS","PVAL","TYPE","RSQR")]

#4. in Regionplot.RData to draw region plot
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pdf("assocplot_ldl_rs7412.pdf", width=6, height=4)

make.fancy.locus.plot("rs7412", "", "19", ldl, ceiling(-log10(p_A)+1), p_A)

dev.off()

################################

png(file="region_plot_rs7412_ldl.png")

make.fancy.locus.plot("rs7412", "", "19", ldl, ceiling(-log10(p_A)+1), p_A)

dev.off()
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Appendix C

LDL Primary GWAS Results
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Table C.1: Top SNPs of LDL Primary GWAS

SNP CHR BP A1 β̂ Se DF STAT P

19 rs7412 50103919 T -14.62 1.78 1267 -8.22 5.06E-16

19 rs11083751 50105073 T -14.21 1.78 1283 -8.00 2.79E-15

19 rs445925 50107480 T -9.83 1.53 1297 -6.44 1.69E-10

19 rs6511720 11063306 T -9.56 1.61 1296 -5.92 4.02E-09

4 rs10866235 181472674 T -5.29 0.99 1295 -5.33 1.15E-07

19 rs4420638 50114786 G 7.10 1.34 1267 5.31 1.31E-07

1 rs7528419 109618715 G -6.10 1.19 1297 -5.11 3.70E-07

1 rs2801328 72188872 G 4.96 0.98 1293 5.07 4.63E-07

4 rs13106873 181472150 A -5.04 1.00 1296 -5.06 4.90E-07

1 rs7544722 72179997 T 4.88 0.98 1281 4.98 7.21E-07

1 rs7527501 72164045 T 6.20 1.25 1297 4.97 7.43E-07

1 rs1426173 72157184 A 4.84 0.98 1295 4.95 8.41E-07

1 rs3856029 72171311 C 6.17 1.25 1296 4.95 8.42E-07

1 rs2768395 72174618 A 4.83 0.98 1296 4.94 8.86E-07

1 rs1016126 72208991 G 4.83 0.98 1296 4.94 8.86E-07

1 rs11209872 72176049 C 6.13 1.25 1297 4.92 9.86E-07
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