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Abstract

In this thesis the problem of multitarget tracking in multistatic sensor networks is

studied. This thesis focuses on tracking airborne targets by utilizing transmitters

of opportunity in the surveillance region. Passive Coherent Location (PCL) system,

which uses existing commercial signals (e.g., FM broadcast, digital TV) as the illu-

minators of opportunity for target tracking, is an emergingtechnology in air defence

systems. PCL systems have many advantages over conventional radar systems such

as low cost, covert operation and low vulnerability to electronic counter measures.

One of another opportunistic signals available in the surveillance region is multi-

path signal. In this thesis, the multipath target return signals from distinct propaga-

tion modes that are resolvable by the receiver are exploited. When resolved multipath

returns are not utilized within the tracker, i.e., discarded as clutter, potential infor-

mation conveyed by the multipath detections of the same target is wasted. In this

case, spurious tracks are formed using target-originated multipath measurements, but

with an incorrect propagation mode assumption. Integrating multipath information

into the tracker (and not discarding it) can help improve theaccuracy of tracking and

reduce the number of false tracks.

However, the limitations of PCL as well as the multipath assisted tracking include

lack of control over the illuminators and the re
ectors, limited observability and poor
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detection due to low Signalto-Noise Ratio (SNR). This leadsto high clutter with low

probability of detection of target. The number of re
ector returns from the same

target varies in multipath assisted tracking. Even though incorporating mutipath

re
ected signals will facilitate better estimates of the target states due to spatial

diversity, one cannot use these measurements without resolving target-origin and

multipath-origin uncertainties. In this thesis, these opportunistic measurements, i.e.,

commercial broadcast signals measurements in PCL trackingand resolvable multipath

target return measurements in multipath assisted trackingare exploited.

In multipath assisted tracking, obtaining the complete knowledge of re
ectors and

consistently receiving resolved target originated multipath measurements are chal-

lenging. We derived tracking algorithms to handle low probability of detection and

high nonlinearity in the measurement model due to high measurement error. Also,

tracking algorithms are proposed to track multiple targetsby removing bias on direc-

tion of arrival measurement. In multipath assisted tracking analysis, we also consid-

ered the cases where the re
ector information is completelyknown, as well as when

there are uncertainties.

We give the optimal formulations for all of the above problems as well as the

performance evaluations using PCRLB. Simulation results illustrate the performance

of the algorithms.
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Nomenclature

Acronyms

ACMA algebraic constant modulus algorithm

AOA angle of arrival

ARM anti-radiation missiles

CBF conventional beam forming

CMKF converted measurement Kalman �lter

DOA direction of arrival
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FIM Fisher information matrix

IRM information reduction matrix

JPDA joint probabilistic data association

MFT auction algorithm based multi-mode fusion tracking

MHT multiple hypothesis tracking

MPDA multipath probabilistic data association
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MVDA multipath Viterbi data association algorithm
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NN nearest neighbor
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Chapter 1

Introduction

1.1 Motivation and Contribution of the Thesis

1.1.1 Signals of Opportunity in the Environment

Active transmitters are combat targets in a war zones. Implementation of an unde-

tected covert tracking has been essential in such an environments. Therefore, there

has been high demand for building an undetectable improved surveillance systems

especially in combat situations. With the latest enhanced signal processing tech-

nologies, exploiting the existing signals in the environment and tracking the target

using such signals not only enable covert tracking, but alsobring many additional

advantages. An innovative approach uses passive signals, allow targets to be tracked

without sending any active electromagnetic signals, but rather by using existing com-

mercial broadcast signals from TV or FM radio signal around the region. Passive

Coherent Location (PCL) is considered a bistatic radar or multistatic radar tracking
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system which utilizes the commercial broadcast signals in the environment. The en-

vironment also has multipath re
ected signals that are bounced o� di�erent sources

such as buildings, mountains, the ground, clouds and movingtargets.

Exploration of target return multipath signals and incorporating the target infor-

mation from such signals into tracking algorithms have beenstudied in the literature

and have become more attractive due to their inherent low cost, as this reduces the

need for more sensors across the surveillance region. Also,incorporating target return

multipath signals into the tracking reduces the number of bank of receivers that are

needed for achieving the required accuracy of tracking. When the surveillance envi-

ronment has resolvable multipath signals at the sensors, ifproper measures are not

taken, multiple tracks will be formed for every target. In typical radar systems, these

spurious tracks are removed from tracking and therefore theinformation carried in

such target return tracks are not utilized in tracking. Information conveyed by multi-

path detections of the same target may be wasted by treating these as inappropriate

signals. In a multipath environment, for every multipath target return (re
ection

path), the sensor receives an additional measurement from the same target. In gen-

eral non-multipath scenarios, in every sensor scan, there will be either one or zero

measurement from every target depending on whether it is detected or undetected,

respectively.

In a multipath environment, when target returns from distinct propagation modes

are resolved, associating these signals appropriately into the estimation will yield

better estimates of the target states. An appropriate data association of multipath

re
ection models has to be identi�ed to use these measurements. Incorrect re
ection

model assignment will lead to errors in association and tracking. In order to utilize

2
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these measurements appropriately, they have to be identi�ed appropriately and a

correct multipath propagation mode assignment must be performed. Uncertainty in

the multipath signal propagation mode assignment adds additional complexity to data

association problem. Also in multipath environments, contrary to the typical tracking

scenario, in a single scan, every sensor will have more than one measurement for the

same target. In addition to the multipath signal, the complexity of the problem is

further increased due to missed detections, clutter, and false alarm.

Let us consider a simple phenomenon that causes a target re
ected signal to be

received via more than one path. This causes a time di�erencebetween the arrivals

(TDOA) of the received signals at the sensor. A measurement of the TDOA received

by the sensor can be used to calculate the multipath range andbistatic range. The

direct and re
ected signals' direction of arrival (DOA) is also used to study the

geometry of the signal path, and this measurement is used fortracking.

Generally, the strength of the received multipath signals depends on the power

of the transmitter, re
ection environment and the signal processing capabilities of

the sensor. Depending on the re
ection environment, it is also possible for sensors

to have resolved signals that went through more complex re
ections. The multipath

re
ection environment and its topological geometric parameter information must be

known when combining the signals received through each multipath re
ection mode

at the sensor. In practical scenarios, precisely knowing the coordinates of the re
ec-

tion points or the surface information is not possible. Thatinherently increases the

complexity of the multipath problem.

In this thesis the signals of opportunity, i.e., environmentally available commercial

3
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broadcasting signals and target re
ected multipath signals, are exploited and appro-

priately combined to track the targets. We derive algorithms for PCL tracking as

well as multipath assisted multitarget tracking using environmentally available sig-

nals. These commercial multi-transmitter environment is considered as a multistatic

radar environment.

1.1.2 Passive Coherent Location Tracking

Passive Coherent Location (PCL), which is a special case of bistatic radar system, is

an emerging (or a re-emerging) technology in air defense systems (1) (2). In a PCL

system, existing commercial signals (e.g., FM broadcast and TV telecast signals)

are used as illuminators of opportunity to track airborne targets. The locations

and transmission frequencies of commercial transmitters are mostly known and the

receiver is designed by the user to match. Some of the signalsfrom those transmitters

of opportunity re
ect o� airborne targets in the vicinity an d the re
ected signals are

also received by the receiver. Thus, bistatic measurementsare obtained from the

direct and target-re
ected signals that are originated by the commercial transmitters.

A typical PCL system environment is described in Figure 3.1,which shows a real

world PCL environment. There will be other unwanted signalssuch as direct signal

from other transmitters and re
ections from ground, buildings, trees, cloud and other

moving or stationary objects. The dominant source of interference in the surveillance

channel is caused by the direct in-band signals from di�erent transmitters in the

region. Multipath signals received from multiple directions are another sources of

interference at the PCL radar. To e�ciently remove the strong clutter signals and

interference, they described an adaptive �lter algorithm (2) (3) (4).

4
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The ideal situation is that the reference signal will have only the transmitted sig-

nal. In practice, the reference signal also contains some target returns, multipath

and clutter from surrounding objects such as the ground mountains, buildings and

trees. These non-direct components are interference and manifest as increased clutter

in the signal processor output. These clutter returns have the common property of

zero Doppler e�ect (2) (4) (5) (6). This will create problemsin direction of arrival

estimation. Passive coherent detection of weak moving targets by clutter cancela-

tion algorithm in PCL was provided in (3). Adaptive removal of strong echoes from

the received signal increases PCL radar performance (7). The performance predic-

tion of PCL system was discussed in (10). The implications oftransmitter wave-

form and bistatic geometry on target detection, location and imaging are discussed

in (9) (10) (11). In PCL, Doppler shift between direct signaland target echo result in

decrease output of highest peak value with some occurrence of false peaks. A Doppler

compensation method for such PCL systems was proposed (12).An enhanced accu-

rate multiple target detection in PCL radar systems based onTV and radio ambiguity

function processing is presented (13). The echo signal fromthe transmitters of oppor-

tunity re
ected from the target is received by the PCL radar measurement antenna.

A classical single-target PCL scenario is presented in Figure 1.1.

A PCL system has a number of advantages over conventional monostatic or

bistatic radar systems. The monostatic or bistatic active radars quickly become com-

bat targets themselves due to their energy emission, which can be used by the enemy

target to estimate the radar's transmitter location. However, in PCL systems, there

is almost no risk of being detected as the transmission sources are already out there

in the environment for their intended purposes. Therefore,PCL systems increase

5
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Figure 1.1: Bistatic radar PCL environment.

resilience to electronic countermeasures. Since commercial signals are freely available

almost everywhere, PCL systems enjoy certain advantages such as wide coverage, low

cost of operation and maintenance, and operation without a frequency clearance. The

PCL system can also be used to �ll blind zones of radar in an economic and e�ective

manner.

The main disadvantage of the PCL system is that the receiver does not have

control of the transmitters. Hence the transmitter location, power or waveform can-

not be changed as desired. It is common to have multiple transmitters (e.g., radio

broadcasting stations or relay stations) that operate in the same frequency inside the

coverage region of a receiver.

This thesis analyzes the feasibility of using PCL systems for tracking multiple air-

borne targets. High bearing errors, low probability of detection and high false alarms

rate will increase the complexity of tracking algorithm. Due to the nonlinearity in
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the measurement model, these errors will highly degrade thetracking/�ltering perfor-

mance. In this thesis, Converted Measurement Kalman Filter(CMKF), Unscented

Kalman Filter (UKF) and particle �lter based Probability Hy pothesis Density (PHD)

�lters are implemented to track the targets using nonlinearPCL radar measurements.

Performances of above �lters are compared on simulated dataand real data collected

by TNO (NATO C3 Agency (NC3A)).

The major contributions of this section in this thesis are implementation and

comparison of nonlinear �lters for tracking with PCL measurements and removing

the bias in direction of arrival measurements.

1.1.3 Multipath Assisted Multitarget Tracking

With a single-measurement per target assumption, when resolvable multipath detec-

tions of a single target are present in the measurements, conventional tracking algo-

rithms such as the Kalman �lter with probabilistic data association (PDA) mostly

produce multiple tracks for a single target. In this case, information conveyed by

multipath detections of the same target may be wasted by treating some of them as

clutter. The tracking algorithms may also combine several measurements belonging

to di�erent propagation modes. But combining the measurements becomes invalid

unless proper accounts are taken for each such mode.

In order to move to a framework that supports the fusion of multipath measure-

ments, it is necessary to relate the measurements from di�erent propagation modes to

a common state (14) (15) (16) (17) (18). To focus on tracking in multipath detection

scenarios, we assume that the measurement models for various propagation modes

are known from analysis of re
ection geometry. Various propagation models due to

7
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multipath re
ections were studied in the literature in the usage of over-the-horizon

radar (OTHR) systems. Tracking systems for OTHR (19) have relied on Kalman

�lters with the PDA (20) to track targets in slant or radar coordinates. This ap-

proach has the advantage of not requiring information aboutthe multipath re
ection

point or surface information and propagation modes. However, problem arises when

mapping of slant coordinates to the ground coordinates whenthe tracking is per-

formed in ground coordinates. The coordinate registrationprocedure facilitates this

mapping separately from the tracking (21). A most common problem in OTHR is

the phenomenon of multipath propagation whereby radar signals scattered from the

same target arrive at the receiver via di�erent propagationpaths.

A multipath probabilistic data association (MPDA) was described for initiation

and tracking in OTHR is described in (22). MPDA is capable of exploiting multipath

target signatures arising from discrete propagation modesthat are resolvable by the

radar. In (22), Pulford and Evans used the multipath target signatures in azimuth,

slant range, and Doppler in a non-linear measurement model for target tracking.

In (23), a multipath Viterbi data association algorithm (MVDA) for OTHR was

described. This proposed MVDA algorithm solves the problemof multiple propaga-

tion modes caused by multipath through modeling target movements in ground coor-

dinates and implementing data association in radar coordinates (23). This MVDA

algorithm extends Viterbi data association (VDA) from association between measure-

ment and track to association among measurement, propagation mode and track.

In (24), Friedlander showed that the depth and range of an underwater source

can be estimated from measurements of propagation delay di�erences along di�erent

8
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propagation paths. The accuracy of depth and range estimation by using the Cramer-

Rao lower bound was studied. The formulas derived were used in conjunction with a

propagation model to compute the bounds for an inhomogeneous propagation medium

(nonconstant velocity pro�le).

In (25), airborne acoustic source signals emitted by directand ground-re
ected

paths are used to measure the multipath delay and provide an instantaneous estimate

of the elevation angle of the airborne target. Lo et al. formulated two methods to

estimate the speed and altitude of the aircraft. Both methods require the estimation

of the multipath delay as a function of time (25). In (18), Bogner proposed a

pattern classi�cation approach for associating multipathtracks caused by di�erent

ionospheric layers. Neural networks and statistical methods were applied to combine

track a�nities and associate pairs of tracks (18).

In (26), multi-mode fusion tracking of OTHR based on an auction algorithm

(A-MFT) was proposed, which e�ectively solves the problem of multi-mode mea-

surements. In (17), Blanc-Benon and Jau�ret showed that target motion analysis

(TMA) o�ers two tactical advantages over the classical bearings-only TMA. There

is no requirement for any ownship maneuver and TMA can obtainthis with good

performance in terms of estimation error achieved in a shorter time (17). Utilization

of multipath re
ections is sometimes extremely helpful in improving the visibility, as

it is more di�cult to deploy a sensor in an enemy's territory than it is to receive

multipath re
ections from a surface in an enemy's territory.

In this thesis, an algorithm was proposed for initiating andtracking multiple tar-

gets using multiple transmitters and receivers. This algorithm is capable of exploiting

9
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multipath target returns from distinct and unknown propagation modes. When mul-

tipath returns are not utilized appropriately within the tr acker, (e.g., discarded as

clutter or incorporated with incorrect propagation mode assumption) the potential

information in the multipath returns is lost. In the initial case, it is considered that

the multipath re
ection points are known to the receiver. Inmore practical scenarios,

it is more appropriate to assume that the locations of re
ection points are not exactly

known. In this thesis, the proposed algorithm will track thetargets when there are

uncertainties in the multipath re
ection surface parameters.

The major contributions of this section in this thesis are implementation of a

multiframe assignment algorithm and tracking with resolved multipath measurements

for di�erence scenarios such as when the re
ection point information is completely

available, and when there are uncertainties in re
ection surface information. This

modi�ed multiframe data association algorithms, i.e., multipath S-D or MSD, will be

used for resolving the multipath re
ection mode and target assignment uncertainty,

and we compare the performance using PCRLB.

1.2 Organization of the Thesis

This thesis is structured as follows: Chapter 2 describes the general mutisensor multi-

target tracking problem, and monostatic, bistatic and multistatic radar environment.

Chapter 3 explains the multitarget tracking with PCL and the bias removal and sen-

sor calibration in passive radar system. Chapter 4 providesalgorithms for multipath

assisted multitarget tracking with completely known re
ector locations. Chapter 5

details the algorithms for multipath assisted multitarget tracking when uncertainty

in re
ector locations. This chapter also describes the performance evaluation using
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PCRLB. Chapter 6 concludes the thesis with future directions.
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Chapter 2

Multitarget Tracking and

Multistatic Sensors

2.1 Target Tracking

Identifying the most likely value of a quantity of interest from its incomplete, noise

corrupted, inaccurate and uncertain measurements is called estimation. Target track-

ing is the process of performing continuous estimation of the state, such as position

and velocity, of a moving object over time. This is achieved by repeated prediction

of the state of the moving object at a regular interval. Prediction is the process of

estimating the future state by using the current measurements. Measurements are

taking at a regular interval and used for continuous prediction of the future state so

that the objects can be tracked continuously.

Filtering is the estimation of the current state of a dynamicsystem from noise

corrupted measurements. Such estimates are produced by thetracking systems with

some level of accuracy. They also produce the measure of suchaccuracies as part of
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Figure 2.1: A typical tracking system.

the estimates (27) (28).

A typical tracking system is shown in Figure 2.1. The noise corrupted electro mag-

netic signal in the environment is received by the sensors and it is processed by going

through signal processing procedures to obtain the information or measurements.

These measurements are then sent to the information processor, which includes the

data association and tracking algorithms, to obtain the target state estimates and its

uncertainties. The data association and tracking procedure is describe below.

2.1.1 Surveillance System

A sophisticated surveillance system capable of detecting and tracking a large number

of targets using various measurements received from di�erent sensors. With high

sensitive sensors, low SNR requirements and increased signal processing capabilities,

numerous and more complex measurement data have become available for tracking

�lters. Advanced information processing �lters help build sophisticated surveillance

systems, which handle additional uncertainties, inaccuracies, clutter, false alarms and

counter measures (16) (27).

The probability of detection PD and probability of false alarmsPFA play an im-

portant roles and add complexities to the tracking in a surveillance environment.
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� In ideal sensors:

PD = 1 (2.1)

PFA = 0 (2.2)

� In realistic sensors:

PD < 1 (2.3)

PFA > 0 (2.4)

2.1.2 State and Measurement Models

There are at least two models required for target tracking (28): a system or a state

model and a measurement model. A state model describes the evolution of the state

with time, whereas a measurement model relates the noisy measurements to the state.

These models can be either liner or non-linear.

A linear state model can be written as:

xk+1 = Fk xk + � k (2.5)

A linear measurement model can be written as:

zk = Hk xk + ! k (2.6)
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A non-linear state model can be written as:

xk+1 = f k(xk) + � k (2.7)

A non-linear measurement model can be written as:

zk = hk(xk) + ! k (2.8)

Here � k denotes the process noise and! k denotes the measurement noise at mea-

surement time k. We assume that� k is Gaussian distributed with zero mean and

covariance �k . ! k is Gaussian distributed with zero mean and covariance �k . Fk

and Hk denote linear state and measurement models and are known matrices, f k and

hk are non-linear functions,xk denotes the state of the moving target, andzk is the

received measurement vector.

2.1.3 Bayesian Filtering Approach

In �ltering theory, the Bayesian approach is used to �nd the posterior probability

distribution of the state given all the received measurements at a time. The posterior

distribution provides the mean and covariance of the state at each time step. All

the observations or the measurements received up to the current time are used to

provide the state estimate and therefore this provides a complete solution (29).

This probability density function (pdf) is repeatedly predicted, which details the

target motion. This pdf is updated when a new measurement or observation becomes
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available. Hence, an estimate is required as the new measurements arrives, and this

processes is called �ltering (30). As these measurements arrive, they are processed

sequentially rather than as a set of parallel or batch processing. Therefore, neither

the need for storing the previous time step measurements or observations nor the

need to reprocess the existing measurement exist. This sequential process is done

essentially with two important step, i.e., prediction and update.

As each new measurement arrives, an estimate is predicted and updated recur-

sively for each time step. The state model is used to predict the state pdf forward in

prediction for each time step to the next successive time step and the measurement

model is used to calculate the posterior distribution according to Bayes' rule.

Let be the probability distribution function be p(xk jZk) at the measurement time

stepk is available, whereZk = [ z1; z2; : : : ; zk ]. The state model (2.7) is used for predic-

tion to obtain the prior probability distribution function of the state at measurement

time step k + 1 and is given by

p(xk+1 jZk) =
Z

p(xk+1 jxk)p(xk jZk)dxk (2.9)

The latest measurement is used in the update stage to modify the prediction

probability distribution function. At the next measurement time step k + 1, a new

measurementzk+1 becomes available, and with this the prior will be updated via

Bayes' rule.

p(xk+1 jZk+1 ) =
p(zk+1 jxk+1 )p(xk+1 jZk)

p(zk+1 jZk)
(2.10)

The measurement model (2.8) is used to de�ne the above likelihood function
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p(zk+1 jxk+1 ).

Kalman Filter

In the Kalman �lter, it is assumed that the state and measurement models are linear.

All the process noise and the initial state error are assumedto be Gaussian. With

these assumptions it can be proved thatp(xk+1 jZk+1 ) is Gaussian whenp(xk jZk) is

Gaussian. Hence,p(xk jZk) can be expressed by mean and covariance (28).

The Kalman �lter algorithm is expressed by the following iterative relationship (28)

when the state model and measurement models are given by (2.5) and (2.6), respec-

tively.

p(xk jZk) = N (xk ; x̂kjk ; Pkjk) (2.11)

p(xk+1 jZk) = N (xk+1 ; x̂k+1 jk ; Pk+1 jk) (2.12)

p(xk+1 jZk+1 ) = N (xk+1 ; x̂k+1 jk+1 ; Pk+1 jk+1 ) (2.13)

Also

x̂k+1 jk = Fk+1 x̂kjk (2.14)

Pk+1 jk = � k+1 + Fk+1 PkjkF
0

k+1 (2.15)

x̂k+1 jk+1 = x̂k+1 jk + K k+1 (zk+1 � Hk+1 x̂k+1 jk) (2.16)

Pk+1 jk+1 = Pk+1 jk � K k+1 Hk+1 Pk+1 jk (2.17)
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and

Sk+1 = Hk+1 Pk+1 jkH
0

k+1 + � k+1 (2.18)

K k+1 = Pk+1 jkH
0

k+1 S� 1
k+1 (2.19)

Here, N (x; x̂; P ) is a Gaussian density, ^x is the mean, argumentx, and P is the

covariance. Also the standard notation [�]0 denotes the transpose.

With the above assumptions, this is the optimal solution to atracking prob-

lem (28). That is, in a linear Gaussian environment, there isno algorithm that can

do better than a Kalman �lter. However, in more practical situations those assump-

tions are not preserved. Therefore, in typical scenarios, further approximations and

additional assumptions are made.

Extended Kalman Filter (EKF)

The weakness of the Kalman Filter is that most systems in engineering are non-linear

and it is not optimal for non-linear systems. The Kalman Filter was adapted for

non-linear systems by approximating the model by a Taylor series expansions. An

approximate linearization of the state and measurement models given by (2.7) and

(2.8) respectively, may be a su�cient representation of thesystem. Approximate

linearizations of the above state and measurement models are

F̂k =
df k(x)

dx

�
�
�
x= x̂k � 1j k � 1

(2.20)
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Ĥk =
dhk(x)

dx

�
�
�
x= x̂k j k � 1

(2.21)

The probability density function p(xk jZk) is approximated by a Gaussian. Then

all the equations of the Kalman �lter can be used with this approximation and the

linearized functions (28). This is the EKF, which is generally not an optimal solution

unless state and measurement models are linear.

Also if the probability density function is non-Gaussian, then Gaussian represen-

tation will not be su�cient. Particle �lters outperformed i n performance comparison

with EKF in such cases.

Particle Filtering

The probability density function p(xk jZk) of the target state xk at time step k can

be described bym number of particles which are sets of random samplesf x(i )
k : i =

1; 2; : : : ; mg and corresponding weights off w(i )
k : i = 1; 2; : : : ; mg. As the new mea-

surement or observations arrive, the update of these particles and the corresponding

weights are performed by the Importance Sampling principle(32) (33) (34) (35) (36).

Let the Importance Density be the priorp(xk jxk� 1). The Sampling Importance

Resampling (SIR) procedure is used to generate equally weighted particles to approx-

imate p(xk jZk).

p(xk jZk) �
1
m

mX

i =1

� (xk � xk
(i )) (2.22)

where � (:) is the Dirac delta function.
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Sampling Importance Resampling procedure

� Prediction

{ Each of the particlesx(i )
k� 1 generates� (i )

k� 1 as per the known distribution of

the transition noise.

{ The state propagation equation (2.7) can be used to obtain a samplex(i )
kjk� 1

from the prior distribution p(xk jxk� 1).

� Weighting

{ Observation information can be used to �nd the importance weights.

{ The following formula is used to �nd importance weightw(i )
k for each par-

ticle.

w(i )
k = p(zk jx(i )

kjk� 1) (2.23)

� Resampling

{ The particles with low weights are eliminated and the particles with high

weights are multiplied and are regenerated with equal weights.

{ The m number of new particles are sampled with substitution fromf x(1)
kjk� 1; x(2)

kjk� 1;

: : : ; x(m)
kjk� 1g so that

{ The sampling particle i 's probability is proportional to wi
k

{ Hence, the newf x(1)
k ; x(2)

k ; : : : ; x(m)
k g will be in equal weights (1=m).

The posterior distribution's mean is used to �nd an estimatêxk .
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x̂k = E[xk jZk ] (2.24)

�
1
m

mX

i =1

xk
(i ) (2.25)

Unlike the Kalman �lter, Particle Filtering it is not restri cted by the assumptions

of linearity and Gaussian noise.

2.2 Multitarget Tracking and Data Association

The plot of the data that has been associated with the same target is an estimated

state trajectory and is known as target track. In multitarget tracking, the sensor has

measurements from di�erent targets. Also there will be missed detections of targets.

The measurements also have random false alarms, clutter, decoys, countermeasures,

interfering targets and more.

The process that identi�es which measurement belongs to which target is called

data association (16) (27) (37) (38) (39). Solutions to di�erent data association

problems can be found in the literature (20) (40) (41) (42) (43) (44).

Figure 2.2 shows the fundamental elements of a typical multitarget tracking sys-

tem. The sensor measurements are obtained from the signal processing unit, which

converts the electro magnetic signals to measurement values. These measurements

are the input for the system of multitarget tracking. The state trajectories are the
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Figure 2.2: A system of multitarget tracking and data association.

representation of moving targets. The continuous measurement input is used for

maintaining the track. Tracks are initialized and maintained by con�rming, and

inappropriate tracks are deleted (16) (27).

Unassigned measurements to any established tracks can initiate new tracks. When

these newly initiated tracks meet the con�rmation condition, they are con�rmed. The

tracks that are not updated within an interval become degraded and then deleted.

A validation region is de�ned for existing track and any measurements away from

this validation region is ignored as inappropriate measurements for the existing track.

A validation gate is set up around the predicted measurement. When the validation

region has more than one measurement, a data association technique is used to �nd the

assignment. Di�erent data association techniques will implement di�erent methods to

update validated measurements to the track. However all data association techniques

use gates to reduce the expensive computational cost. Then the track is updated

with the newly associated measurement. The tracks will be predicted for the next

set of measurements and gates are used on these predicted positions and the track

maintenance cycle is iterated.
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When the actual measurement conditioned on the past is Gaussian or normally

distributed, and if its pdf is given by

p(zk+1 jZk) = N [zk+1 ; ẑk+1 jk ; Sk+1 ] (2.26)

the actual measurement will be under the following region

V(k + 1; 
 ) = f z : [z � ẑk+1 jk ]0S� 1
k+1 [z � ẑk+1 jk ] � 
 g (2.27)

and the gate threshold
 calculates the probability. Here, the predicted measure-

ment at time k + 1 is ẑk+1 jk . The measurement prediction covarianceSk+1 is given by

(2.18). The region (2.27) is known as the validation, association region or the gate.

In a given time interval, a range gate is found and the detections or the measurements

within the gate is associated with the target.

Typically measurements will have higher dimension becausein a time scan, there

will di�erent measurements such as range, azimuth or bearing, elevation, range rate

and time di�erence of arrival. In such cases a multidimensional gate is found so that

the entire measurements space is not searched to track the target of interest. In a typ-

ical tracking problem, the validation regions contain setsof validated measurements.

A measurement in the gate is a valid association candidate. Agate has correct mea-

surement if target is detected and the measurement fell in the validation gate. The

gate may also have unwanted measurements from clutter or false-alarms.

Well-separated targets

Figure 2.3 shows validation regions of well-separated targets. Assume that at most

one measurement is target generated in the validation region in Figure 2.3. When
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Figure 2.3: Well-separated targets' association gate.� expected measurement,�
received measurement.

there is more than one association candidate in the validation gate, the problem arises

in �nding which measurement was target originated. In the detection or measurement

space, if the targets are well separated, the validation regions will not overlap as shown

in Figure 2.3. In this case the problem is that of a single target tracking.

The problem of tracking well-separated multiple targets inclutter considers the

situation where there are possibly several measurements inthe validation region of

each target.

Assume that the targets are detected and measurements have fallen in the vali-

dation region, then the validated measurements consist of actual measurements from

the targets as well as false alarms in the case of tracking well separated multitarget

in clutter. It is assumed that the spatial distribution of false alarms is uniform within

the surveillance region and are independent across time. Then there are di�erent
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approaches for associating these validated measurements to the appropriate target

tracks (16).

The Nearest Neighbor (NN) technique chooses the measurement nearest to the

predicted measurement, whereas the Strongest Neighbor (SN) chooses the strongest

measurement in the validation region. Probabilistic Data Association (PDA) asso-

ciates all the measurements that are in the validation region to the targets proba-

bilistically to the target of interest (20). PDA is a Bayesian approach (45) (46) and

the standard method used for data association that is used with Kalman �lter or the

extended Kalman �lter. The NN algorithm requires comparatively less computation

and therefore widely used with the particle �ltering algorithms.

Closely-spaced targets

Validation regions of two closely spaced targets and the measurements inside those

validation region are shown in Figure 2.4. In the detection or measurement space,

if the targets are closely spaced, the validation regions will overlap as shown in Fig-

ure 2.4. In this case the measurement contains detections from other targets in

addition to the clutter and false alarms. In this case, the data association process

resolves the measurement origin uncertainty.

The problem of tracking closely spaced multiple targets in clutter considers the

situation where there are possibly several measurements inthe validation region of

each target, and a measurement could originate from any one of the target or clutter.

It is assumed that one measurement originates from at most one target and one target

can generate at most one measurement. It is also assumed thatthe spatial distribution

of false alarms is uniform within the surveillance region and is independent across
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Figure 2.4: Two closely spaced targets and the measurementsin association gate.�
expected measurement,� received measurement.
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time.

Joint Probabilistic Data Association (JPDA) is a target oriented technique (37) (41).

This is an extended form of the PDA technique. JPDA can only beused for the tracks

that are already established. JPDA and its implementationshave been widely studied

in the literature (47) (48) (49) (50) (51).

Multiple Hypothesis Tracking (MHT) is another data association technique for

closely spaced multiple targets in clutter. Probability ofa measurement sequence is

originated from an established target or a new target is calculated for MHT technique

and it is a measurement oriented technique. Track initiation and maintenance may

be performed by MHT. MHT is not practically feasible when considering the large

measurement steps. Therefore, an S-D (S- Dimensional) assignment technique is used.

This S-D assignment algorithm is a suboptimal version of MHTand the mostly used

data association technique.

2.3 Monostatic, Bistatic and Multistatic Radar

Tracking problems have been widely studied, and currently the radar developments

and implementations become a matured discipline (52). Target tracking is widely

used in many applications such as ballistic missile defense, military surveillance, air

tra�c control of military and civilian aviation (46) (53), a nd highway vehicle surveil-

lance (54) (55). Radar (RAdio Detection And Ranging) transmits electromagnetic

pulses, which bounce o� any objects or target in their path. The re
ected signal's

energy is scattered in all directions from the target or object. A sensor receives such

target return signals and processes them to �nd the measurements such as range,

azimuth and Doppler.
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Figure 2.5: Monostatic radar.

The transmitter and the sensor are collocated in a typical radar system, which

is also known as monostatic radar as shown in Figure 2.5. Whenthese transmitter

and sensor are physically separated, then such radar systemis known as bistatic

radar as shown in Figure 2.6. Additional advanced references about bistatic radars

can be found at (71) (72) (73) (74). When the physically apartsensor receives the

target re
ected signals, which were originally sent by morethan one transmitters this

con�guration is known as multistatic radar system as shown in Figure 2.7 (75).

In a bistatic radar con�guration, instead of using the radartransmitter, if a system

uses transmitters of opportunity in the environment such ascommercial broadcast

signals (FM or TV signals), then it is known as passive coherent location (PCL)
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Figure 2.6: Bistatic radar.

system. Therefore, the primary di�erence between bistaticand monostatic radar is

that of geometry. A bistatic radar consisting of a PCL receiver and a transmitter of

opportunity separated by a distanceL is shown in Figure 3.2.

2.4 Evolution of PCL Radar

In the evolution of bistatic radars, di�erent methods of transmissions were exploited.

This exploration leads to the research of exploiting the transmitters of opportunity

in the environment, and that leads to the research of PCL radars and tracking. PCL

radar con�guration is a bistatic or multistatic radar con�g uration. Environmentally
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Figure 2.7: Multistatic radar.

available source of illuminations are used as transmittersto develop PCL radar. High

de�nition television transmission signals, cellular phone base station signals, FM radio

signals, analog television signals, digital audio broadcasting signals and digital video

broadcasting signals are some of the examples.

The satellite signals have the advantage of expanded coverage, however, the re-

ceived power levels at the ground receivers are very less. The satellite transmissions

may not be frequent enough to track fast moving targets. However, tracking targets

with satellite radio systems was exploited.

A PCL radar system detects the target re
ected signals from the transmitter of
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Figure 2.8: Signal processing scheme of PCL radar.

opportunity by low noise receivers. Due to the direct signalinterference from the

transmitters and the other signals from the in band transmitters, PCL systems are

highly limited by noise.

Digitized and sampled signals are given as output from PCL receiver systems.

A typical PCL radar signal processing schedule is given in Figure 2.8. Generally

the PCL receivers have higher number of antenna elements. Standard beamforming

technique is generally used to calculate the DOA measurements. Pair of antenna

elements and phase di�erence of arrival of the echoes can be used to generate the

DOA measurements.

Based on what types of transmitters or signals are used for the PCL tracking,

some transmitter speci�c conditioning are done before the cross-correlation process-

ing. Generally the signal conditioning is performed using some channel equalizers

and band-pass �lters. In some cases, unwanted signal patterns are removed from the

transmitter signals or complete restructuring of the transmitter signals are performed.
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Due to the higher interference by the direct signals received from the transmitters,

the signal to interference ratio becomes the limiting factor of PCL systems.

Adaptive �lters are used to remove the direct signals received from the transmit-

ters. Then the signals are sent to the cross-correlation processing. An appropriate

adaptive threshold is given and target detection is performed. Generally, a cell aver-

aged constant false alarm rate algorithm is used for the detection process. Then this

information is sent to the tracker for processing the targettrack.

PCL systems' transmitters are generally non-cooperative,i.e., the PCL receiver

does not have control over the transmitters. The nature of the environmentally avail-

able signals di�er based on operating frequency range, typeof transmission such

as voice or video, duration of the transmission such as day time, night time, or

24x7 broadcast. Therefore, it is more appropriate to call these transmitters as the

transmitters of opportunity. A commercially available multistatic PCL radar system

developed by Lockheed Martin is Silent Sentryr (76). This system uses FM radio

broadcast transmitters.

Advantages of PCL Systems

� The transmitters are already out there in the environment. Therefore, there is

no need to build expensive transmitters or towers. The signals are ready to be

used in the environment.

� The passive receivers cannot be located by any methods by theenemies.
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� Since PCL systems use the environmentally available transmitters of opportu-

nity, they enable covert tracking.

� Due to the passive nature, jamming the PCL radar operating frequency is dif-

�cult.

� Able to cover the vast amount of territory without massively deploying the

transmitters. Therefore, cost per surveillance region is very low.

� Fast deployment with a very low cost.

� PCL radar can be even operated using enemy's transmitters silently. Therefore,

snooping form the enemy's territory is possible with PCL.

Disadvantages of PCL Systems

� Signals are not designed for the radar but for a di�erent purposes. Therefore,

the signals may not be very suitable for radar processing.

� The receiver design is more complex as it needs to abide for the available trans-

mitted waveforms characteristics.

� Lack of control over the transmitters and therefore no control over the waveform

design, frequency band, transmit power and antenna orientation.

� Low signal to noise ratio at PCL receivers a�ects the accuracy of tracking.
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� No control over the other inband signal frequencies and therefore the interference

will be high. It is di�cult to remove such frequencies completely and therefore

the signal to interference ratio will be low.

� Challenges in tracking long range targets due to low signal to noise ratio.
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Chapter 3

Multitarget Passive Coherent

Location Tracking using

Transmitters of Opportunity and

Bias Removal in Direction of

Arrival

PCL systems, which use existing commercial signals (e.g., FM broadcast, digital

TV) as the illuminators of opportunity, is an emerging technology in air defence

systems. PCL systems have many advantages such as low cost, covert operation

and low vulnerability to electronic counter measures over conventional radar systems.

However, the limitations of PCL include lack of control overilluminators, limited

observability and poor detection due to low Signal-to-Noise Ratio (SNR). This leads
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to high clutter with low probability of detection of target. In this chapter, multiple

target tracking algorithms for PCL systems are derived to handle low probability of

detection and high nonlinearity in the measurement model due to high measurement

error. The major contributions of this chapter are the new algorithms for tracking

using PCL systems in high clutter with low probability of detection and false alarm

environment. The feasibility of using transmitters of opportunity for tracking airborne

targets in such environment is shown on simulated and real data sets.

A sample multistatic PCL con�guration is shown in Figure 3.1. The environment

has multiple transmitters-of-opportunity in the area of interest, where all the trans-

mitters transmit the same signal at the same frequency. Thismay happen because

of multiple radio station transmitters operating at the same frequency within the

surveillance region.

FM

FM

Line of sight

Figure 3.1: Multistatic PCL system.
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Note that the bistatic range measurements can be calculatedfrom the time-

di�erence-of-arrival.

While there have been continuous improvements in radar technology, the develop-

ment of anti-radiation missiles (ARM) has added new challenges to trackers that rely

on radar returns. In bistatic radar systems, the transmitter and receiver pairs are

widely separated, while they are co-located in monostatic radars (77) (83) (84). Since

the receiver locations are passive and cannot be identi�ed by the target, bistatic radars

are generally less susceptible to ARM. PCL is a speci�c case of bistatic or multistatic

radar surveillance systems.

In general, a simple PCL system consists of one illuminator of opportunity (the

transmitter) and a PCL receiver. This bistatic con�guration of PCL is illustrated

in Figure 1.1. The direct signals and the echoes from the target that originate from

the commercial transmitters like TV and radio stations are received by the PCL

receiver. In most cases, the locations of the commercial transmitters are known

accurately. In this chapter, it is assumed that the exact transmitter locations are

known. Hence, signal origination time can be calculated from the direct signal and

distance between the receiver and the transmitter. Then, signal origination time can

be used to calculate the bistatic measurement from the received signals.

In the literature, di�erent aspects of PCL systems are analyzed. In (5), a signal

processing scheme that allows airborne targets to be detected and tracked using only

the vision or sound carrier of the television broadcast was presented. It used the

Doppler shift and the bearing of target echoes to estimate the target's track. The

Doppler-bearing information from the television video signals was used to track the

aircraft ranges up to 260 km. In (56), an overall discussion on PCL systems with
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simulated data sets was given. In (2), it was shown that an FM radio based bistatic

radar system can detect and track targets at ranges in excessof 150 km.

3.1 Measurement Model in PCL

The primary di�erence between bistatic and monostatic radar is that of geometry. A

bistatic radar consisting of a PCL receiver and a transmitter of opportunity separated

by a distanceL is shown in Figure 3.2.

Transmitter Receiver

Target

L

R t R
r

Figure 3.2: Bistatic radar geometry.

In this chapter, it is assumed that the PCL system's measurements are bistatic

rangerb, bistatic rage rate _rb and bearing� (from north). The Measurement equations

are given by

0

B
B
B
B
@

rb

_rb

�

1

C
C
C
C
A

=

0

B
B
B
B
@

Rr + Rt � L
�

_Rr + _Rt

�

atan
�

x� x r
y� yr

�

1

C
C
C
C
A

+ ! (3.1)
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where

L =
p

(xt � xr )2 + ( yt � yr )2 (3.2)

Rr =
p

(x � xr )2 + ( y � yr )2 (3.3)

Rt =
p

(x � xt )2 + ( y � yt )2 (3.4)

_Rr =
(x � xr )

Rr
_x +

(y � yr )
Rr

_y (3.5)

_Rt =
(x � xt )

Rt
_x +

(y � yt )
Rt

_y (3.6)

x and y are the Cartesian coordinates of the target, and _x and _y are velocities of

the targets in the X and Y coordinate directions, respectively. Similarly, ( xt , yt ) and

(xr , yr ) are the positions of transmitter and receiver, respectively. Also, atan(�) is

the four-quadrant arctangent, and! is the measurement noise, which is zero-mean

Gaussian random variable with covariance � = diag[� 2
r ; � 2

_r; � 2
� ]. False alarms are

assumed to be uniformly distributed throughout the surveillance region.

3.2 Tracking Algorithms for Bistatic PCL Systems

The Kalman �lter is the optimal �lter when the target state an d measurement

models are linear and the noise are Gaussian. When nonlinearities are present,

converted measurement Kalman �lter, Extended Kalman Filter (EKF), unscented

Kalman �lter, particle �lter or the Probability Hypothesis Density �lter can be

used (34) (57) (58) (59). In this chapter, CMKF, UKF and particle �lter based

PHD �lters are analyzed for multitarget tracking using PCL systems. An Interacting

Multiple Model (IMM) estimator with two constant velocity m odels with di�erent
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process noises is used to handle the target maneuvers (16) (60) (61).

A PCL system's measurements have measurement origin uncertainty due to false

alarms and missed detections. In addition to �ltering, multitarget tracking with low

probability of target detection and high false alarm rate requires data association and

track maintenance logic in order to initialize and maintainthe tracks.

3.2.1 Track Maintenance

The tracks are classi�ed into two categories: 1) Tentative tracks and 2) Con�rmed

tracks. Tentative tracks are the ones formed with fewer initial measurement associa-

tions than required for con�rmation tracks within a certain time limit. Upon receiving

more measurements, the tentative tracks are promoted to con�rmed tracks. If an in-

adequate number of measurements are associated with a tentative track, then the

tentative tracks are deleted. Logic based track maintenance is used as follows (16):

� For track initialization: out of the last N init measurement frames

{ if at least M init measurements are associated together, then form a track

and mark it tentative

{ otherwise, do nothing

� For a tentative track: out of the last N tent measurement frames

{ if at least M tent measurements are associated to the track, then promote

it as con�rmed

{ otherwise, delete the track

� For a con�rmed track: out of the last Nconf measurement frames
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{ if at least M conf measurements are associated to the track, then do nothing

{ otherwise, delete it

In order to get better association results, the measurements are �rst associated to

the con�rmed tracks. Then, the unassociated measurements are used to update the

tentative tracks. Finally, the measurements that are not associated to the con�rmed

or tentative tracks are used to initialize new tracks. It is possible to use track quality

for track con�rmation and termination logic (62). We have found that M-out-of-N

logic performs well for real data.

Track Initialization

Bistatic range and bearing measurements are used to initialize the target positions,

and the related equations are given in Section 3.2.3. The range rate measurements

are used to initialize the target velocity, is given by (63):

_x =
� 2

p

(A2 + B 2)� 2
p + � 2

_r
A _r r (3.7)

_y =
� 2

p

(A2 + B 2)� 2
p + � 2

_r
B _r r (3.8)

The corresponding covariance is

P = � 2
p

0

B
@

�
1 �

� 2
p A 2

(A 2+ B 2 )� 2
p + � 2

_r

�
�

� 2
p AB

(A 2+ B 2 )� 2
p + � 2

_r

� � 2
p AB

(A 2+ B 2 )� 2
p + � 2

_r

�
1 � � 2

p B 2

(A 2+ B 2 )� 2
p + � 2

_r

�

1

C
A (3.9)

where � 2
p is the variance of prior information about the target speed,A = sin( � ) +

sin(
 ) and B = cos(� ) + cos(
 ), with 
 = atan
�

x� x t
y� yt

�
.
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3.2.2 Data Association

Data association makes decisions as to which of the receivedmeasurements should

be used to update each track. To associate the measurements to already established

targets, two dimensional data association based on the auction algorithm is used for

CMKF and UKF (58). Note that simpler association techniquessuch as the nearest

neighbor association will be su�cient in most cases for the particle �lter, and no data

association is necessary for the PHD �lter.

2-D Assignment

The fundamental idea behind 2-D assignment is that the measurements from the scan

list M (k) are matched with the tracks in list T (k � 1) by formulating the matching

as a constrained global optimization problem. The optimization is carried out to

minimize the \cost" of associating (or not associating) themeasurements to tracks.

To present the 2-D assignment, de�ne a binary assignment variable a(k; m; n) such

that

a(k; m; n) =

8
><

>:

1 m-th measurement is assigned to trackT n (k � 1)

0 otherwise
(3.10)

The indices m = 0 and n = 0 correspond to the non-existent (or \dummy")

measurement and track.

The objective of the assignment is to �nd the optimal assignment a� (k), which

minimizes the global cost of association

C (kja(k)) =
M (k)X

m=0

N (k� 1)X

n=0

a(k; m; n) c(k; m; n) (3.11)
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subject to

M (k)X

m=0

a(k; m; n) = 1 ; n = 1; 2; : : : ; N (k � 1) (3.12)

N (k� 1)X

n=0

a(k; m; n) = 1 ; m = 1; 2; : : : ; M (k) (3.13)

wherec(k; m; n) is the cost of the assignmenta(k; m; n), M (k) and N (k � 1) are the

cardinalities of the measurement and track sets, respectively.

The costsc(k; m; n) are the negative of the logarithm of the dimensionless likeli-

hood ratio of the measurement-to-track associations, namely,

c(k; m; n) = � ln �( k; m; n) (3.14)

where

�( k; m; n) =

8
>>>><

>>>>:

Pdp[� n
m (k)] =� m > 0; n > 0

1 m > 0; n = 0

(1 � Pd) m = 0; n > 0

(3.15)

where p[� n
m (k)] is the probability density function of the correspondinginnovation

and � is the spatial density of the false alarm.

The above 2-D assignment optimization problem is solved using the auction algo-

rithm (78).
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3.2.3 Converted Measurement Kalman Filter

In this section, the converted measurement Kalman �lter is described for a PCL

system with bistatic range, bearing and bistatic range ratemeasurements.

The range sumr can be calculated from bistatic range as:

r = rb + L (3.16)

The range of the target from the receiver,Rr , can be calculated as:

Rr =
r 2 � L2

2 (r � L cos(� ))
(3.17)

where

� = atan
�

xt � xr

yt � yr

�
� � (3.18)

From Rr and � , the measurements can be converted into Cartesian coordinates as

follows:

x = xr + Rr sin(� ) (3.19)

y = yr + Rr cos(� ) (3.20)
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The corresponding covariance is (82)

� 2
x =

�
H 2

1 � 2
r + H 2

2 � 2
�

�
=H4

3 (3.21)

� 2
y =

�
H 2

4 � 2
r + H 2

5 � 2
�

�
=H4

3 (3.22)

� 2
xy =

�
H1H4� 2

r + H2H5� 2
�

�
=H4

3 (3.23)

where

H1 = sin( � )(r 2 + L2 � 2rL cos(� )) (3.24)

H2 = ( r 2 � L2) (r cos(� ) � L(cos(� ) cos(� ) � sin(� ) sin(� ))) (3.25)

= ( r 2 � L2) (r cos(� ) � L cos(� + � )) (3.26)

H3 =
p

2(r � L cos(� )) (3.27)

H4 = cos(� )(r 2 + L2 � 2rL cos(� )) (3.28)

H5 = ( r 2 � L2) ( � r sin(� ) + L(sin(� ) cos(� ) + cos(� ) sin(� ))) (3.29)

= ( r 2 � L2) ( � r sin(� ) + L sin(� + � )) (3.30)

In the presence of large bearing measurement errors and longsensor-to-target dis-

tances, the above measurement conversion introduces a biasand a debiasing technique

is required. The unbiased conversion can be obtained by (63)(64):

x = xr + e� 2
� =2Rr sin(� ) (3.31)

y = yr + e� 2
� =2Rr cos(� ) (3.32)
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Then, the converted measurement equation is given by
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+ wc (3.33)

wherewc is the converted measurement noise, which is zero-mean Gaussian random

variable with covariance � c. The variance of error in _rb due to the uncertainties in�

and 
 can be approximated as

~� 2
_r =

�
@_rb

@�
� �

� 2

+
�

@_rb

@

� 


� 2

(3.34)

= � 2
� ( _x cos(� ) � _y sin(� ))2 + � 2


 ( _x cos(
 ) � _y sin(
 ))2 (3.35)
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 )2

r 2
+ � 2
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 )2

r 2
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p

r 2
(3.36)

Then, the covariance of the converted measurement noise is given by

� c =

2

6
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� 2
x � 2
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� 2
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y 1

0 0 � 2
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(3.37)
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3.2.4 Kalman Filter

The constant velocity model is used for state dynamics:

x(k + 1) = F (k)x(k) + v(k) (3.38)

where x(k) = [ x(k) _x(k) y(k) _y(k)]0 is the target state, F (k) is the state transition

matrix and v(k) is the process noise, which is zero-mean Gaussian random variable

with covariance Q(k). The measurement equation is given by (3.33). Note that

the algorithm is not restricted to the constant velocity model. A multiple model

estimation can be used instead to handle maneuvering targets (28).

The Kalman �lter recursions for state estimatex̂(kjk) and covarianceP(kjk) are

given by

x̂(k + 1 jk) = F (k)x̂(kjk) (3.39)

P(k + 1jk) = Q(k) + F (k)P(kjk)F (k)0 (3.40)

x̂(k + 1 jk + 1) = x̂(k + 1 jk) + W(k + 1)( z(k + 1) � ẑ(k + 1 jk)) (3.41)

P(k + 1jk + 1) = P(k + 1jk) � W(k + 1) S(k + 1) W(k + 1) 0 (3.42)

with

ẑ(k + 1 jk) = H (k + 1) x̂(k + 1 jk) (3.43)

S(k + 1) = H (k + 1) P(k + 1jk)H (k + 1) 0+ � c(k + 1) (3.44)

W(k + 1) = P(k + 1jk)H (k + 1) 0S(k + 1) � 1 (3.45)
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3.2.5 Unscented Kalman Filter

When the state transition and/or observation models are highly nonlinear, the EKF

may perform poorly. The unscented Kalman �lter does not approximate the nonlinear

functions of state and measurement models as required by theEKF. Instead, the UKF

uses a deterministic sampling technique known as the unscented transform to pick

a minimal set of sample points called sigma points around themean. Here, the

propagated mean and covariance are calculated from the transformed samples (65).

The steps of the UKF are described below.

Sigma Point Generation

The state vector x̂(k) with mean x̂(kjk) and covarianceP(kjk) is approximated by

2n + 1 weighted sigma points, wheren is the dimension of the state vector, as

� 0(kjk) = x̂(kjk); w0 =
�

(n + � )
(3.46)

� i (kjk) = x̂(kjk) +
� p

(n + � )P(kjk)
�

i
; wi =

1
2(n + � )

(3.47)

� i + n (kjk) = x̂(kjk) �
� p

(n + � )P(kjk)
�

i
; wi + n =

1
2(n + � )

(3.48)

where wi is the weight associated with thei -th point, � is a scaling parameter,i =

1; 2; ::::n, and
� p

(n + � )P(kjk)
�

i
is the i -th row or column of the matrix square root

of (n + � )P(kjk).

Recursion

The predicted target statex̂(k + 1 jk) and corresponding covarianceP(k + 1jk) are

found as follows:
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(a) The Sigma points are transformed using the process model

� i (k + 1 jk) = f (k; � i (kjk)) (3.49)

(b) The mean of the predicted state is given by

x̂(k + 1 jk) =
2nX

i =0

wi � i (k + 1 jk) (3.50)

(c) The covariance of the predicted state is given by

P(k + 1jk) = Q(k) +
2nX

i =0

wi [� i (k + 1 jk) � x̂(k + 1 jk)][� i (k + 1 jk) � x̂ (k + 1 jk)]0

(3.51)

The predicted measurement ^z(k + 1jk) and the corresponding covarianceS(k + 1) are

found as follows:

(a) Sigma points � i (k + 1 jk) are regenerated using the mean̂x(k + 1jk) and co-

varianceP(k + 1jk) in order to incorporate the e�ect of Q(k). If Q(k) is zero,

the resulting � i (k + 1 jk) will be the same as in (3.49). If the process noise is

correlated with the state, then the noise vector must be stacked with the state

vector x̂(kjk) before generating the sigma points (65).

(b) The mean of predicted measurement ^z(k + 1jk) is calculated as

ẑ(k + 1 jk) =
2nX

i =0

wi ' i (k + 1 jk) (3.52)
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where

' i (k + 1 jk) = h(k; � i (k + 1 jk)) (3.53)

(c) The innovation covarianceS(k + 1) and gain W(k + 1) are calculated as

S(k + 1) = �( k + 1) +
2nX

i =0

wi [' i (k + 1 jk) � ẑ(k + 1 jk)][' i (k + 1 jk) � ẑ(k + 1 jk)]
0

(3.54)

W(k + 1) =
2nX

i =0

wi [� i (k + 1 jk) � x̂(k + 1 jk)][' i (k + 1 jk) � ẑ(k + 1 jk)]
0
S(k + 1) � 1

(3.55)

The state x̂(k + 1 jk + 1) and the corresponding covarianceP(k + 1jk + 1) are updated

using (3.41) and (3.42), respectively.

3.2.6 PHD Filter

The PHD is the factorial moment density found in point process theory (59), and

provides a straightforward method of estimating the numberof targets in a region

under surveillance. The PHD �lter automatically handles the non-trivial tasks of both

target number estimation and data fusion (66). In this work,the Sequential Monte

Carlo (SMC) PHD �lter is used (67). The SMC approach providesa mechanism to

represent the posterior probability hypothesis density bya set of random samples or

particles, which consists of state information with associated weights.
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Let the posterior PHD, given all the measurementZ1:k� 1 up to time step k � 1,

Dk� 1jk� 1(xk� 1jZ1:k� 1) be represented by a set of particles
n

w(s)
k� 1; x (s)

k� 1

oL k � 1

s=1
. That is,

Dk� 1jk� 1(xk� 1jZ1:k� 1) =
L k � 1X

s=1

w(s)
k� 1� (xk� 1 � x (s)

k� 1) (3.56)

where � (�) is the Dirac Delta function.

In contrast to particle �lters, the total weight
P L k � 1

s=1 w(s)
k� 1 is not equal to one.

Instead, it gives the expected number of targetsnX
k� 1 at time step (k � 1).

Prediction

GenerateL k� 1 samples for existing targets andJk number of particles for new-born

targets. To generate the samples for existing targets, sample x (s)
kjk� 1 from proposal

density qk(�jx (s)
k� 1; Zk), for s = 1; : : : ; Lk� 1, with associated weights

w(s)
kjk� 1 =

ekjk� 1(x
(s)
kjk� 1)f kjk� 1(x

(s)
kjk� 1jx

(s)
k� 1jk� 1)

qk(x (s)
kjk� 1jx

(s)
k� 1jk� 1; Zk)

w(s)
k� 1 (3.57)

whereekjk� 1 is the target survival probability.

To generate the samples for new-born targets, samplex (s)
kjk� 1 from another proposal

density pk(�jZk), for s = L k� 1 + 1; : : : ; Lk� 1 + Jk with associated weights

w(s)
kjk� 1 =


 k(x (s)
kjk� 1)

pk(x (s)
kjk� 1jZk)

(3.58)

where 
 k(�) is the PHD of new born spontaneous targets.
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Update

With the available set of measurementsZk at time step k, the updated particle weights

can be calculated by

w� (s)
k =

2

4(1 � pd(x (s)
kjk� 1)) +

N Z
kX

i =1

pd(x (s)
kjk� 1)f kjk(zi

k jx (s)
kjk� 1)

� kck(zi
k) + 	 k(zi

k)

3

5 w(s)
kjk� 1 (3.59)

where

	 k(zi
k) =

L k � 1+ JkX

s=1

pd(x (s)
kjk� 1)f kjk(zi

k jx (s)
kjk� 1; )w(s)

kjk� 1 (3.60)

The single-target/single-sensor measurement likelihoodfunction f kjk(�) in (3.59) and

(3.60) are written as conditioned on the model, consideringa general case in which

the measurement model can also be mode dependent.

Resample

To perform resampling, since the weights are not normalizedto unity in PHD �lters,

the expected number of targets is calculated by summing up the total weights, i.e.,

n̂X
k =

L k � 1+ JkX

s=1

w� (s)
k (3.61)

Then the updated particle set is resampled to get
n

w(s)
k =nX

k ; x (s)
k

oL k

s=1
such that the

total weight after resampling remainsnX
k . Now, the discrete approximation of the

updated posterior PHD at time stepk is given by

Dkjk(xk jZ1:k) =
L kX

s=1

w(s)
k � (xk � x (s)

k ) (3.62)
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Birth Model

Since the surveillance region is very large, if the particles for new targets are dis-

tributed uniformly throughout the surveillance region, then a large number of parti-

cles will be necessary to initialize new targets. Therefore, the particles are generated

by converting the measurement at the last time step to the state space, which are in

turn predicted to the current time step. For each measurement that is unassociated

at the last time step, Jk particles are generated by adding noises to the converted

measurement state. The association of the measurement is determined by �nding

the sum of the weights of particles updated by that measurement. For the associ-

ated measurement, (1� Ac)Jk particles are generated for new target as described

above andAcJk particles are generated using the particles of the target towhich the

measurement is associated, whereAc is the association con�dence.

Clustering and Cluster-to-Track Association

Track labeling with k-mean clustering is used for track association (68). Each particle

is labeled with a track number. After updating the particles, particles are clustered

using the k-mean clustering algorithm. After clustering, the labels of the particles in

each cluster are set to the dominating track ID in its cluster. If the new target, which

is labeled zero, is dominating, then a new ID is assigned to that target, and labels

are set to the assigned target ID.

When there are false alarms, the clusters may have some particles corresponding

to false tracks, and this will a�ect the target estimate, which is found by taking the

mean of the particles. In order to avoid such a problem, �rst cluster the particles

into smallest integer, which is greater than ^nX
k , groups. Then for each cluster �nd
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the mean and covariance, and remove the particles that are outside a gate that was

formed using the mean and covariance.

3.3 Integrated Bias Removal and Sensor Calibra-

tion in Passive Radar Systems

In a passive radar system, a variety of measurements can be used to estimate target

states such as DOA or angle of arrival (AOA), time di�erence of arrival (TDOA)

or Doppler shift. Noise and the precision of DOA estimation are main issues in

a PCL system and methods such as conventional beam forming (CBF) algorithm,

algebraic constant modulus algorithm (ACMA) are widely analyzed in literature to

address them. In practical systems, although it is necessary to reduce the directional

ambiguities, the placement of receivers closed to each other results in larger bias in the

estimation of DOA of signals, especially when the targets move o� bore-sight. This

phenomenon leads to degradation in the performance of the tracking algorithm. In

this chapter, we present a method for removing the bias in DOAand calibrating the

senor simultaneously to alleviate the aforementioned problem. The simulation results

are presented to show the e�ectiveness of the proposed algorithm with an example of

tracking airborne targets.

Multisensor systems use data fusion of multiple sensors to form accurate estimate

of a target track. To fuse multiple sensor data, each sensor data must be expressed

in a common reference frame. The problem encountered in multisensor system is the

presence of errors due to sensor bias, antenna orientation,site position uncertainties

or any measurement related bias. Problem of reference framemisalignment, also
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known as tilt error (92), also cause an error in the measurements.

The smaller errors in the direction of arrival measurement will create large degra-

dation in the tracking accuracy. Especially for a large bistatic range measurement,

it will give larger errors and therefore, the DOA accuracy becomes a very important

limiting factor in long range target detection. Hence, it will create large errors in

detection and estimation of high range targets. Therefore,it is very essential to re-

duce the angular errors in DOA estimation. The DOA measurement will have noise

and bias errors due to mutual coupling in antenna elements and antenna orientation.

Therefore, in this chapter, we propose a method for removingthe bias in DOA and

calibrating the senor simultaneously to alleviate the aforementioned problem. An

SMC implementation of Probability Hypothesis Density (PHD) �lter (59) (66) (88)

based technique is used to estimate and remove the DOA bias. The simulation results

are presented to show the e�ectiveness of the proposed algorithm with an example of

tracking airborne targets.

In (5), Howland developed a signal processing scheme that allows airborne tar-

gets to be detected and be tracked using only the vision or sound carrier of the

television broadcast. They used Doppler shift and DOA of thetarget echoes to esti-

mate the target's track. The Doppler-DOA information on thetelevision video career

signal can track the aircraft ranges up to 260 km. Target tracking was performed

in range-Doppler-DOA domain. To e�ciently remove the strong clutter signals and

interference, an adaptive �lter algorithm was described in(2) (3).

The direct signal and the echo from the target are received and processed for

the measurements such as bistatic range, range rate, and target DOA. However, in

order to eliminate the ambiguities in bistatic range, bistatic Doppler and DOA, a
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PCL system can use more than one illumination source and receiver. Therefore, a

multistatic PCL con�guration yields an enhanced robust andredundant information,

and therefore reduces the ambiguity and enhance the tracking accuracy.

3.3.1 Direction of Arrival

Figure 3.2 shows an isorange ellipsoids for a particular bistatic range measurement in

a PCL system. The DOA estimation helps to determine on which point of the isorange

ellipsoid the target is located. The smaller errors in the direction of arrival measure-

ment will create large errors when the bistatic range measurement increases. Hence,

will create large errors in detection and estimation of highrange target. Therefore, it

is very essential to reduce the angular errors in DOA estimation. The DOA measure-

ment will have noise and bias errors due mutual coupling in antenna elements and

antenna orientation. Also the errors can be caused due to many reasons such as errors

in electromagnetic related issues, hardware or software related issues, mechanical and

positioning related issues and signal processing based issues.

Since the accuracy of the DOA plays a major role in target tracking in PCL sys-

tems, this chapter focus on estimating and removing the biasin DOA measurement.

In this chapter, we assume a bistatic multitarget environment to track the target. We

consider the two dimensional environment and ignore the altitudes of the target.

Howland estimated the DOA using phase interferometry (5). The DOA of a target

echo, �, is related to the phase di�erence of arrival at two surveillance antenna, �

can be given by the following equation.

57



Ph.D. Thesis - Maheswaran Subramaniam McMaster - Electrical Engineering

� =
2�d
�

sin � (3.63)

whered is the distance between the dipoles and� is the wavelength.

3.3.2 Problem Formulation

In general, a passive radar measures bistatic range, bistatic Doppler and direction of

arrival of the signal.

Direction of arrival

The direction of arrival associated withj th target at the PCL radar receiver can be

given by,

� j
k = tan � 1

 
yj

k � yR

x j
k � xR

!

+ bj
k + vj

1;k � 1 (3.64)

wherebj
k is the bias associated with the measurement� j

k and vj
k� 1 is the measurement

noise corresponding the DOA measurement.

Bistatic range

From PCL radar, the bistatic range measurement can be obtained, and the target

will be located in a point at the ellipse given by the following equation.

R =
q

(x j
k � xT )2 + ( yj

k � yT )2 +
q

(x j
k � xR )2 + ( yj

k � yR )2 + vj
2;k � 1 (3.65)
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Bistatic Doppler

From PCL radar also gives the bistatic Doppler measurement,and it can be given by

_R =
(x j

k � xT ) _x j
k + ( yj

k � yT ) _yj
kq

(x j
k � xT )2 + ( yj

k � yT )2
+

(x j
k � xR ) _x j

k + ( yj
k � yR ) _yj

kq
(x j

k � xR )2 + ( yj
k � yR )2

+ vj
3;k � 1 (3.66)

Target Dynamics

The general parameterized target dynamics of thej th target is given by

x j
k = ak(x j

k� 1; wk� 1) j = 1; : : : ; N X
k ; (3.67)

wherex j
k is the target state vector at time stepk, N X

k is the number of targets at time

step k, ak , in general, is a nonlinear function andwk� 1 is the process noise vector of

known statistics.

x j
k =

2

6
6
6
6
6
6
6
6
6
6
4

1 T 0 0 0

0 1 0 0 0

0 0 1 T 0

0 0 0 1 0

0 0 0 0 1

3

7
7
7
7
7
7
7
7
7
7
5

x j
k� 1 + w j

k (3.68)

where x j
k = [ x j

k ; _x j
k ; yj

k ; _yj
k ; bj

k ] is the state of thej th target, which consists of target

position (x j
k ; yj

k) and target velocity ( _x j
k ; _yj

k) at time step k and w j
k is i.i.d sequence of
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zero-mean Gaussian variable with covariance

� j
k =

2

6
6
6
6
6
6
6
6
6
6
4

T 3 l1
3

T 2 l1
2 0 0 0

T 2 l1
2 T l1 0 0 0

0 0 T 3 l1
3

T 2 l1
2 0

0 0 T 2 l1
2 T l1 0

0 0 0 0 T l2

3

7
7
7
7
7
7
7
7
7
7
5

(3.69)

where the levels of the power spectral densities arel1 and l2 corresponding to state

and bias estimates, respectively.

3.4 Results

3.4.1 Bistatic PCL System

Simulations

In this simulation, the parameter settings are: transmitter position = [49925, -

10899]m; receiver position = [0, 0]m; measurement intervalis 1 second; measurement

variances� 2
r = 400 m2 and � 2

_r = 1 m2s� 2; probability of detection is 0.98; on average,

10 false alarms occur at each sampling time. The target trajectories, transmitter and

receiver locations are given in Figure 3.3. There are two targets in the surveillance

region, one enters the region atk = 1 and the other enters atk = 15.

In the �rst scenario, a low bearing error of� 2
� = 0:0001 radians2 is considered.

The Root Mean Square Errors (RMSEs) of the CMKF, UKF and the PHD �lter are

given in Figures 3.4, 3.5 and 3.6, respectively.

From these �gures it can be seen that the performances of UKF and PHD �lters
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Figure 3.3: Target trajectories and locations of transmitter and receiver.

are better than that of the CMKF.

The performance of the PHD �lter was almost equal to the one ofCMKF when the

number particles used in PHD �lter was 1000. Around 4000 particles were required

to match the performance of the UKF.

Because of the low computational complexity of the UKF compared to the particle

�lter based PHD �lter, the UKF is the best choice for the errors considered in this

scenario.

In the second scenario, a high bearing error with� 2
� = 0:01 radians2 is considered.
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Figure 3.4: RMSE comparison of CMKF with variances� 2
r = 400 m2, � 2

� = 0:0001
radians2 and � 2

_r = 1 m2s� 2.

The RMSEs of the CMKF, UKF and PHD �lter are shown in Figures 3.7, 3.8 and

3.9, respectively.

The number of times in which the tracks are found within 5000 mdistance from

the target out of 100 runs is shown in Figures 3.10, 3.11 and 3.12. From these �gures

it can be seen that PHD �lter outperforms CMKF and UKF.

While the PHD �lter detects the targets, on average, in 96% ofthe runs, the

CMKF and UKF detect the targets only in 41% and 59% of the runs respectively.

Tracks are missed due to track losses for the UKF and due to track breakages for the

CMKF.
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Figure 3.5: RMSE comparison of UKF with variances� 2
r = 400 m2, � 2

� = 0:0001
radians2 and � 2

_r = 1 m2s� 2.

Real Data

The real data provided by TNO is shown in Figure 3.13. In the TNO system, only one

transmitter and one receiver are used. A large number of false alarms are observed in

a narrow region. The reason for the appearance of this clutter is unknown and it may

be an artifact due to processing errors. For simplicity, thehigh false alarm region is

ignored during the processing. Integrated clutter modeling and target tracking can

be used to handle the non-uniform clutter. The position-dependent measurement

variances are in the range of 4002{10002 m2 for � 2
r , around 1 m2s� 2 for � 2

_r and in the

range of 0.0004 { 0.008 radians2 for � 2
� .

The tracker parameter settings are: tentative track formation logic is 2 out of 2,
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Figure 3.6: RMSE comparison of PHD �lter with variances� 2
r = 400 m2, � 2

� = 0:0001
radians2 and � 2

_r = 1 m2s� 2.

tentative track maintenance logic is 4 out of 8 and con�rmed track deletion logic is 1

out of 15.

The tracks formed using the UKF are shown in Figure 3.14. Tracks are formed

only for the targets within the coverage region of the PCL system. Even the formed

tracks are not smooth due to the low probability of detectionand target maneuvers.

It can be seen that there are gaps between the tracks and the ground truth.
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Figure 3.7: RMSE comparison of CMKF with variances� 2
r = 400 m2, � 2

� = 0:01
radians2 and � 2

_r = 1 m2s� 2.
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Figure 3.8: RMSE comparison of UKF with variances� 2
r = 400 m2, � 2

� = 0:01 radians2

and � 2
_r = 1 m2s� 2.

66



Ph.D. Thesis - Maheswaran Subramaniam McMaster - Electrical Engineering

0 20 40 60 80 100
1000

1500

2000

2500

3000

k

R
M

S
E

 (
m

)

 

 

target 1
target 2

Figure 3.9: RMSE comparison of PHD �lter with variances� 2
r = 400 m2, � 2

� = 0:01
radians2 and � 2

_r = 1 m2s� 2.
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Figure 3.10: CMKF: Number of runs in which tracks are found within 5000 m distance
from the target out of 100 runs with variances� 2

r = 400 m2, � 2
� = 0:01 radians2 and

� 2
_r = 1 m2s� 2.
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Figure 3.11: UKF: Number of runs in which tracks are found within 5000 m distance
from the target out of 100 runs with variances� 2

r = 400 m2, � 2
� = 0:01 radians2 and

� 2
_r = 1 m2s� 2.

69



Ph.D. Thesis - Maheswaran Subramaniam McMaster - Electrical Engineering

0 20 40 60 80 100
0

20

40

60

80

100

k

D
et

ec
te

d 
ru

ns

 

 

target 1
target 2

Figure 3.12: PHD: Number of runs in which tracks are found within 5000 m distance
from the target out of 100 runs with variances� 2

r = 400 m2, � 2
� = 0:01 radians2 and

� 2
_r = 1 m2s� 2.
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Figure 3.13: TNO data.
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Figure 3.14: Estimated trajectories and ground truth for TNO data.
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3.4.2 Bias Removal in PCL System

In this section, a two dimensional tracking example is presented to demonstrate the

performance of the bias removal algorithm. The example consists of a transmitter

and two receivers, which are shown in Figure 3.15 by T, R1 and R2, respectively. The

measurements are received at both receivers synchronouslyat an interval of 1s. The

covariance associated with measurements is diag([400m2 0:0001 radians2 1m2s� 2]).

It is assumed that bias in the direction of arrival is characterized by random walk

model with initial value 0.1 radians. The noise associated with the random walk

model is zero mean Gaussian with variance 0.000001 radians2. In this scenario, two

targets enter the surveillance region at time stepsk = 1 and k = 30.

The PHD �lter is constructed with the following parameters: the number of par-

ticles per target = 5000; the number of particles associatedwith new targets = 100;

the probability of target birth = 0.01; the probability of ta rget death = 0.001.

In this example, the performances of the algorithms with andwithout estimating

the bias are compared.

Figures 3.17 shows the root mean square values of the estimates when the bias is

ignored.

Figures 3.18 shows the root mean square values of the estimates when the bias is

estimated. It could be seen that estimating the bias yields signi�cant improvement

on the performance of the tracking algorithm.

Figure 3.18 shows that the bias estimation takes around 10 steps to converge.

Sudden peak atk = 31 due to clustering issues when new target enters, which should

be accounted towards the clustering part of the algorithm and should not be related

to the performance of the bias estimation.
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Figure 3.15: Target trajectories and locations of transmitter and receivers.
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Figure 3.16: Particles at the initial time step.
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Figure 3.17: RMSE of target with no bias consideration.
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Figure 3.18: RMSE of target with bias estimation.
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Chapter 4

Multipath Assisted Tracking with

Known Re
ection Points

4.1 Multipath Re
ections in Tracking Environment

In this chapter an algorithm for multipath-assisted multitarget tracking using multi-

frame assignment is proposed for initiating and tracking multiple targets using one

or more transmitters and receivers. This algorithm is capable of exploiting multipath

target returns from distinct propagation modes that are resolvable by the receiver.

When resolved multipath returns are not utilized within the tracker, i.e., discarded

as clutter, potential information conveyed by the multipath detections of the same

target is wasted. In this case, spurious tracks are formed using target-originated

multipath measurements, but with an incorrect propagationmode assumption. Inte-

grating multipath information into the tracker instead of discarding can help improve

the accuracy of tracking and reduce the number of false tracks. The challenge in

improving tracking results using multipath measurements is the fusion of direct and
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multipath measurements from the common target. The problemwill be considered

in an environment with false alarms and missed detections. We propose a multiframe

assignment technique to incorporate multipath information. The simulation results

are presented to show the e�ectiveness of the proposed algorithm with an example of

tracking ground targets.

4.2 Incorporating Multipath in Tracking

4.2.1 System Model in Multipath Re
ection Environment

M
ultipath Signal
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Target 2
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Figure 4.1: Multipath re
ection model in target tracking.

In this chapter, we considered a bistastic multipath model in which the transmitter

and the receiver are separated by a large distance. The direct signal from the trans-

mitter and the echo from the target are received and processed for the bistatic range

and multipath range measurements. In this model a transmitter and a receiver are
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used for target detection and tracking. The simple con�guration of multipath model

is illustrated in Figure 4.1. In this model, bistatic range,multipath range and bearing

are used to track the target. A multipath con�guration yields additional information

about the target through the re
ected signals. In a real world multipath signal prop-

agation mode environment, the echo signals are buried deep in noise. There will be

other unwanted signals such as measurements from unmodeledmultipath re
ections,

clutter, and unwanted echoes such as re
ections from ground, buildings, trees, clouds

and other moving or stationary objects.

In system model, the re
ected signals from the target reach the sensor by di�erent

ways such as direct path and multipath re
ections. In this work, we utilize the

multipath signal information for improving the tracking accuracy. We consider a

system with a single transmitter and a single receiver to detect and track multiple

targets with a direct and a multipath re
ected signals. In this model, the multipath

signals re
ected from the target re
ect at most once before they arrive at the sensor.

Figure 4.1 depicts the geometry of the radar sensor system when separate transmitter

and receiver arrays are used. We assume that transmitter, target, re
ection surface

and receiver are on the same (ground) level. For simplicity we assume that the

ground surface is 
at and vertical to the ground plane and tracking is performed on

the ground coordinates.

When multipath target returns from distinct propagation modes are resolved, spu-

rious tracks are formed. Associating these signals facilitate better estimates of the

target states. However, in order to use this measurement an appropriate association of

multipath re
ection model has to be identi�ed. Incorrect re
ection model assignment

will lead to errors in association and tracking. Hence, to utilize these measurements
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appropriately, it is important to have the measurements resolved appropriately in

multipath propagation mode assignment uncertainties. Multipath signal propagation

mode assignment uncertainty adds another level of complexity to the standard data

association problem. That is, there is more than one uncertainty that needs to be

resolved in order to track multiple targets. One is the measurement-to-target associ-

ation and the other is the measurement-to-multipath propagation mode association.

In this work a tracking algorithm is proposed to track multiple targets using more

than one target originated returns due to direct signal and amultipath re
ection.

In this model (x(k); y(k)) denotes the moving target position at time stepk.

It is assumed that the sensor and the transmitter locations are known and they

are denoted by (xr (k); yr (k)) and (xt (k); yt (k)), respectively. The re
ection model

index is denoted byrs. Based on the re
ection surface information, using ray optics

geometry, the re
ection points can be evaluated. The re
ection point coordinate

(xrs (k); yrs (k)) denotes the re
ection point at kth time step in rs th multipath re
ection

model (re
ection surface). The received signals are eitherdirect signal from the target

or signals with one re
ection at the re
ection surfacers before it arrives at the sensor.

Key Assumptions

� In addition to the direct signal detection, the sensor measurements contain

resolved multipath detections.

� The transmitted signal directly hit the target and there is no other re
ection

point between the target and the transmitter.

� The signals re
ected from the target re
ect at most once before they arrive at

the sensor.
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� Complete knowledge of the re
ection surface information such as the geometry

of the surface or the re
ection points, and re
ection coe�cients are known.

The measurements are bistatic rangerd(k), multipath range rm (k), bearing from

direct signal � d(k), and multipath re
ected signal � m (k). The measurement equations

are given below. At a given time stepk, the bistatic range measurement from the

direct target return can be given by

rd(k) =
� p

(x(k) � xt (k))2 + ( y(k) � yt (k))2
�

+

+
� p

(x(k) � xr (k))2 + ( y(k) � yr (k))2
�

+

�
� p

(xt (k) � xr (k))2 + ( yt (k) � yr (k))2
�

+

+ ! � (k) (4.1)

The direction of arrival (DOA) of the signal received directly from the target is

given by

� d(k) = tan � 1

�
(y(k) � yr (k))
(x(k) � xr (k))

�
+ ! � (k) (4.2)

In the above case, there is no multipath re
ection between the target and the

sensor in the signal propagation path. When there is a re
ection between target and

the sensor, the multipath range measurement can be given by
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rm (k) =
� p

(x(k) � x t (k))2 + ( y(k) � yt (k))2
�

+
� p

(xrs (k) � x(k))2 + ( yrs (k) � y(k))2
�

+

+
� p

(xrs (k) � xr (k))2 + ( yrs (k) � yr (k))2
�

+

�
� p

(x t (k) � xr (k))2 + ( yt (k) � yr (k))2
�

+

+ ! m (k) (4.3)

In this case, the direction of arrival (DOA) of the signal received by the sensor after

re
ected from a point on the re
ection surface is given by

� m (k) = tan � 1
�

(yrs (k) � yr (k))
(xrs (k) � xr (k))

�
+ ! � (k) (4.4)

Therefore, the measurementz(k) can be given by the following equation.

z(k) =

2

6
4

r (k)

� (k)

3

7
5 (4.5)

where r (k) = rd(k) and � (k) = � d(k) when the target return signal propagation mode is

direct and r (k) = rm (k) and � (k) = � m (k) when the target return signal propagation mode

is multipath.

4.2.2 Multipath Re
ection Points on Smooth Surface

Based on the ray optical geometry, it is possible to evaluatethe re
ection points ( xrs (k); yrs (k))

on the re
ection surface when the re
ection surface information is known. Consider a 
at
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smooth re
ecting surface leant in an angle� as shown in Figure 4.2 is de�ned byy = mx + c.

Figure 4.2 also shows the ray re
ection path geometry where (�2 � � ) is the incident an-

gle on the smooth surface,� m (k) is the DOA of the wall-re
ected signal at the receiver

(xr (k); yr (k)), and � rs
m (k) is the direction of arrival angle at the re
ection point. Th en the

re
ection points ( xrs (k); yrs (k)) on the surface can be de�ned by the following way.

 Wall-reflected signal

 

 

Sensor

  
Reflection surface

Reflection point

� � m (k)

�

(x(k); y(k))

(xr (k); yr (k))

y = mx + c

Target

�

(xrs (k); yrs (k))

�

Figure 4.2: Ray optical geometry.
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� m (k) = � + � (4.6)

� rs
m (k) = � � � (4.7)

� = tan � 1(m) (4.8)

y = mx + c (4.9)

� m (k) = tan � 1
�

(yrs (k) � yr (k))
(xrs (k) � xr (k))

�
+ ! � (k)

= tan � 1(m0
rp ) (4.10)

xrs (k) =
yr (k) � m0

rp xr (k) � c

(m � m0)
(4.11)

yrs (k) =
myr (k) � mm0

rp xr (k) � m0c

(m � m0)
(4.12)

In the tracking and data association, the uncertainty in re
 ection point estimation due

to bearing error must be considered. However, in this chapter it is assumed that re
ection

points are known to the receiver. Incorporating the re
ection point uncertainty in target

tracking is considered in the next chapter.

4.3 Tracking Algorithm

The target motion model and measurement models are using thefollowing non-linear rela-

tionship in the Cartesian coordinate system.

x(k + 1) = f k (x(k)) + v(k) (4.13)

z(k) = hk (x(k)) + w(k) (4.14)

where x(k) = [ x(k) _x(k) y(k) _y(k)]T is the state of the moving target at discrete time step

k. Here x(k) and y(k) are the positions and _x(k) and _y(k) are the velocities in the direction
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of X and Y coordinates. Here,f k and hk are state and measurement models de�ning the

non-linear functions, and v(k) and w(k) are process and measurement noise, which are

assumed to be drawn from a zero mean, statically independentand Gaussian white noise

with covariances Qk and Rk , respectively.

To initialize the targets, we form a tentative track for each unassociated measurements

at last time step and perform the 2-D data association with current measurements. If any

association is found, then the tentative track is con�rmed as an initial track, and it is

deleted otherwise. Bistatic range and bearing measurements from the direct signal are used

to initialize the target positions.

The Kalman �lter is the optimal �lter when the target state an d measurement models are

linear and noises are Gaussian. When nonlinearities are present the extended Kalman �lter

(EKF), the unscented Kalman �lter (UKF), particle �lter or p robability hypothesis density

(PHD) �lter can be used (34) (59). Multitarget tracking beco mes more di�cult since which

reports from a particular sensor were generated by which targets must be determined. Since

more than one measurement from the same sensor need to be associated to the target and

to the di�erent propagation path modes the complexity furth er increases. As we consider a

multitarget multipath system with the presence of false alarms and missed detections the

complexity increases further. How many targets are presentand how it should keep track

of it are the important issues to be addressed. The primary focus is to estimate the target

kinematic state (position and velocity) from noise corrupted measurements. In this chapter,

we implemented the UKF to track the targets using multipath m easurements.

The problem is to associate the measurements to targets and to the appropriate signal

propagation path mode. One of the approach is tracking the targets in the measurement

space by assuming that all the measurements from direct pathsignal model. In this case,

more than one track may be formed for each target, and then tracks must be fused by

�nding the appropriate multipath signal propagation model assignment. Furthermore, one
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of the other approach is tracking the targets in the state space and add one more dimension

in the S-D assignment for the signal propagation model. In both approaches, multiframe

assignment must be used. The data association gives decisions as to which of the received

measurements and propagation modes should be used to updateeach track.

Propagation ModeTarget Measurement 

Figure 4.3: Multipath uncertainty in assignment tree.

4.4 Data Association based on Multiframe Assign-

ment

Tracking multiple targets in noisy measurements of the target together with spurious obser-

vations created by the background noise and clutter has beenstudied for many years (46).

Data association problem becomes more di�cult to handle when multiple targets compete

for measurements. Identi�cation of which measurement belongs to which target is the con-

ventional data association problem. However, in this work,the complexity of the problem
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is increased in such a way that the the measurements compete for target and the multi-

path distinct propagation mode. The multipath signal propagation mode measurements

add more complexity to the data association problem.

MeasurementsTarget

Figure 4.4: Assignment tree of multipath model.

4.4.1 Formulation of the MSD Problem and Solution Tech-

nique

At a time step k, data association based on multipath multiframe assignment where a single

sensor measurements in the last scan with (S� 1) multiple modes are associated with the list

of established tracks (S lists - S-dimensional association, denoted as S-D). Every possible

S� tuple is assigned a costC(kj� (k)). When we have r number of sensors and considering

NS� 1 number of distinct propagation modes, then the multipath multiframe data association

problem will be an r � NS� 1 + 1 dimensional problem (i.e., S = r � NS� 1 + 1).
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In order to associate the existing measurements to each re
ection path mode and each

target, every sensor measurements are stacked to the numberof distinct propagation modes

times (i.e., NS� 1 times), and an association is found in such a way that it minimizes the

total cost. In this current work, we assume that there is only one sensor (r = 1) and

NS� 1 = S � 1 (i.e., there isS � 1 number of distinct propagation modes (i = 1 ; 2; :::; NS� 1).

In order to formulate the multipath S-D problem, we formulat e the assignment tree diagrams

as shown in Figure 4.3 and Figure 4.4. Since the assignment tree diagram in Figure 4.4 is

too complicated to understand and solve, we draw an equivalent assignment tree diagram

as shown in Figure 4.5. We stack the same sensor measurement to the number of distinct

propagation modes times as shown in Figure 4.5. The objective is to detect and track an

unknown number of targets by estimating their positions using the S � 1 lists of stacked

measurements. The sensor provides scans of detected and resolved signals at a discrete time

step k = 1 ; 2; :::; K . With each detection, there is an associated measurement ofbearing and

bistatic range by direct signal or multipath range by multip ath re
ected signal. For every

multipath S-D problem, NS� 1 lists of stacked measurements are associated with established

tracks, and each stacked measurement list hasnN (the number of sensorsN = 1 ; 2; :::; r

measurements at timek. In this case, the stacked measurement list hasn1 (as we consider

one sensor) measurements. It is assumed that the sensor has aknown nonunity detection

probability PD .

A likelihood ratio test that involves the target state estim ate for the candidate asso-

ciations is used to assign cost to each feasibleS� tuple of measurements, i.e., candidate

association, and then S-D is used to minimize the cost globally. The measurement zij i ,

j i = 1 ; 2; :::nNS � 1 ( z1j 1 and j 1 = 1 ; 2; :::n1 in our case as the number of sensors are 1). A tar-

get may not be detected at every scan. For the simpli�cation of the notation for incomplete

measurement to target association occurred by miss-detection from the direct or multipath

re
ected signal, a dummy measurementzi 0 is added to each list. A dummy measurement

89



Ph.D. Thesis - Maheswaran Subramaniam McMaster - Electrical Engineering

from multipath re
ection propagation mode measurement list NS� 1 assigned to target p

implies that this target was not detected by the sensorr (i.e., in this case r = 1). That

is, it can be a miss-detection from the direct signal propagation mode, or a miss-detection

from the multipath re
ection propagation modes. The likeli hood that an r � NS� 1- tuple

of measurementsZ i 1 j 2 j 3 :::j NS � 1
, originated from target p, with the known state xp at a time

step k, is the joint pdf:

�( Z j 1 j 2 j 3 :::j NS � 1
jp) =

r � NS � 1Y

i =1

n
[1 � PD ]1� u(j i ) [PD p(zij i jxp)]u(j i )

o
(4.15)

where u(j i ) is an indicator function. That is

u(j i ) =

8
><

>:

0 if j i = 0

1 otherwise
(4.16)

The likelihood that the measurements are all spurious or irrelevant to this target (i.e.,

p = 0) is given by

�( Z j 1 j 2 j 3 :::j NS � 1
jp = 0) =

r � NS � 1Y

i =1

�
1

	 i

� u(j i )

(4.17)

where 	 i is the false alarm probability in a cell multiplied by the vol ume of the resolution

cell.

The cost of associating ther � NS� 1 (r = 1 in our case) tuple to target p is given by

the negative log-likelihood ratio.

cj 1 j 2 j 3 :::j NS � 1
= � ln

�( Z j 1 j 2 j 3 :::j NS � 1
jp)

�( Z j 1 j 2 j 3 :::j NS � 1
jp = 0)

(4.18)
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However, xp is unknown in Eq. (4.15) therefore, will be replaced by its ML estimate

and is given by

x̂ p = arg max
x p

�( Z j 1 j 2 j 3 :::j NS � 1
jp) (4.19)

Therefore (4.18) becomes a generalized likelihood ratio. Hence, we get the cost of the

candidate association of theNS� 1 tuple of measurements (j 1; j 2; j 3; :::; j NS � 1 ) to a target is

cj 1 j 2 j 3 :::j NS � 1
=

NS � 1X

i =1

(

[u(j i ) � 1] ln(1 � PD ) � u(j i ) ln

 
PD 	 i

j2�� i j
1
2

!

+

u(j i )
�

1
2

[zij i � H (x̂ p; y ij i )]
T � � 1

i [zij i � H (x̂ p; y ij i )]
��

(4.20)

The objective is to �nd the most likely set of NS� 1 - tuples such that each measurement

is assigned to unique one target one propagation mode combined pair, or declared false, and

each target receives at most one measurement from each list for every propagation mode,

or declared false, and each target receives at most one measurement from each stacked list

and not the corresponding same measurement is used in the other stacked list. That is, the

same corresponding measurement from the other stacked listshould not be arranged to any

target. This can be reformulated as the following assignment problem.

The multipath multidimensional assignment problem is a constraint optimization prob-

lem. The solution to the problem is to associate the measurements to appropriate targets

and the multipath propagation modes. In order to �nd the appr opriate assignment to the

existing targets, an assignment variable� (j;i )
t (k) can be de�ned in such a way that it can

take either 0 or 1 depending on the di�erent constraints and scenarios. It can be de�ned in

the following way
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� (j;i )
t (k) =

8
>>>><

>>>>:

1 if the measurementzij i (k) is assigned to a tracktt (k � 1)

and the multipath model i

0 otherwise

(4.21)

The constraints can be de�ned as given below.

nNS � 1X

j =0

� (j;i )
t (k) = 1 (4.22)

where t = 1 ; 2; :::T and i = 1 ; 2; :::NS� 1

The target and multipath mode uncertainty constraints can be written as

TX

t=0

� (j;i )
t (k) = 1 (4.23)

where j = 1 ; 2; :::nNS � 1 and i = 1 ; 2; :::NS� 1

NS � 1X

i =1

� (j;i )
t (k) = 1 (4.24)

where j = 1 ; 2; :::nNS � 1 and t = 1 ; 2; :::T

The above last two constraints can be combined as given below.
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NS � 1X

i =1

TX

t=0

� (j;i )
t (k) = 1 (4.25)

where j = 1 ; 2; :::nNS � 1 .

Target Measurement
Direct Multipath

Measurement
Multipath

Measurement
Multipath

Measurement

Figure 4.5: Multipath model assignment tree by stacking thesame measurement.

Since we assume that all the signal propagation modes are known, there is no dummy

propagation path mode. But since there are miss-detections, we have dummy targets and

dummy measurements in our problem. Now the solution for the problem is to �nd the

optimal assignment � opt (k) that minimizes the global cost of assignment.

C(kj� (k)) =

nNS � 1X

j =0

NS � 1X

i =1

TX

t=0

� (j;i )
t (k)  (j;i )

t (k) (4.26)

where  (j;i )
t (k) is the appropriate cost assignment of� (j;i )

t (k).

The above objective function can give a suboptimal solutionif  (j;i )
t (k) are calculated
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independently of any other measurements that can be associated to the same target. To

�nd the optimal cost, the following equation is used:

Minimize:

C(kj� (k)) =
TX

t=0

nNS � 1X

j 1=0

NS � 1X

j 2=0

:::
NS � 1X

j i = NS � 1

' (j i )i =1 :::NS � 1
t (k) 

(j i ) i =1 ::: NS � 1
t (k) (4.27)

where ' (j i )i =1 ::NS � 1
t (k) is the assignment variable andNS� 1 is the total number of mul-

tipath target originated signal propagation mode. We need to �nd the optimal assignment

tree by satisfying the following constraints.
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Subject to:

TX

t=0

nNS � 1X

j 2=0

nNS � 1X

j 3=0

nNS � 1X

j 4=0

:::

nNS � 1X

j NS � 1 � 1=0

nNS � 1X

j NS � 1 =0

' (j i )i =1 ::NS � 1
t (k) = 1 ; j 1 = 1 ; 2; :::; nNS � 1

(4.28)

TX

t=0

nNS � 1X

j 1=0

nNS � 1X

j 3=0

nNS � 1X

j 4=0

:::

nNS � 1X

j NS � 1 � 1=0

nNS � 1X

j NS � 1 =0

' (j i )i =1 ::NS � 1
t (k) = 1 ; j 2 = 1 ; 2; :::; nNS � 1

(4.29)

:

:

TX

t=0

nNS � 1X

j 1=0

nNS � 1X

j 2=0

nNS � 1X

j 3=0

:::

nNS � 1X

j NS � 1 � 2=0

nNS � 1X

j NS � 1 =0

' (j i )i =1 ::NS � 1
t (k) = 1 ; j NS � 1 � 1 = 1 ; 2; :::; nNS � 1

(4.30)

TX

t=0

nNS � 1X

j 1=0

nNS � 1X

j 2=0

nNS � 1X

j 3=0

:::

nNS � 1X

j NS � 1 � 2=0

nNS � 1X

j NS � 1� 1=0

' (j i )i =1 ::NS � 1
t (k) = 1 ; j NS � 1 = 1 ; 2; :::; nNS � 1

(4.31)

wheref ' (j i )i =1 ::NS � 1
t (k)g are binary association variables such thatf ' (j i )i =1 ::NS � 1

t (k)g =

1 if NS� 1 tuple Z j 1 j 2 j 3 :::j NS � 1
is associate with a candidate target.

Its value is equal to zero otherwise. The same measurement cannot be associated with

itself. Hence,

' (j i )i =1 ::NS � 1
t (k) = 0 if j p = j q; 8 p 6= q; and p; q 2 f 1; 2; :::; nNS � 1 g (4.32)
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TX

t=0

nNS � 1X

j 1=0

nNS � 1X

j 2=0

nNS � 1X

j 3=0

:::

nNS � 1X

j NS � 1 � 1=0

nNS � 1X

j NS � 1 =0

' (j i )i =1 ::NS � 1
t (k) �

�
j 1orj 2orj 3or:::orj nNS � 1

== j
�

= 1 ;

(4.33)

where j = 1 ; 2; :::; nNS � 1 .

This multipath multiframe assignment problem is formulated similar to a generalized

S-D problem. Therefore, we solve the multipath multiframe assignment problem as a series

of relaxed 2-D subproblems in two phases such as constraint relaxation phase and the

multiplier update and constraint enforcement phase (46).

4.5 Simulation and Results

In the simulation, parameter setting are: transmitter position = [49925, -10899]m; receiver

position = [0, 0]m; the re
ection point = [30000, 5000]m; the measurement interval is

1 second; measurement variances� 2
r = 10 m2 and � 2

� = 0 :0001 radians2; probability of

detection is 0.98; 10 false alarms at each sampling. The target trajectories, transmitter and

receiver locations are given in Figures 4.6 and 4.7. There are two targets in the surveillance

region, one enters the region atk = 3 and the other enters at k = 6.

Figures 4.6 and 4.7 show the S-D association comparison of the tracking by considering

and not considering the multipath re
ection model. In both c ases S-D association and

multipath S-D association are used.

Figure 4.6 shows that when the multipath measurements are available and if they are

not utilized within the tracker, then there are spurious tra cks formed.

But Figure 4.7 shows that with a correct propagation mode assumption, integrating

multipath information into the tracker can help improve the accuracy of tracking and reduce
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Figure 4.6: Estimated target tracks without incorporatingmultipath.

the number of false tracks.

The root mean square error (RMSE) values are compared in Figure 4.8 or Figure 4.9.

The RMSE values are lower for fused tracks that were obtainedthrough multipath multi-

frame assignment technique. It shows that the multipath S-D association based tracking

algorithm converges as the RMSE goes lower over the time. TheRMSE curves show that

multipath S-D association �lter outperform when the multip ath re
ection modes informa-

tion is incorporated in tracking.
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Figure 4.7: Estimated target tracks with incorporating multipath.
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Figure 4.8: RMSE values without incorporating multipath.
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Figure 4.9: RMSE values with incorporating multipath.
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Chapter 5

Multipath Assisted Multitarget

Tracking with Re
ection Point

Uncertainty

In this chapter, the previous work multipath-assisted mult itarget tracking using multiframe

assignment is extended to the case where there are uncertainties in multipath re
ection

points at the receiver. An algorithm is proposed for initiat ing and tracking multiple targets

using multiple transmitters and receivers. This algorithm is capable of exploiting multipath

target returns from distinct and unknown propagation modes. When multipath returns

are not utilized appropriately within the tracker, (e.g., d iscarded as clutter or incorporated

with incorrect propagation mode assumption) the potential information in the multipath

returns is lost. In real scenarios, it is more appropriate toassume that the locations of the

re
ection points/surfaces are not accurately known.

Integrating multipath information into the tracker by corr ectly identifying the multipath

mode and identifying the re
ection point can help improve th e accuracy of tracking. The
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challenge in improving tracking results using multipath measurements is the fusion of direct

and multipath measurements from the common target when the multipath-re
ection mode

is unknown. The problem becomes even more challenging with false alarms and missed

detections. We propose an algorithm to track the target with uncertainty in multipath

re
ection points/surface using the multiframe assignment technique. Simulation results are

presented to show the e�ectiveness of the proposed algorithm on a ground target tracking

problem.

In the previous chapter, the multipath-assisted multitarget tracking using multiframe

assignment was studied. An algorithm was proposed for initiating and tracking multiple

targets using multiple transmitters and receivers. This algorithm is capable of exploiting

multipath target returns from distinct and unknown propaga tion modes. When multipath

returns are not utilized appropriately within the tracker, (e.g., discarded as clutter or in-

corporated with incorrect propagation mode assumption) the potential information in the

multipath returns is lost. In the previous work the multipat h re
ection points are known

to the receiver. In real scenarios, it is more appropriate toassume that the locations of

re
ection points are not exactly known. In this chapter, the proposed algorithm will track

the targets when there are uncertainties in the multipath re
ection surface parameters.

This chapter mainly focuses on formulating the multipath tr acking problem with re
ec-

tion points or surface uncertainties for ground or airbornetargets and deriving an assign-

ment based data association �lter. In this chapter, errors in bearing and uncertainties in

re
ection surface's angle and distance from the sensor are incorporated in measurements

and tracking capabilities are analyzed.
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5.1 Multipath Re
ection Surface Uncertainty

When multipath target returns from distinct propagation mo des are resolved, spurious

tracks are formed. Associating these signals facilitate better estimates of the target states.

However, in order to use these measurements, appropriate association of multipath re
ection

models have to be identi�ed. Incorrect re
ection model assignment will lead to errors in

association and tracking.

Hence, to utilize these measurements appropriately, it is important to have the measure-

ments resolved appropriately in multipath propagation mode assignment. Multipath signal

propagation mode assignment uncertainty adds another level of complexity to the standard

data association problem. This problem was solved in the previous chapter. In the previous

chapter, the association uncertainties were in the measurement-to-target association and

in the measurement-to-multipath propagation mode association. In typical scenarios, it is

more appropriate to assume that the re
ection surface parameters are not accurately known

(i.e.,there are uncertainties associated with re
ection surface parameters). Therefore, in this

work we considered the case where there are uncertainties associated with re
ection surface

parameters. Hence, in such situations tracking is performed when the re
ection points are

unknown.

5.1.1 System Model

Since the re
ection surface parameters are not accurately known, another level of uncer-

tainty is added to the existing problem. In this model, we assume that the re
ection

surface is smooth and can be described by a liney = mx + c in the tracking plane, where

m = ( m0+ em0); c = ( c0+ ec0). Here em0 and ec0 are the error covariance ofm0 and c0 added

in the form of uncertainties. That is, the re
ection surface's geometry is not accurately

known to the receiver in this system model as described in Figure 5.1.
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Figure 5.1: Uncertainty in re
ection surface parameters.

When considering the target tracking with re
ection surface uncertainty, it is also im-

portant to make assumptions on re
ection scenarios. Figure5.2 shows that the signals

directly hit the target �rst, and then the target returns are received by the sensors directly

and through the multipath re
ections.

Figure 5.3 shows that the signals re
ected at the wall �rst before hitting the target.

Then the target returns are received by the sensor through direct and multipath propagation

modes.

Figure 5.4 shows that the signals re
ect at di�erent walls �r st before hitting the target.

Then the target returns are received by the sensor through direct and multipath propagation

modes.

Figure 5.5 shows that the signals re
ect at di�erent walls and or clutter and received

by sensor. These signals are non-target returns. The Doppler shift measurements can be

used to di�erentiate the target originated returns from clu tter.
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Figure 5.2: Multipath re
ection scenarios: Transmitter-target.

Figure 5.6 shows a complex target re
ection scenario. The sensor receives more com-

plex signals such as Transmitter-Target-Sensor, Transmitter-Target-Multiple Walls-Sensor,

Transmitter-Multiple Walls-Target-Sensor and Transmitt er-Multiple Walls-Target-Multiple

Walls-Sensor.

Figure 5.7 shows the scenario of complex multipath target returns from another target

return signal.

In this model (x(k); y(k)) denotes the moving target position at time step k. It is

assumed that the sensor and the transmitter locations are known and they are denoted by

(xr (k); yr (k)) and (x t (k); yt (k)), respectively. The re
ection model index is denoted by rs.

Based on the re
ection surface information, using ray optics geometry, the re
ection points

can be evaluated. The re
ection point coordinate (xrs (k); yrs (k)) denotes the re
ection

point at kth time step in rs th multipath re
ection model (re
ection surface). For simpli city,
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Figure 5.3: Multipath re
ection scenarios: Transmitter-wall-target.

it is assumed that the received signals are either direct signal from the target or target

re
ected signals with one re
ection at the re
ection surfac e rs before it arrives the sensor.

Key Assumptions and Scenario Description

� Transmitter is located on the axis of the receiver, and the motion of the target is in

the same plane.

� The distance between the transmitter and receiver is large enough to satisfy the

bistatic range ellipse and multipath range ellipse as theseare along the transverse

diameter.

� In addition to the direct signal detection, the sensor measurements contain resolved

multipath detections.
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Figure 5.4: Multipath re
ection scenarios: Multiple wall re
ections.

� The re
ections on the surface/wall are smooth and abide by the ray optical geometry

principles.

� Uncertainties in the knowledge of the re
ection surface parameters are known by its

covariance. i.e.,m0or the slope� and the intersect c0and their covariances are known.

� It is assumed that m0 and c0 are statistically independent, uniformly distributed wit h

mean 0 and covariances of� 2
m0 and � 2

c0 respectively.

The measurements are bistatic rangerd(k), multipath range rm (k), bearing from direct

signal � d(k) and multipath re
ected signal � m (k). The measurement equations are given

below. At a given time step k, the bistatic range measurement from the direct target return
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Figure 5.5: Multipath re
ection scenarios: Non-target returns.

can be given by,

rd(k) =
� p

(x(k) � x t (k))2 + ( y(k) � yt (k))2
�

+
� p

(x(k) � xr (k))2 + ( y(k) � yr (k))2
�

+

�
� p

(x t (k) � xr (k))2 + ( yt (k) � yr (k))2
�

+ ! � (k) (5.1)

The DOA of the signal received directly from the target is given by

� d(k) = tan � 1
�

(y(k) � yr (k))
(x(k) � xr (k))

�
+ ! � (k) (5.2)

In the above case, no multipath re
ection occur between the target and the sensor in

the signal propagation path. When there are re
ection between target and the sensor, the

multipath range measurement can be given by
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Figure 5.6: Multipath re
ection scenarios: Complex re
ections.

rm (k) =
� p

(x(k) � x t (k))2 + ( y(k) � yt (k))2
�

+
� p

(xrs (k) � x(k))2 + ( yrs (k) � y(k))2
�

+

+
� p

(xrs (k) � xr (k))2 + ( yrs (k) � yr (k))2
�

+

�
� p

(x t (k) � xr (k))2 + ( yt (k) � yr (k))2
�

+ ! m (k) (5.3)

In this case, the DOA of the signal received by the sensor after re
ected from a point

on the re
ection surface is given by

� m (k) = tan � 1
�

(yrs (k) � yr (k))
(xrs (k) � xr (k))

�
+ ! � (k) (5.4)
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Figure 5.7: Multipath re
ection scenarios: Target return re
ections.

The measurement after two re
ection between the target and the sensor can be given

by

rm (k) =
� p

(x(k) � x t (k))2 + ( y(k) � yt (k))2
�

+

+
� p

(xrs 1 (k) � x(k))2 + ( yrs 1 (k) � y(k))2
�

+

+
� p

(xrs 1 (k) � xrs 2 (k))2 + ( yrs 1 (k) � yrs 2 (k))2
�

+

+
� p

(xrs 2 (k) � xr (k))2 + ( yrs 2 (k) � yr (k))2
�

+

�
� p

(x t (k) � xr (k))2 + ( yt (k) � yr (k))2
�

+

+ ! m (k) (5.5)
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The DOA signal received after two multipath re
ection from t he target is given by

� (k) = tan � 1
�

(yrs 2 (k) � yr (k))
(xrs 2 (k) � xr (k))

�
+ ! � (k) (5.6)

Depends on the re
ection scenario assumptions, the appropriate range and DOA mea-

surement equations will be driven. The measurementz(k) can be given by the following

equation.

z(k) =

2

6
4

r (k)

� (k)

3

7
5 (5.7)

where r (k) = rd(k) and � (k) = � d(k) when the target return signal propagation mode is

direct and r (k) = rm (k) and � (k) = � m (k) when the target return signal propagation mode

is multipath.

5.2 Multipath Re
ections on Smooth Surface

Figure 5.2 shows a simple multipath re
ection scenarios. Based on the ray optical geom-

etry, the re
ection points ( xrs (k); yrs (k)) on the re
ection surface is evaluated when the

re
ection surface information and their covariances are known. Considering a smooth re-


ecting surface de�ned by y = mx + c as shown in Figure 5.2. Figure 5.2 also shows the ray

re
ection path geometry where ( �
2 � � ) is the incident angle on the smooth surface,� m (k)

is the DOA of the wall-re
ected signal at the receiver at (xr (k); yr (k)), and � rs
m (k) is the

direction of arrival angle at the re
ection point. Then the r e
ection points ( xrs (k); yrs (k))

on the re
ection wall or surface can be de�ned by the following way.

Figure 5.2 shows a simple multipath re
ection scenario where the sensor receives a
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Figure 5.8: Direct and multipath re
ected signals.

single direct and one multipath wall re
ected signal. When the multipath range and its

DOA is known, the track can be initiated. As the direct signal's range and DOA is known,

these information can also be used to initialize the track. Consider the re
ection scenario

described in Figure 5.2. LetS be the sensor location andPS be the projection of S on the

line y = mx + c. Here, d is the distance between the pointS and its orthogonal projection

point PS on the line y = mx + c.
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� m (k) = � + � (5.8)

� rs
m (k) = � � � (5.9)

� m (k) = tan � 1
�

(yrs (k) � yr (k))
(xrs (k) � xr (k))

�
+ ! � (k)

yP S � yr (k)
xP S � xr (k)

= �
1
m

(5.10)

d =
jyr (k) � mx r (k) � cj

p
1 + m2

(5.11)

yP S � mxP S � c = 0 (5.12)

myP S � myr (k) + xP S � xr (k) = 0 (5.13)

where the point (xP S; yP S) is the coordinate of PS. The point ( xP S; yP S) is on y = mx + c.
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xP S =
myr (k) + xr (k) � cm

(1 + m2)
(5.14)

yP S =
m2yr (k) + mx r (k) + c

(1 + m2)
(5.15)

The re
ected ray's straight line geometric equation can be given by

tan � m (k) =
y � yr (k)
x � xr (k)

(5.16)

Hence

y � tan � m (k)x � yr (k) + xr (k) tan � m (k) = 0 (5.17)

(5.18)

Hence the intersect of the above equation aty � mx � c = 0 can be found. That is the

re
ection point ( xrs (k); yrs (k)) on the re
ection surface. Therefore the re
ection points can

be expressed as follows.

xrs (k) =
yr (k) � xr (k) tan � m (k) � c

(m � m tan � m (k))
(5.19)

(5.20)
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yrs (k) =
myr (k) � mx r (k) tan � m (k) � ctan � m (k)

(m � m tan � m (k))
(5.21)

(5.22)

sin � =
d

p
(xr (k) � xrs (k))2 + ( yr (k) � yrs (k))2

(5.23)

Let d0 be the distance between the target and its orthogonal projection PT on the line

y = mx + c. Hence

d0 =
jy(k) � mx(k) � cj

p
1 + m2

(5.24)

The point ( xpt ; ypt ) be the projection point PT of the target on y � mx � c = 0. Hence

xP T =
my(k) + x(k) � cm

(1 + m2)
(5.25)

(5.26)

yP T =
m2y(k) + mx(k) + c

(1 + m2)
(5.27)
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xP T =
(xRT + x t )

2
(5.28)

(5.29)

yP T =
(yRT + yt )

2
(5.30)

(5.31)

xP S =
(xRS + xr )

2
(5.32)

(5.33)

yP S =
(yRS + yr )

2
(5.34)

yP S � yRS (k)
xP S � xRS (k)

= �
1
m

(5.35)

Based on the re
ection scenario described in Figure 5.2, thefollowing equations can be

driven. Let dP StoRS , dStoP S , dRStoP T , dT toP T be the distances betweenPS to RS, S to

PS, RS to PT and T to PT, respectively.

Hence,
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dP StoRS

dStoP S
=

dRStoP T

dT toP T
(5.36)

The points PS; RS; PT are on the line y = mx + c. Also the re
ection points RS can

be expressed as

xRS = xP T � dRStoP T cos(tan� 1 m) (5.37)

(5.38)

yRS = yP T � dRStoP T sin(tan � 1 m)

= yP T + dP StoRS sin(tan � 1 m)

= yP T +
dP StoRS m
p

1 + m2
(5.39)

Hence,dP StoRS can be driven as given below.

dP StoRS =
dStoP S

p
(xP T � xP S)2 + ( yP T � yP S)2

dStoP S +
p

(xP T � xP S)2 + ( yP T � yP S)2
(5.40)

The signal re
ection points ( xRS (k); yRS (k)) and the target projection points ( xP T (k); yP T (k))

are functions of the target. Hence, we can write the Jacobianof it with respect to the target

location. Also for the tracking, the Jacobian can be written as,
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@dP StoRS

@x
=

@
@x

 
dStoP S

p
(xP T � xP S)2 + ( yP T � yP S)2

dStoP S +
p

(xP T � xP S)2 + ( yP T � yP S)2

!

(5.41)

Figure 5.10 shows a multipath range ellipse and a bistatic range ellipse. The possible

target location will be one intersect of the ellipses. Basedon the smooth surface assump-

tion, we can draw a multipath range ellipse as shown in Figure5.10. This ellipse's one

focus is the transmitter (x t (k); yt (k)) and the other is the point RS, and its coordinate is

(xRS (k); yRS (k). In Figure 5.10, the focus point (x f (k); yf (k) of the multipath range ellipse

is the point RS. That is the coordinate of the re
ected sensorS on the line y = mx + c.

Similar to the bistatic range ellipse in bistatic/multista tic radar tracking, the multipath

range ellipse can be used to track the target in multipath re
ection environment.

5.3 Tracking Algorithm

The target motion model and measurement models are using thefollowing non-linear rela-

tionship in the Cartesian coordinate system.

x(k + 1) = f k (x(k)) + v(k) (5.42)

(5.43)

z(k) = hk (x(k)) + w(k) (5.44)
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Figure 5.10: Multipath range ellipse and bistatic range ellipse.

where x(k) = [ x(k) _x(k) y(k) _y(k)]T is the state of the moving target at discrete time

step k. Here x(k) and y(k) are the positions and _x(k) and _y(k) are the velocities in the

direction of X and Y coordinates. Here, f k and hk are state and measurement models

de�ning the non-linear functions, and v(k) and w(k) are process and measurement noise,

which are assumed to be drawn from a zero mean, statically independent and Gaussian

white noise with covariancesQk and Rk , respectively.

5.4 Simulation and Results

In this section, di�erent re
ection scenarios are considered and the track and RMSE in-

formation are compared. In the simulation, parameter setting are: transmitter position =
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[49925, -10899]m; receiver position = [0, 0]m; the re
ection surface equation is given by

y = mx + c. Here m = m0+ em0 and c = c0+ ec0 m0 = � 1; c0 = 100000 m. The em0 and

ec0 are 0.001 and 100 m, respectively; the measurement intervalis 1 second; measurement

variances � 2
r = 10 m2 and � 2

� = 0 :0001 radians2; probability of detection is 0.98; 10 false

alarms at each sampling. The target trajectories, transmitter and receiver locations are

given in Figures 5.11 and 5.12. There are two targets in the surveillance region, one enters

the region at k = 3 and the other enters at k = 6.

Figure 5.11 shows the S-D association comparison of the tracking by not considering the

multipath re
ection model. In both cases S-D association and multipath S-D association

are used. Figure 5.11 shows that when multipath measurements are available and if they

are not utilized within the tracker, then there are spurious tracks formed.
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Figure 5.11: Estimated target tracks without incorporating multipath.
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Figure 5.12 shows the S-D association comparison of the tracking by considering the

multipath re
ection model. Figure 5.12 shows that with a cor rect propagation mode as-

sumption by considering the multipath re
ection surface uncertainty. Integrating multipath

information into the tracker can help improve the accuracy of tracking and reduce the num-

ber of false tracks.
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Figure 5.12: Estimated target tracks with incorporating multipath.

The root mean square error (RMSE) values are compared in Figure 5.13 and 5.14.

The RMSE values are lower for fused tracks that were obtainedthrough multipath

multiframe assignment technique that incorporated the re
ection surface parameter uncer-

tainty.

It shows that the multipath S-D association based tracking algorithm converges as the
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Figure 5.13: RMSE values without incorporating multipath.

RMSE goes lower over the time. The RMSE curves show that in tracking, multipath S-D as-

sociation �lter outperform when the multipath re
ection mo des information is incorporated

appropriately.
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Figure 5.14: RMSE values with and without multipath.
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5.5 Performance Evaluations of Multipath Multi-

target Tracking using PCRLB

In this section, the performance of the multipath-assistedmultitarget tracking using mul-

tiframe assignment for initiating and tracking multiple ta rgets by employing one or more

transmitters and receivers is studied. The basis of the technique is to use the posterior

Cramer-Rao lower bound (PCRLB) to quantify the optimal achi evable accuracy of target

state estimation. When resolved multipath signals are present at the sensors, if proper

measures are not taken, multiple tracks will be formed for a single target. In multipath

environment, in every scan the number of sensor measurements from a target is equal to

the number of resolved signals received by di�erent propagation modes. The data associa-

tion becomes more complex as this is in contrary to the standard data association problem

whereas the total number of sensor measurements from a target is equal to at most one.

This leads to a challenging problem of fusing the direct and multipath measurements from

the same target. We showed in our evaluations that incorporating multipath information

improves the performance of the algorithm signi�cantly in t erms of estimation error. Sim-

ulation results are presented to show the e�ectiveness of the proposed method.

5.6 Posterior Cramer-Rao Lower Bound in Multi-

path Tracking

This section study the performance of the multipath-assisted multitarget tracking using

multiframe assignment for initiating and tracking multipl e targets. MSD algorithm tracks

targets with uncertainty in re
ection-path-model (uncert ain-origin) measurement. Opti-

mally solving this problem is highly complex. It will be inte rest to evaluate the performance
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of the tracker and is quanti�ed by the PCRLB which is de�ned as the inverse of the Fisher

information matrix (FIM). The PCRLB provides a mean square error lower bound on the

performance of any unbiased estimator of the unknown targetstate and for additional read-

ing (80) (87) (89) (90) (91) (93) (95) may be used. This discovers how close its mean

square estimate is to the lower bound. An unbiased estimatorcan achieve the minimum

variance for state estimates described by the PCRLB.

Let the measurement beZk = [ z1; z2; :::; zk ] and the unbiased estimator ofxk be x̂k(Zk ).

It is assumed targets are well separated, hence there is no measurement origin uncertainty

in terms of targets. The PCRLB is de�ned as J (k)� 1, the inverse of the Fisher Information

Matrix (FIM).

The lower bound on the error co-variance of ^xk (Zk ), such that,

Ck , E[x̂k (Zk ) � x̂k (Zk )][x̂k (Zk ) � x̂k(Zk )]T � J (k)� 1 (5.45)

where E is the expectation over (xk ; Zk ).

The recursive PCRLB equations are given by (95)

J (k + 1) = D 22
k � D 21

k (J (k) + D 11
k )� 1D 12

k + Jz(k + 1) (5.46)

where

D 11
k = E

�
� � xk

xk
ln p(xk+1 jxk)

	
(5.47)

D 12
k = E

�
� � xk +1

xk ln p(xk+1 jxk)
	

(5.48)

D 21
k = ( D 12

k )T (5.49)

D 22
k = E

�
� � xk +1

xk +1 ln p(xk+1 jxk)
	

(5.50)

Jz(k + 1) = E
�

� � xk +1
xk +1 ln p(zk+1 jxk+1 )

	
(5.51)
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and � is a second-order partial derivative operator.

5.6.1 Multipath PCRLB

Lets consider the targets moving independently. The state equation can be written into M

separate equations.

x t
x+1 = F t

kx t
k + vt

k ; t = 1 ; 2; :::; M (5.52)

where F t
k is a linear function and vt

k is an independent white noise sequence.

At each sampling time k, the j -th measurementzi
k (j ) has the form

zk (j ) =

8
>>>><

>>>>:

hd
k (x t

k ; xr ; x t ) + ! t
k(j ) if originated from target t, direct path

hm
k (x t

k ; xr ; x t ; xrs ) + ! t
k(j ) if originated from target t, multipath

� k (j ) if false alarm

(5.53)

where hd
k (x t

k ; xr ; x t ) and hm
k (x t

k ; xr ; x t ; xrs ) are (in general) nonlinear functions, ! t
k (j ) is a

zero mean Gaussian random variable with covariance �k and � k (j ) is uniformly distributed

throughout the �eld of view ( V ) of the sensor (87). The number of false alarms in the

sensor's �eld of view is Poisson-distributed with mean�V .

It can be shown that if � t
k is Gaussian with zero mean and covariance �tk , then the FIM

of target t, J t (k + 1), can be written as (86)

J t (k + 1) =
�
� t

k + F t
kJ t (k)� 1(F t

k )T � � 1

| {z }
J t

x (k+1)

+ J t
z(k + 1) (5.54)

where J t
z(k + 1) denotes the measurement information regarding targett at sampling time

k + 1, which is given by

J t
z(k) = J t

zd
(k) +

nX

i =1

J t
zi

m
(k) (5.55)
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where J t
zd

(k) is the information from direct path, J t
zi

m
(k) is the information from re
ection

point i and n is the number of re
ection surfaces.

The J t
zd

(k) is given by

J t
zd

(k) = E
h
qd;t

k

�
H d;t

k

� T � � 1
k H d;t

k

i
(5.56)

with the ( a; b)th element of matrix H t
k being given by

H d;t
k (a; b) =

@hdk (x t
k ; xr ; x t )(a)
@xtk (b)

(5.57)

�
hi

k

� t (a) is the a-th component of the measurement vector andx t
k (b) is the b-th component of

the state vector of target t. The variable qd;t
k is the Information Reduction Factor (IRF) for

direct path that depends on the measurement noise (�k ), false alarm rate (� ), probability

of detection (P t
D (k; i )) and the gated �eld of view ( V ) (87).

Similarly, J t
zi

m
(k) is given by

J t
zi

m
(k) = E

h
qi;t

k

�
H i;t

k

� T � � 1
k H i;t

k

i
(5.58)

where qi;t
k is the IRF for multipath form re
ection surface i .

In order to improve the overall tracking performance, this algorithm exploits multipath

target returns from distinct propagation modes that are resolved by the receiver. We

derived multipath PCRLB in a multipath re
ection environme nt when the re
ection surface

information or points are known to the receiver with an assumption that the targets are well

separated. The above equations can be used to calculate the multipath PCRLB for all the

cases. Only the IRF will change with di�erent assumption on re
ection point information.

When the re
ection points are accurately known, the IRF can be calculated similar to direct

path. When there is uncertainty in re
ection surface parameters, calculating the IRM in
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this case is much more complicated, since we must consider the e�ect of re
ection path

model uncertainty in addition to uncertainty in the data ass ociation.

5.7 Simulation and Results

In this section, a multipath re
ection scenarios is considered and the track and the RMSE

information are compared against the PCRLB. In the simulation, parameter setting are:

transmitter position = [49925, -10899]m; receiver position = [0, 0]m; the re
ection surface

equation is given by y = mx + c. Here m = � 1; c = 100000 m, the measurement interval

is 1 second; measurement variances� 2
r = 10 m2 and � 2

� = 0 :0001 radians2; probability of

detection is 0.98; 10 false alarms at each sampling.

The target trajectories, transmitter and receiver locations are given in Figure 5.15 when

multipath information is not incorporated. There are two ta rgets in the surveillance region,

one enters the region atk = 3 and the other enters at k = 6.

The target trajectories, transmitter and receiver locations are given in Figure 5.16 when

multipath information is incorporated. Unscented Kalman � lter (UKF) is used to track the

targets by incorporating multipath measurements.

The measurements are associated to the targets and the appropriate multipath models.

To associate the measurements to already established targets, multipath S � D association

(MSD) algorithm is used for UKF. Figures 5.18 and 5.17 were plotted for 100 Monte-Carlo

runs.
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Figure 5.15: Estimated target tracks without incorporating multipath.
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Figure 5.16: Estimated target tracks with incorporating multipath.
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Figure 5.17: RMSE values for comparisons.
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Figure 5.18: PCRLB values for comparisons.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, the feasibility of tracking multiple target s using transmitters of opportunity

was studied. The challenges are to handle low probability ofdetection of targets of interest,

high nonlinearity due to high measurement errors, re
ection path uncertainty and lack of

elevation information. In this thesis, the converted measurement Kalman �lter, unscented

Kalman �lter and particle �lter based PHD �lter are implemen ted for PCL radar measure-

ments and their performances are compared. Simulation results showed that the unscented

Kalman �lter and particle �lter based PHD �lter are the desir able choices for PCL systems

with small and large measurement errors, respectively.

We also implemented a bias estimation and removal techniquein direction of arrival

measurement for a PCL system. Due to the bias measurements, the measurement model

exhibits a high nonlinearity. Most of the nonlinear �lter ba sed tracking require approxima-

tions. Errors in the DOA measurement leads to higher errors in tracking accuracy. Noise

and the precision of DOA estimation are main issues in a PCL system. We demonstrate
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that with an expensive computation, the SMC implementation of the PHD �lter tracking

algorithm provides a better approximation in target tracki ng. This approach was tested

using simulated track data. The simulation results are presented to show the e�ectiveness

of the proposed algorithm with an example of tracking airborne targets.

The algorithm for multipath-assisted multitarget trackin g using multiframe assignment

is proposed for initiating and tracking multiple targets. T his algorithm was exploiting mul-

tipath target returns from distinct propagation modes that are resolvable by the receiver.

When resolved multipath returns were not utilized within th e tracker, i.e., discarded as

clutter, potential information conveyed by the multipath d etections of the same target was

wasted. In this case, spurious tracks were formed using target-originated multipath mea-

surements, but with an incorrect propagation mode assumption. We proposed a multiframe

assignment technique to incorporate multipath information. The simulation results were

presented to show the e�ectiveness of the proposed algorithm with an example of tracking

ground targets.

The algorithm for multipath-assisted multitarget trackin g using multiframe assignment

is considered when there are uncertainties in multipath re
ection points at the receiver.

We considered the case when the target re
ections are bounced o� from smooth re
ecting

wall/surface. When these measurements are not utilized within the tracker, i.e., discarded as

clutter, these target return information from these multip ath detections of the same target

were wasted. We proposed a multiframe assignment techniqueto incorporate multipath

information when there were uncertainties in re
ection surface information.

The simulation results were presented to show the e�ectiveness of the proposed algorithm

with an example of tracking two targets with target re
ected signals in a smooth multipath
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re
ection surface environment.

We studied the performance of the multipath-assisted multitarget tracking using multi-

frame assignment for initiating and tracking multiple targ ets.

In contrary to the standard data association problem, this algorithm has to handle

uncertainties in the target as well as the re
ection path/mo de. The simulation results are

presented to show the e�ectiveness of the proposed algorithm with an example of tracking

two targets in a multipath re
ection environment.

We derived multipath PCRLB in a multipath re
ection environ ment when the re
ection

surface information or points are known to the receiver withan assumption that the targets

are well separated, and showed that the RMSE values follows the PCRLB. We showed that

incorporating multipath information improves the perform ance of the algorithm signi�cantly

in terms of estimation error.

6.2 Future Work

Tracking using range (i.e., multipath range and bistatic range) and angle measurements and

appropriately combining them by considering the multipath re
ection is challenging when

the re
ection surface parameters are unknown. Performing the tracking when the re
ection

surface information or territorial information is complet ely unknown will be considered as

future work.

Calculating the multipath PCRLB for the closely spaced targets and when there are

uncertainties in the re
ection points or surface parameters will be considered in the fu-

ture works. Target tracking using complex multipath re
ect ion signals from multistatic
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con�guration in multitarget environment will be also consi dered in the future work.

 

 

  

Target

TransmitterSensor

Reflected target

Multipath Range Ellipse

Bistatic Range Ellipse

Non-Smooth Reflection Surface
� i 6= � r

(xr (k); yr (k)) (xt(k); yt(k))

(x(k); y(k))

� � (k)
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Figure 6.1: Re
ection on non-smooth surface.

Figure 5.10 shows a re
ection model on a smooth surface whereas Figure 6.2 shows

the re
ection on a non-smooth surface. When the sensor receives the TDOA and DOA

measurements consistently from signals re
ecting from a non-smooth surface, for a speci�c

value of a multipath range, the target lies on multipath range ellipse as shown in Figure 6.2.

When the re
ection surface is not smooth, we cannot assume that the incident and re
ection

angles are equal. In the case when the surface is not smooth, the incident rays scatter on

the surface and re
ect in di�erent directions. The concentrated energy's re
ection angle

depending on various factors such as the nature of the re
ection surface and incident angle.

In Figure 6.2, � i 6= � r .

On a smooth surface re
ection, the focus of this multipath range ellipse will be the
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transmitter and the other focus is the mirror location of the sensor on the re
ection surface

de�ned by y = mx + c.

On a non-smooth surface re
ection, the received TDOA measurement will be used to

calculate the new multipath range to �nd possible target's location that will lie on the

multipath range ellipse as shown in Figure 6.2. In this case,one focus of the multipath

range ellipse will be the transmitter and the other focus is the re
ection point on the surface

de�ned by y = mx + c. The initialization and tracking the target in such environ ment is

left for future work.

A range of very simple to more complex re
ection scenarios that may occur during a

multipath re
ection environment were illustrated in Figur es 5.2 5.3 5.4, 5.5, 5.6 5.7. In this

thesis, the case as in Figure 5.2 was considered. However, other scenarios that are discussed

in Figures 5.3, 5.4, 5.5, 5.6 and 5.7 can be considered for tracking. These can be done easily

by modifying this developed algorithms. This will be considered for future work.
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