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Abstract

In this thesis the problem of multitarget tracking in multistatic sensor networks is
studied. This thesis focuses on tracking airborne targetsyhutilizing transmitters
of opportunity in the surveillance region. Passive Coherémocation (PCL) system,
which uses existing commercial signals (e.g., FM broadcasligital TV) as the illu-
minators of opportunity for target tracking, is an emergingtechnology in air defence
systems. PCL systems have many advantages over conventibredar systems such
as low cost, covert operation and low vulnerability to elecbnic counter measures.

One of another opportunistic signals available in the surdtance region is multi-
path signal. In this thesis, the multipath target return signals from distinct propaga-
tion modes that are resolvable by the receiver are exploiteVhen resolved multipath
returns are not utilized within the tracker, i.e., discardel as clutter, potential infor-
mation conveyed by the multipath detections of the same tamg is wasted. In this
case, spurious tracks are formed using target-originateduttipath measurements, but
with an incorrect propagation mode assumption. Integratig multipath information
into the tracker (and not discarding it) can help improve theaccuracy of tracking and
reduce the number of false tracks.

However, the limitations of PCL as well as the multipath assited tracking include

lack of control over the illuminators and the re ectors, limted observability and poor



detection due to low Signalto-Noise Ratio (SNR). This lead® high clutter with low

probability of detection of target. The number of re ector returns from the same
target varies in multipath assisted tracking. Even though ncorporating mutipath

re ected signals will facilitate better estimates of the taget states due to spatial
diversity, one cannot use these measurements without regolg target-origin and

multipath-origin uncertainties. In this thesis, these opprtunistic measurements, i.e.,
commercial broadcast signals measurements in PCL trackiagd resolvable multipath
target return measurements in multipath assisted trackingre exploited.

In multipath assisted tracking, obtaining the complete knwledge of re ectors and
consistently receiving resolved target originated multigth measurements are chal-
lenging. We derived tracking algorithms to handle low proHaility of detection and
high nonlinearity in the measurement model due to high measement error. Also,
tracking algorithms are proposed to track multiple targetdy removing bias on direc-
tion of arrival measurement. In multipath assisted trackilg analysis, we also consid-
ered the cases where the re ector information is completeknown, as well as when
there are uncertainties.

We give the optimal formulations for all of the above problem as well as the
performance evaluations using PCRLB. Simulation resultdlustrate the performance

of the algorithms.
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Nomenclature

Acronyms

ACMA algebraic constant modulus algorithm

AOA  angle of arrival

ARM  anti-radiation missiles

CBF conventional beam forming

CMKF converted measurement Kalman lter

DOA  direction of arrival

EKF extended Kalman lter

FIM Fisher information matrix

IRM information reduction matrix

JPDA joint probabilistic data association

MFT  auction algorithm based multi-mode fusion tracking
MHT  multiple hypothesis tracking

MPDA multipath probabilistic data association

MSD  multipath S-dimensional assignment technique

MVDA multipath Viterbi data association algorithm
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NATO north Atlantic treaty organization

NC3A north Atlantic treaty organization consultation, command and control agency
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OTHR  over-the-horizon radar

PCRLB posterior Cramer-Rao lower bound

PCL passive coherent location
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Chapter 1

Introduction

1.1 Motivation and Contribution of the Thesis

1.1.1 Signals of Opportunity in the Environment

Active transmitters are combat targets in a war zones. Imphaentation of an unde-
tected covert tracking has been essential in such an enviroents. Therefore, there
has been high demand for building an undetectable improvedirseillance systems
especially in combat situations. With the latest enhancedignal processing tech-
nologies, exploiting the existing signals in the environmmé and tracking the target
using such signals not only enable covert tracking, but aldaring many additional
advantages. An innovative approach uses passive signaldow targets to be tracked
without sending any active electromagnetic signals, but ther by using existing com-
mercial broadcast signals from TV or FM radio signal aroundhe region. Passive

Coherent Location (PCL) is considered a bistatic radar or nitistatic radar tracking
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system which utilizes the commercial broadcast signals ifé environment. The en-
vironment also has multipath re ected signals that are bouced o di erent sources
such as buildings, mountains, the ground, clouds and movirigrgets.

Exploration of target return multipath signals and incorpaating the target infor-
mation from such signals into tracking algorithms have beestudied in the literature
and have become more attractive due to their inherent low chsas this reduces the
need for more sensors across the surveillance region. Aleoprporating target return
multipath signals into the tracking reduces the number of bak of receivers that are
needed for achieving the required accuracy of tracking. Whehe surveillance envi-
ronment has resolvable multipath signals at the sensors, pfoper measures are not
taken, multiple tracks will be formed for every target. In typical radar systems, these
spurious tracks are removed from tracking and therefore thiaformation carried in
such target return tracks are not utilized in tracking. Infamation conveyed by multi-
path detections of the same target may be wasted by treatindnése as inappropriate
signals. In a multipath environment, for every multipath target return (re ection
path), the sensor receives an additional measurement frorhet same target. In gen-
eral non-multipath scenarios, in every sensor scan, therdllvbe either one or zero
measurement from every target depending on whether it is datted or undetected,
respectively.

In a multipath environment, when target returns from distinct propagation modes
are resolved, associating these signals appropriately anthe estimation will yield
better estimates of the target states. An appropriate data ssociation of multipath
re ection models has to be identi ed to use these measurentsn Incorrect re ection

model assignment will lead to errors in association and treing. In order to utilize
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these measurements appropriately, they have to be identideappropriately and a
correct multipath propagation mode assignment must be penfmed. Uncertainty in
the multipath signal propagation mode assignment adds adwnal complexity to data
association problem. Also in multipath environments, comary to the typical tracking
scenario, in a single scan, every sensor will have more thameaneasurement for the
same target. In addition to the multipath signal, the compleity of the problem is
further increased due to missed detections, clutter, andlf® alarm.

Let us consider a simple phenomenon that causes a target reted signal to be
received via more than one path. This causes a time di erendmetween the arrivals
(TDOA) of the received signals at the sensor. A measurement the TDOA received
by the sensor can be used to calculate the multipath range aruistatic range. The
direct and re ected signals' direction of arrival (DOA) is dso used to study the
geometry of the signal path, and this measurement is used fwacking.

Generally, the strength of the received multipath signals epends on the power
of the transmitter, re ection environment and the signal pocessing capabilities of
the sensor. Depending on the re ection environment, it is ab possible for sensors
to have resolved signals that went through more complex recsions. The multipath
re ection environment and its topological geometric pararmater information must be
known when combining the signals received through each miplath re ection mode
at the sensor. In practical scenarios, precisely knowingehcoordinates of the re ec-
tion points or the surface information is not possible. Thainherently increases the
complexity of the multipath problem.

In this thesis the signals of opportunity, i.e., environmetally available commercial
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broadcasting signals and target re ected multipath signal, are exploited and appro-
priately combined to track the targets. We derive algorithrs for PCL tracking as
well as multipath assisted multitarget tracking using enwionmentally available sig-
nals. These commercial multi-transmitter environment is @nsidered as a multistatic

radar environment.

1.1.2 Passive Coherent Location Tracking

Passive Coherent Location (PCL), which is a special case détatic radar system, is
an emerging (or a re-emerging) technology in air defense ®ms (1) (2). In a PCL
system, existing commercial signals (e.g., FM broadcast @iV telecast signals)
are used as illuminators of opportunity to track airborne tagets. The locations
and transmission frequencies of commercial transmitterseamostly known and the
receiver is designed by the user to match. Some of the signiatsn those transmitters
of opportunity re ect o airborne targets in the vicinity an d the re ected signals are
also received by the receiver. Thus, bistatic measuremensse obtained from the
direct and target-re ected signals that are originated by he commercial transmitters.
A typical PCL system environment is described in Figure 3.Jwhich shows a real
world PCL environment. There will be other unwanted signalsuch as direct signal
from other transmitters and re ections from ground, buildngs, trees, cloud and other
moving or stationary objects. The dominant source of inteefrence in the surveillance
channel is caused by the direct in-band signals from di erértransmitters in the
region. Multipath signals received from multiple directios are another sources of
interference at the PCL radar. To e ciently remove the strong clutter signals and

interference, they described an adaptive Iter algorithm 2) (3) (4).
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The ideal situation is that the reference signal will have dy the transmitted sig-
nal. In practice, the reference signal also contains somerdgat returns, multipath
and clutter from surrounding objects such as the ground motsins, buildings and
trees. These non-direct components are interference andmifast as increased clutter
in the signal processor output. These clutter returns havene common property of
zero Doppler e ect (2) (4) (5) (6). This will create problemsin direction of arrival
estimation. Passive coherent detection of weak moving tagts by clutter cancela-
tion algorithm in PCL was provided in (3). Adaptive removal d strong echoes from
the received signal increases PCL radar performance (7). dlperformance predic-
tion of PCL system was discussed in (10). The implications dfansmitter wave-
form and bistatic geometry on target detection, location ath imaging are discussed
in (9) (10) (11). In PCL, Doppler shift between direct signaland target echo result in
decrease output of highest peak value with some occurrenddatse peaks. A Doppler
compensation method for such PCL systems was proposed (12n enhanced accu-
rate multiple target detection in PCL radar systems based omV and radio ambiguity
function processing is presented (13). The echo signal frahe transmitters of oppor-
tunity re ected from the target is received by the PCL radar neasurement antenna.
A classical single-target PCL scenario is presented in Figul.1.

A PCL system has a number of advantages over conventional nustatic or
bistatic radar systems. The monostatic or bistatic activeadars quickly become com-
bat targets themselves due to their energy emission, whichrcbe used by the enemy
target to estimate the radar's transmitter location. Howeer, in PCL systems, there
is almost no risk of being detected as the transmission soascare already out there

in the environment for their intended purposes. ThereforePCL systems increase
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Figure 1.1: Bistatic radar PCL environment.

resilience to electronic countermeasures. Since commarsignals are freely available
almost everywhere, PCL systems enjoy certain advantageschuas wide coverage, low
cost of operation and maintenance, and operation without agquency clearance. The
PCL system can also be used to Il blind zones of radar in an ewomic and e ective
manner.

The main disadvantage of the PCL system is that the receiverods not have
control of the transmitters. Hence the transmitter locatim, power or waveform can-
not be changed as desired. It is common to have multiple tramstters (e.g., radio
broadcasting stations or relay stations) that operate in th same frequency inside the
coverage region of a receiver.

This thesis analyzes the feasibility of using PCL systemsrftracking multiple air-
borne targets. High bearing errors, low probability of detgion and high false alarms

rate will increase the complexity of tracking algorithm. D to the nonlinearity in
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the measurement model, these errors will highly degrade thracking/ Itering perfor-
mance. In this thesis, Converted Measurement Kalman FiltefCMKF), Unscented
Kalman Filter (UKF) and particle Iter based Probability Hy pothesis Density (PHD)
Iters are implemented to track the targets using nonlineaiPCL radar measurements.
Performances of above Iters are compared on simulated datad real data collected
by TNO (NATO C3 Agency (NC3A)).

The major contributions of this section in this thesis are implementation and
comparison of nonlinear lters for tracking with PCL measuements and removing

the bias in direction of arrival measurements.

1.1.3 Multipath Assisted Multitarget Tracking

With a single-measurement per target assumption, when rdgable multipath detec-
tions of a single target are present in the measurements, eentional tracking algo-
rithms such as the Kalman Iter with probabilistic data asscciation (PDA) mostly
produce multiple tracks for a single target. In this case, flormation conveyed by
multipath detections of the same target may be wasted by tréimg some of them as
clutter. The tracking algorithms may also combine several aasurements belonging
to di erent propagation modes. But combining the measuremss becomes invalid
unless proper accounts are taken for each such mode.

In order to move to a framework that supports the fusion of mtipath measure-
ments, it is necessary to relate the measurements from di@nt propagation modes to
a common state (14) (15) (16) (17) (18). To focus on trackingnimultipath detection
scenarios, we assume that the measurement models for vasiquropagation modes

are known from analysis of re ection geometry. Various pramation models due to
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multipath re ections were studied in the literature in the usage of over-the-horizon
radar (OTHR) systems. Tracking systems for OTHR (19) have ted on Kalman
lters with the PDA (20) to track targets in slant or radar coordinates. This ap-
proach has the advantage of not requiring information abouhe multipath re ection
point or surface information and propagation modes. Howewneproblem arises when
mapping of slant coordinates to the ground coordinates whethe tracking is per-
formed in ground coordinates. The coordinate registratioprocedure facilitates this
mapping separately from the tracking (21). A most common pftidem in OTHR is
the phenomenon of multipath propagation whereby radar sigis scattered from the
same target arrive at the receiver via di erent propagatiorpaths.

A multipath probabilistic data association (MPDA) was descibed for initiation
and tracking in OTHR is described in (22). MPDA is capable ofxploiting multipath
target signatures arising from discrete propagation modebkat are resolvable by the
radar. In (22), Pulford and Evans used the multipath target gynatures in azimuth,
slant range, and Doppler in a non-linear measurement moderftarget tracking.

In (23), a multipath Viterbi data association algorithm (MV DA) for OTHR was
described. This proposed MVDA algorithm solves the problemf multiple propaga-
tion modes caused by multipath through modeling target mowveents in ground coor-
dinates and implementing data association in radar coordites (23). This MVDA
algorithm extends Viterbi data association (VDA) from assoiation between measure-
ment and track to association among measurement, propagati mode and track.

In (24), Friedlander showed that the depth and range of an urewater source

can be estimated from measurements of propagation delay drences along di erent
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propagation paths. The accuracy of depth and range estimati by using the Cramer-
Rao lower bound was studied. The formulas derived were useddonjunction with a
propagation model to compute the bounds for an inhomogeneopropagation medium
(nonconstant velocity pro le).

In (25), airborne acoustic source signals emitted by dire@nd ground-re ected
paths are used to measure the multipath delay and provide anstantaneous estimate
of the elevation angle of the airborne target. Lo et al. formated two methods to
estimate the speed and altitude of the aircraft. Both methosl require the estimation
of the multipath delay as a function of time (25). In (18), Boger proposed a
pattern classi cation approach for associating multipathtracks caused by di erent
ionospheric layers. Neural networks and statistical methits were applied to combine
track a nities and associate pairs of tracks (18).

In (26), multi-mode fusion tracking of OTHR based on an auctin algorithm
(A-MFT) was proposed, which e ectively solves the problem fomulti-mode mea-
surements. In (17), Blanc-Benon and Jau ret showed that taget motion analysis
(TMA) o ers two tactical advantages over the classical beangs-only TMA. There
is no requirement for any ownship maneuver and TMA can obtaithis with good
performance in terms of estimation error achieved in a shent time (17). Utilization
of multipath re ections is sometimes extremely helpful inmproving the visibility, as
it is more dicult to deploy a sensor in an enemy's territory than it is to receive
multipath re ections from a surface in an enemy's territory

In this thesis, an algorithm was proposed for initiating andracking multiple tar-

gets using multiple transmitters and receivers. This algghm is capable of exploiting
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multipath target returns from distinct and unknown propagéaion modes. When mul-
tipath returns are not utilized appropriately within the tr acker, (e.g., discarded as
clutter or incorporated with incorrect propagation mode asumption) the potential
information in the multipath returns is lost. In the initial case, it is considered that
the multipath re ection points are known to the receiver. Inmore practical scenarios,
it is more appropriate to assume that the locations of re eddbn points are not exactly
known. In this thesis, the proposed algorithm will track thetargets when there are
uncertainties in the multipath re ection surface parametes.

The major contributions of this section in this thesis are irplementation of a
multiframe assignment algorithm and tracking with resolvd multipath measurements
for di erence scenarios such as when the re ection point infmation is completely
available, and when there are uncertainties in re ection stace information. This
modi ed multiframe data association algorithms, i.e., muipath S-D or MSD, will be
used for resolving the multipath re ection mode and target asignment uncertainty,

and we compare the performance using PCRLB.

1.2 Organization of the Thesis

This thesis is structured as follows: Chapter 2 describesdlgeneral mutisensor multi-
target tracking problem, and monostatic, bistatic and mulistatic radar environment.
Chapter 3 explains the multitarget tracking with PCL and the bias removal and sen-
sor calibration in passive radar system. Chapter 4 providedgorithms for multipath
assisted multitarget tracking with completely known re e¢or locations. Chapter 5
details the algorithms for multipath assisted multitargettracking when uncertainty

in re ector locations. This chapter also describes the pafmance evaluation using
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PCRLB. Chapter 6 concludes the thesis with future directios.
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Chapter 2

Multitarget Tracking and

Multistatic Sensors

2.1 Target Tracking

Identifying the most likely value of a quantity of interest fom its incomplete, noise
corrupted, inaccurate and uncertain measurements is callestimation. Target track-
ing is the process of performing continuous estimation of ¢hstate, such as position
and velocity, of a moving object over time. This is achievedybrepeated prediction
of the state of the moving object at a regular interval. Predition is the process of
estimating the future state by using the current measuremés, Measurements are
taking at a regular interval and used for continuous predicbn of the future state so
that the objects can be tracked continuously.

Filtering is the estimation of the current state of a dynamicsystem from noise
corrupted measurements. Such estimates are produced by tinecking systems with

some level of accuracy. They also produce the measure of sacburacies as part of

13



Ph.D. Thesis - Maheswaran Subramaniam McMaster - Electrit&ngineering

Electromagnetic /

acoustic energy Signals Measurements

. Target State Estimates
Surveillance

Environment

1 Signal 1 Information Processor
Processor (tracker and data associator)

Sensors

H

Noise

Estimate uncertainties

Figure 2.1: A typical tracking system.

the estimates (27) (28).

A typical tracking system is shown in Figure 2.1. The noise capted electro mag-
netic signal in the environment is received by the sensorsait is processed by going
through signal processing procedures to obtain the inforrhan or measurements.
These measurements are then sent to the information processwhich includes the
data association and tracking algorithms, to obtain the taget state estimates and its

uncertainties. The data association and tracking procedaris describe below.

2.1.1 Surveillance System

A sophisticated surveillance system capable of detectingétracking a large number
of targets using various measurements received from di eresensors. With high
sensitive sensors, low SNR requirements and increased algorocessing capabilities,
numerous and more complex measurement data have become laide for tracking
Iters. Advanced information processing Iters help build sophisticated surveillance
systems, which handle additional uncertainties, inaccucges, clutter, false alarms and
counter measures (16) (27).

The probability of detection Pp and probability of false alarmsPgy play an im-

portant roles and add complexities to the tracking in a sunilance environment.
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In ideal sensors:

Pb = 1 (2.1)
P = O (22)
In realistic sensors:
Pb < 1 (2.3)
Pa > O (2.4)

2.1.2 State and Measurement Models

There are at least two models required for target tracking @: a system or a state
model and a measurement model. A state model describes theletion of the state
with time, whereas a measurement model relates the noisy nse@ements to the state.
These models can be either liner or non-linear.

A linear state model can be written as:

Xk+1 = Fk Xk + « (25)

A linear measurement model can be written as:

Zx = Hk Xk+ !k (26)
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A non-linear state model can be written as:

Xk+1 = fk(Xk)+ K (27)

A non-linear measurement model can be written as:

Z = he(xe) + Tk (2.8)

Here  denotes the process noise arld. denotes the measurement noise at mea-
surement time k. We assume that ¢ is Gaussian distributed with zero mean and
covariance . ! is Gaussian distributed with zero mean and covariance,. Fy
and H, denote linear state and measurement models and are known megs,f, and
hy are non-linear functions,x, denotes the state of the moving target, andy is the

received measurement vector.

2.1.3 Bayesian Filtering Approach

In Itering theory, the Bayesian approach is used to nd the posterior probability
distribution of the state given all the received measuremé&nat a time. The posterior
distribution provides the mean and covariance of the statetaeach time step. All
the observations or the measurements received up to the cent time are used to
provide the state estimate and therefore this provides a cqitete solution (29).
This probability density function (pdf) is repeatedly predcted, which details the

target motion. This pdf is updated when a new measurement obeervation becomes
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available. Hence, an estimate is required as the new measuseats arrives, and this
processes is called Itering (30). As these measurementgieg, they are processed
sequentially rather than as a set of parallel or batch procsisg. Therefore, neither
the need for storing the previous time step measurements observations nor the
need to reprocess the existing measurement exist. This seqgtial process is done
essentially with two important step, i.e., prediction and gpdate.

As each new measurement arrives, an estimate is predicteddanpdated recur-
sively for each time step. The state model is used to predich¢ state pdf forward in
prediction for each time step to the next successive time gteand the measurement
model is used to calculate the posterior distribution accding to Bayes' rule.

Let be the probability distribution function be p(xxjZ) at the measurement time

tion to obtain the prior probability distribution function of the state at measurement
time stepk + 1 and is given by

Z
P(Xk+1JZk) = P(Xk+1 JXK)P(XK]Zk ) Xk (2.9)

The latest measurement is used in the update stage to modifyxé prediction
probability distribution function. At the next measuremert time step k + 1, a new

measurementz,.; becomes available, and with this the prior will be updated @i

Bayes' rule.

P(Zk+1 ] Xk+1 ) P(Xk+1 ] Zk)
P(Zk+1]Zk)

p(Xk+1jZk+1) = (2.10)

The measurement model (2.8) is used to de ne the above liketiod function
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p(zk+1jxk+1 )

Kalman Filter

In the Kalman lter, it is assumed that the state and measurerent models are linear.
All the process noise and the initial state error are assumdd be Gaussian. With
these assumptions it can be proved thap(xy+1jZk+1) IS Gaussian whenp(xyjZy) is
Gaussian. Hencep(xxjZx) can be expressed by mean and covariance (28).

The Kalman lIter algorithm is expressed by the following iteative relationship (28)

when the state model and measurement models are given by (2ahid (2.6), respec-

tively.

P(XkjZk) = N (Xk; Rgjk; Pijk) (2.11)

P(Xk+1]Zk) = N (Xks1; Resajis Prs1ji) (2.12)

P(Xk+1]Zk+1) = N (X1 Risjkst s Pestjier) (2.13)

Also

Rirtjk = Frer Rk (2.14)

Peiijk = ke + Fra ijkF|2+1 (2.15)

Rirtjkrr = Kiwrjk T Kien (Zker Hira Rraji) (2.16)

Prs1jker = Prezjk Kier Hirn Pieaji (2.17)
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and

Sii1 = Hk+1Pk+1ij|2+1+ k+1 (2.18)

Kist = PejcHier Sch (2.19)

Here, N (x; ®; P) is a Gaussian densityx/is the mean, argumentx, and P is the
covariance. Also the standard notation [° denotes the transpose.

With the above assumptions, this is the optimal solution to atracking prob-
lem (28). That is, in a linear Gaussian environment, there iao algorithm that can
do better than a Kalman Iter. However, in more practical situations those assump-
tions are not preserved. Therefore, in typical scenariogjrther approximations and

additional assumptions are made.

Extended Kalman Filter (EKF)

The weakness of the Kalman Filter is that most systems in enggering are non-linear
and it is not optimal for non-linear systems. The Kalman Filer was adapted for
non-linear systems by approximating the model by a Taylor sies expansions. An
approximate linearization of the state and measurement mets given by (2.7) and
(2.8) respectively, may be a su cient representation of thesystem. Approximate

linearizations of the above state and measurement modelsear

o (x)

dx  x=x 1jk 1

Fe = (2.20)
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g, = 9

2.21
dX X:Iijk 1 ( )

The probability density function p(xxjZx) is approximated by a Gaussian. Then
all the equations of the Kalman Iter can be used with this appoximation and the
linearized functions (28). This is the EKF, which is generdl not an optimal solution
unless state and measurement models are linear.

Also if the probability density function is non-Gaussian, hen Gaussian represen-
tation will not be su cient. Particle Iters outperformed i n performance comparison

with EKF in such cases.

Particle Filtering

The probability density function p(xxjZx) of the target state x, at time step k can
be described bym number of particles which are sets of random sampléx(ki) =
1;2;:::;mg and corresponding weights ofwl((i) 1 =1;2;:::;mg. As the new mea-
surement or observations arrive, the update of these parkgs and the corresponding
weights are performed by the Importance Sampling principl€32) (33) (34) (35) (36).

Let the Importance Density be the priorp(xxjxx 1). The Sampling Importance
Resampling (SIR) procedure is used to generate equally watigd particles to approx-
imate p(XxjZk).

P(XkjZk) (X  x®) (2.22)

where (:) is the Dirac delta function.
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Sampling Importance Resampling procedure

Prediction

{ Each of the particlesx”’ , generates (", as per the known distribution of
the transition noise.

()

{ The state propagation equation (2.7) can be used to obtain ;ausrnplexkjk 1

from the prior distribution p(XyxjXk 1).
Weighting

{ Observation information can be used to nd the importance wghts.

{ The following formula is used to nd importance Weightwf(i) for each par-

ticle.

Wl(<i) = p(zij(kij)k 1) (2.23)
Resampling

{ The patrticles with low weights are eliminated and the parties with high
weights are multiplied and are regenerated with equal weitgh

o .,

{ The m number of new particles are sampled with substitution frorﬁxkjk 1 Xkik 1

11Xy g so that

{ The sampling particlei's probability is proportional to wj

{ Hence, the newfx”; x®:::::x{™g will be in equal weights (£m).

The posterior distribution's mean is used to nd an estimatery.
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kk = E[ijZk] (224)
ixn X (2.25)
m .

Unlike the Kalman lIter, Particle Filtering it is not restri cted by the assumptions

of linearity and Gaussian noise.

2.2 Multitarget Tracking and Data Association

The plot of the data that has been associated with the same @t is an estimated
state trajectory and is known as target track. In multitarge tracking, the sensor has
measurements from di erent targets. Also there will be migsl detections of targets.
The measurements also have random false alarms, clutter,cdgs, countermeasures,
interfering targets and more.

The process that identi es which measurement belongs to wdfi target is called
data association (16) (27) (37) (38) (39). Solutions to di eent data association

problems can be found in the literature (20) (40) (41) (42) @) (44).

Figure 2.2 shows the fundamental elements of a typical mulirget tracking sys-
tem. The sensor measurements are obtained from the signabpessing unit, which
converts the electro magnetic signals to measurement vatueThese measurements

are the input for the system of multitarget tracking. The stde trajectories are the
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Sensor .
Data Processing and ~| Observation-to-Track Track Maintenance
M t — . [ ) (Initiation, Confirmation
easuremen Association and Deletion)
Processing

Gating Filtering and
Computation Prediction

Figure 2.2: A system of multitarget tracking and data assoation.

representation of moving targets. The continuous measuremt input is used for
maintaining the track. Tracks are initialized and maintaired by conrming, and
inappropriate tracks are deleted (16) (27).

Unassigned measurements to any established tracks caniei¢ new tracks. When
these newly initiated tracks meet the con rmation conditian, they are con rmed. The
tracks that are not updated within an interval become degragdd and then deleted.

A validation region is de ned for existing track and any measrements away from
this validation region is ignored as inappropriate measuneents for the existing track.
A validation gate is set up around the predicted measuremen¥When the validation
region has more than one measurement, a data associatiorht@ique is used to nd the
assignment. Di erent data association techniques will imlement di erent methods to
update validated measurements to the track. However all datassociation techniques
use gates to reduce the expensive computational cost. Thehettrack is updated
with the newly associated measurement. The tracks will be @dicted for the next
set of measurements and gates are used on these predictedtpos and the track

maintenance cycle is iterated.
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When the actual measurement conditioned on the past is Gauss or normally

distributed, and if its pdf is given by

P(Zk+1]Zk) = N [Zks1 s Acraji; Sk ] (2.26)

the actual measurement will be under the following region

Vk+1; )=fz:[z 2ainShlz Aax] 9 (2.27)

and the gate threshold calculates the probability. Here, the predicted measure-
ment at time K+ 1 is 2,1 x. The measurement prediction covarianc8y., is given by
(2.18). The region (2.27) is known as the validation, ass@tion region or the gate.
In a given time interval, a range gate is found and the deteains or the measurements
within the gate is associated with the target.

Typically measurements will have higher dimension becausea time scan, there
will di erent measurements such as range, azimuth or beamy elevation, range rate
and time di erence of arrival. In such cases a multidimensi@l gate is found so that
the entire measurements space is not searched to track thedat of interest. In a typ-
ical tracking problem, the validation regions contain setef validated measurements.
A measurement in the gate is a valid association candidate. gate has correct mea-
surement if target is detected and the measurement fell in ¢hvalidation gate. The

gate may also have unwanted measurements from clutter or $atalarms.

Well-separated targets

Figure 2.3 shows validation regions of well-separated taty. Assume that at most

one measurement is target generated in the validation regian Figure 2.3. When
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Figure 2.3: Well-separated targets' association gate. expected measurement,
received measurement.

there is more than one association candidate in the validat gate, the problem arises
in nding which measurement was target originated. In the di&ction or measurement
space, if the targets are well separated, the validation regns will not overlap as shown
in Figure 2.3. In this case the problem is that of a single tagj tracking.

The problem of tracking well-separated multiple targets irclutter considers the
situation where there are possibly several measurementsthe validation region of
each target.

Assume that the targets are detected and measurements hawldn in the vali-
dation region, then the validated measurements consist oftal measurements from
the targets as well as false alarms in the case of tracking Weéparated multitarget
in clutter. It is assumed that the spatial distribution of false alarms is uniform within

the surveillance region and are independent across time. din there are di erent
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approaches for associating these validated measurementsthe appropriate target
tracks (16).

The Nearest Neighbor (NN) technique chooses the measurermeearest to the
predicted measurement, whereas the Strongest Neighbor (Sthooses the strongest
measurement in the validation region. Probabilistic Data Asociation (PDA) asso-
ciates all the measurements that are in the validation regioto the targets proba-
bilistically to the target of interest (20). PDA is a Bayesiax approach (45) (46) and
the standard method used for data association that is used thiKalman Iter or the
extended Kalman Iter. The NN algorithm requires comparatvely less computation

and therefore widely used with the particle ltering algorthms.

Closely-spaced targets

Validation regions of two closely spaced targets and the maaements inside those
validation region are shown in Figure 2.4. In the detectionromeasurement space,
if the targets are closely spaced, the validation regions Woverlap as shown in Fig-
ure 2.4. In this case the measurement contains detectioniin other targets in

addition to the clutter and false alarms. In this case, the da association process
resolves the measurement origin uncertainty.

The problem of tracking closely spaced multiple targets inlatter considers the
situation where there are possibly several measurementsthe validation region of
each target, and a measurement could originate from any onétbe target or clutter.

It is assumed that one measurement originates from at most emarget and one target
can generate at most one measurement. Itis also assumed ttie spatial distribution

of false alarms is uniform within the surveillance region a@his independent across
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Figure 2.4:. Two closely spaced targets and the measurememsassociation gate.
expected measurement, received measurement.
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time.

Joint Probabilistic Data Association (JPDA) is a target oriented technique (37) (41).
This is an extended form of the PDA technique. JPDA can only based for the tracks
that are already established. JPDA and its implementationfave been widely studied
in the literature (47) (48) (49) (50) (51).

Multiple Hypothesis Tracking (MHT) is another data associéion technique for
closely spaced multiple targets in clutter. Probability ofa measurement sequence is
originated from an established target or a new target is calated for MHT technique
and it is a measurement oriented technique. Track initiatio and maintenance may
be performed by MHT. MHT is not practically feasible when cosidering the large
measurement steps. Therefore, an S-D (S- Dimensional) ggsnent technique is used.
This S-D assignment algorithm is a suboptimal version of MH&Nd the mostly used

data association technique.

2.3 Monostatic, Bistatic and Multistatic Radar

Tracking problems have been widely studied, and currentlyhe radar developments
and implementations become a matured discipline (52). Taeg tracking is widely
used in many applications such as ballistic missile defenssilitary surveillance, air
tra c control of military and civilian aviation (46) (53), a nd highway vehicle surveil-
lance (54) (55). Radar (RAdio Detection And Ranging) transrits electromagnetic
pulses, which bounce o any objects or target in their path. Te re ected signal's
energy is scattered in all directions from the target or ob#. A sensor receives such
target return signals and processes them to nd the measuremts such as range,

azimuth and Doppler.
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Figure 2.5: Monostatic radar.

The transmitter and the sensor are collocated in a typical @ar system, which
is also known as monostatic radar as shown in Figure 2.5. Whémese transmitter
and sensor are physically separated, then such radar systasnknown as bistatic
radar as shown in Figure 2.6. Additional advanced referer&@bout bistatic radars
can be found at (71) (72) (73) (74). When the physically aparsensor receives the
target re ected signals, which were originally sent by moréhan one transmitters this
con guration is known as multistatic radar system as shownni Figure 2.7 (75).

In a bistatic radar con guration, instead of using the radartransmitter, if a system
uses transmitters of opportunity in the environment such agommercial broadcast

signals (FM or TV signals), then it is known as passive cohearelocation (PCL)
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Figure 2.6: Bistatic radar.

system. Therefore, the primary di erence between bistati@and monostatic radar is
that of geometry. A bistatic radar consisting of a PCL receier and a transmitter of

opportunity separated by a distancel is shown in Figure 3.2.

2.4 Evolution of PCL Radar

In the evolution of bistatic radars, di erent methods of transmissions were exploited.
This exploration leads to the research of exploiting the trasmitters of opportunity
in the environment, and that leads to the research of PCL rada and tracking. PCL

radar con guration is a bistatic or multistatic radar con g uration. Environmentally
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Figure 2.7: Multistatic radar.

available source of illuminations are used as transmittete develop PCL radar. High
de nition television transmission signals, cellular phoa base station signals, FM radio
signals, analog television signals, digital audio broadsing signals and digital video

broadcasting signals are some of the examples.

The satellite signals have the advantage of expanded covgea however, the re-
ceived power levels at the ground receivers are very less. eTgatellite transmissions
may not be frequent enough to track fast moving targets. Hower, tracking targets

with satellite radio systems was exploited.

A PCL radar system detects the target re ected signals fromhe transmitter of
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Figure 2.8: Signal processing scheme of PCL radar.

opportunity by low noise receivers. Due to the direct signahterference from the
transmitters and the other signals from the in band transmikers, PCL systems are

highly limited by noise.

Digitized and sampled signals are given as output from PCL ceiver systems.
A typical PCL radar signal processing schedule is given in dglire 2.8. Generally
the PCL receivers have higher number of antenna elements.a8tlard beamforming
technique is generally used to calculate the DOA measurenten Pair of antenna
elements and phase di erence of arrival of the echoes can bged to generate the

DOA measurements.

Based on what types of transmitters or signals are used for@hPCL tracking,
some transmitter speci ¢ conditioning are done before thera@ss-correlation process-
ing. Generally the signal conditioning is performed usingosne channel equalizers
and band-pass lIters. In some cases, unwanted signal patter are removed from the

transmitter signals or complete restructuring of the tranmitter signals are performed.
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Due to the higher interference by the direct signals receidefrom the transmitters,

the signal to interference ratio becomes the limiting factoof PCL systems.

Adaptive Iters are used to remove the direct signals recedd from the transmit-
ters. Then the signals are sent to the cross-correlation pressing. An appropriate
adaptive threshold is given and target detection is perforad. Generally, a cell aver-
aged constant false alarm rate algorithm is used for the det#gon process. Then this

information is sent to the tracker for processing the targetrack.

PCL systems' transmitters are generally non-cooperative.e., the PCL receiver
does not have control over the transmitters. The nature of # environmentally avail-
able signals dier based on operating frequency range, typaf transmission such
as voice or video, duration of the transmission such as daymte, night time, or
24x7 broadcast. Therefore, it is more appropriate to call #se transmitters as the
transmitters of opportunity. A commercially available mutistatic PCL radar system
developed by Lockheed Martin is Silent Sentry (76). This system uses FM radio

broadcast transmitters.

Advantages of PCL Systems

The transmitters are already out there in the environment. Therefore, there is
no need to build expensive transmitters or towers. The sigisaare ready to be

used in the environment.

The passive receivers cannot be located by any methods by theemies.
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Since PCL systems use the environmentally available transters of opportu-

nity, they enable covert tracking.

Due to the passive nature, jamming the PCL radar operating éguency is dif-

cult.

Able to cover the vast amount of territory without massively deploying the

transmitters. Therefore, cost per surveillance region isewy low.
Fast deployment with a very low cost.

PCL radar can be even operated using enemy's transmittergesitly. Therefore,

snooping form the enemy's territory is possible with PCL.

Disadvantages of PCL Systems

Signals are not designed for the radar but for a di erent purpses. Therefore,

the signals may not be very suitable for radar processing.

The receiver design is more complex as it needs to abide foetavailable trans-

mitted waveforms characteristics.

Lack of control over the transmitters and therefore no contil over the waveform

design, frequency band, transmit power and antenna orierttan.

Low signal to noise ratio at PCL receivers a ects the accurgcof tracking.
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No control over the other inband signal frequencies and thefiore the interference
will be high. It is di cult to remove such frequencies compleely and therefore

the signal to interference ratio will be low.

Challenges in tracking long range targets due to low signab thoise ratio.
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Chapter 3

Multitarget Passive Coherent
Location Tracking using
Transmitters of Opportunity and
Bias Removal in Direction of

Arrival

PCL systems, which use existing commercial signals (e.g.MFbroadcast, digital
TV) as the illuminators of opportunity, is an emerging techmmlogy in air defence
systems. PCL systems have many advantages such as low costwect operation
and low vulnerability to electronic counter measures ovemoaventional radar systems.
However, the limitations of PCL include lack of control overilluminators, limited

observability and poor detection due to low Signal-to-NoesRatio (SNR). This leads
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to high clutter with low probability of detection of target. In this chapter, multiple
target tracking algorithms for PCL systems are derived to hadle low probability of
detection and high nonlinearity in the measurement model @uto high measurement
error. The major contributions of this chapter are the new gorithms for tracking
using PCL systems in high clutter with low probability of deection and false alarm
environment. The feasibility of using transmitters of oppdunity for tracking airborne
targets in such environment is shown on simulated and real t#asets.

A sample multistatic PCL con guration is shown in Figure 3.1 The environment
has multiple transmitters-of-opportunity in the area of inerest, where all the trans-
mitters transmit the same signal at the same frequency. Thisway happen because
of multiple radio station transmitters operating at the sane frequency within the

surveillance region.
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Figure 3.1: Multistatic PCL system.
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Note that the bistatic range measurements can be calculatelom the time-
di erence-of-arrival.

While there have been continuous improvements in radar tegblogy, the develop-
ment of anti-radiation missiles (ARM) has added new challeges to trackers that rely
on radar returns. In bistatic radar systems, the transmitte and receiver pairs are
widely separated, while they are co-located in monostatiadars (77) (83) (84). Since
the receiver locations are passive and cannot be identi eq/ the target, bistatic radars
are generally less susceptible to ARM. PCL is a speci ¢ casklostatic or multistatic
radar surveillance systems.

In general, a simple PCL system consists of one illuminatoif opportunity (the
transmitter) and a PCL receiver. This bistatic con guration of PCL is illustrated
in Figure 1.1. The direct signals and the echoes from the tagthat originate from
the commercial transmitters like TV and radio stations are eceived by the PCL
receiver. In most cases, the locations of the commercial trsmitters are known
accurately. In this chapter, it is assumed that the exact trasmitter locations are
known. Hence, signal origination time can be calculated fmo the direct signal and
distance between the receiver and the transmitter. Then,gmal origination time can
be used to calculate the bistatic measurement from the reeged signals.

In the literature, di erent aspects of PCL systems are analyed. In (5), a signal
processing scheme that allows airborne targets to be detedtand tracked using only
the vision or sound carrier of the television broadcast wasrgsented. It used the
Doppler shift and the bearing of target echoes to estimate ¢htarget's track. The
Doppler-bearing information from the television video sigals was used to track the

aircraft ranges up to 260 km. In (56), an overall discussionnoPCL systems with
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simulated data sets was given. In (2), it was shown that an FMadio based bistatic

radar system can detect and track targets at ranges in excess150 km.

3.1 Measurement Model in PCL

The primary di erence between bistatic and monostatic radais that of geometry. A
bistatic radar consisting of a PCL receiver and a transmitteof opportunity separated

by a distanceL is shown in Figure 3.2.

Transmitter L Receiver

Figure 3.2: Bistatic radar geometry.

In this chapter, it is assumed that the PCL system's measureamts are bistatic
rangery, bistatic rage rater, and bearing (from north). The Measurement equations
are given by

1

0 0
lp r + Rt
%ué % Ry + Ry §+! (3.1)

X Xr
atan vy
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where
L= P 0P W (3.2)
R = DX x)TH(y W) (3.3)
R = X XP(Y W (3.4)
NGRS NN 5
_ (x Rtxt)x_ N (thyt)y_ (3.6)

x and y are the Cartesian coordinates of the target, and and y are velocities of
the targets in the X and Y coordinate directions, respectivg. Similarly, (X, y;) and
(Xr, yr) are the positions of transmitter and receiver, respectily Also, atan() is
the four-quadrant arctangent, and! is the measurement noise, which is zero-mean
Gaussian random variable with covariance = diag[ % %; ?]. False alarms are

assumed to be uniformly distributed throughout the survelance region.

3.2 Tracking Algorithms for Bistatic PCL Systems

The Kalman lter is the optimal Iter when the target state an d measurement
models are linear and the noise are Gaussian. When nonlinédas are present,
converted measurement Kalman lter, Extended Kalman Filte (EKF), unscented
Kalman lIter, particle Iter or the Probability Hypothesis Density Iter can be
used (34) (57) (58) (59). In this chapter, CMKF, UKF and particle Iter based
PHD lters are analyzed for multitarget tracking using PCL systems. An Interacting

Multiple Model (IMM) estimator with two constant velocity m odels with di erent
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process noises is used to handle the target maneuvers (18))(61).

A PCL system's measurements have measurement origin uncerty due to false
alarms and missed detections. In addition to lItering, mulitarget tracking with low
probability of target detection and high false alarm rate rquires data association and

track maintenance logic in order to initialize and maintainthe tracks.

3.2.1 Track Maintenance

The tracks are classi ed into two categories: 1) Tentativeracks and 2) Con rmed
tracks. Tentative tracks are the ones formed with fewer inidl measurement associa-
tions than required for con rmation tracks within a certain time limit. Upon receiving
more measurements, the tentative tracks are promoted to comed tracks. If an in-
adequate number of measurements are associated with a tenta track, then the

tentative tracks are deleted. Logic based track maintenaerds used as follows (16):
For track initialization: out of the last N;,;; measurement frames

{ if at least Mj,;y measurements are associated together, then form a track

and mark it tentative

{ otherwise, do nothing
For a tentative track: out of the last N measurement frames

{ if at least My measurements are associated to the track, then promote

it as con rmed

{ otherwise, delete the track
For a con rmed track: out of the last N¢ny measurement frames
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{ if at least M measurements are associated to the track, then do nothing

{ otherwise, delete it

In order to get better association results, the measurementre rst associated to
the con rmed tracks. Then, the unassociated measurementseaused to update the
tentative tracks. Finally, the measurements that are not asociated to the con rmed
or tentative tracks are used to initialize new tracks. It is pssible to use track quality
for track con rmation and termination logic (62). We have faund that M-out-of-N

logic performs well for real data.

Track Initialization

Bistatic range and bearing measurements are used to initiz¢ the target positions,
and the related equations are given in Section 3.2.3. The rga rate measurements

are used to initialize the target velocity, is given by (63):

2
- P
X Ar 3.7
AN (A2+ Bz) S+ 2 L ( )
2
= P Br 3.8
l (A2+ BZ) S+ ri L ( )
The corresponding covariance is
0 1
1 2A2 2AB
p=2fp ~ GEIEE WERIER R K (3.9)
(A7vB?) 27 2 1 wery e

where 7 is the variance of prior information about the target speedA = sin( ) +

sin( ) and B =cos( ) +cos( ), with =atan -
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3.2.2 Data Association

Data association makes decisions as to which of the receivegasurements should
be used to update each track. To associate the measuremertsatready established
targets, two dimensional data association based on the aumt algorithm is used for
CMKF and UKF (58). Note that simpler association techniquesuch as the nearest
neighbor association will be su cient in most cases for thearticle Iter, and no data

association is necessary for the PHD lter.

2-D Assignment

The fundamental idea behind 2-D assignment is that the measaments from the scan
list M (k) are matched with the tracks in list T (k 1) by formulating the matching
as a constrained global optimization problem. The optimizéon is carried out to
minimize the \cost" of associating (or not associating) theneasurements to tracks.
To present the 2-D assignment, de ne a binary assignment viable a(k; m; n) such
that
8
2

m-th measurement is assigned to track "(k 1)
ak;m;n) =

1
(3.10)
0 otherwise

The indicesm = 0 and n = 0 correspond to the non-existent (or \dummy")
measurement and track.
The objective of the assignment is to nd the optimal assignent a (k), which
minimizes the global cost of association
M(k) Nk 1)
C (kja(k)) = a(k; m;n) c(k;m;n) (3.11)

m=0 n=0
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subject to
M((K)
akkim;n) = 1; n=1;2:::;N(k 1) (3.12)
m=0
Nk 1)
alk;m;n) = 1; m=1;2:::;M(k) (3.13)
n=0

wherec(k; m; n) is the cost of the assignment(k; m;n), M (k) and N(k 1) are the
cardinalities of the measurement and track sets, respectiy.
The costsc(k; m; n) are the negative of the logarithm of the dimensionless like

hood ratio of the measurement-to-track associations, natge

ck;m;n)=In ( k;m;n) (3.14)
where
8
g Pp["(K]= m> 0, n>0
(kkmin)=_ 1 m>0;, n=0 (3.15)
-E(l Pq) m=0; n>0

where p[ 1 (k)] is the probability density function of the correspondinginnovation
and is the spatial density of the false alarm.
The above 2-D assignment optimization problem is solved ug the auction algo-

rithm (78).
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3.2.3 Converted Measurement Kalman Filter

In this section, the converted measurement Kalman lIter is dscribed for a PCL
system with bistatic range, bearing and bistatic range rateneasurements.

The range sumr can be calculated from bistatic range as:

r-= rptlL (316)

The range of the target from the receiverR,, can be calculated as:

B rz L2
R = 2(r Lcos()) (3.17)

where

= atan L X (3.18)
Yt Yr

From R, and , the measurements can be converted into Cartesian coordiaa as

follows:

X = X+ R;sin() (3.19)

yr + Ry cos() (3.20)

<
I
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The corresponding covariance is (82)

2 = HZ 2+ HZ 2 =H; (3.21)

;= Hi?+HZ?=H] (3.22)

2 = HiHs 7+ HoHs 2 =Hj (3.23)

where

Hiy = sin( )(r?+ L? 2rL cos()) (3.24)

H, = (r? L?(rcos() L(cos()cos() sin()sin( ))) (3.25)

= (r? L?(rcos() Lecos(+ ) (3.26)

Hy = IOé(r L cos( )) (3.27)

Hs = cos( )(r?+ L? 2rL cos()) (3.28)

Hs = (r?2 L2 rsin()+ L(sin( )cos( )+ cos( )sin( ))) (3.29)

= (r?2 L?( rsin()+ Lsin( + )) (3.30)

In the presence of large bearing measurement errors and I@s&nsor-to-target dis-
tances, the above measurement conversion introduces a kaasl a debiasing technique

is required. The unbiased conversion can be obtained by (6&4):

X = X +e 2R sin() (3.31)

y, + € "R, cos() (3.32)

<
I
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Then, the converted measurement equation is given by

0 1
0o 1 0 1
X 1000
X
yc = B0 010 + W (3.33)
y
b 0OA OB
| —{z—} I {HZ }oy
z

wherew;, is the converted measurement noise, which is zero-mean Gsias random

variable with covariance .. The variance of error inr, due to the uncertainties in

and can be approximated as

2 2
»_ @ @y
~= = + = 3.34
= %(xcos() ysin())*+ 2(xcos() ysin())? (3.35)
where
, _ ,cos()? ,sin()? xy €03( ) sin( )
XX r2 W2 2 Pr—z (336)
Then, the covariance of the converted measurement noise isemn by
2 3
i oy 0
¢ = gy 3 1 (3.37)
0 0 72+-~¢
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3.2.4 Kalman Filter

The constant velocity model is used for state dynamics:
x(k+1) = F(k)x(k)+ v(k) (3.38)

where x (k) = [x(k) x(k) y(k) y(k)]°is the target state, F (k) is the state transition
matrix and v(k) is the process noise, which is zero-mean Gaussian randomialale
with covariance Q(k). The measurement equation is given by (3.33). Note that
the algorithm is not restricted to the constant velocity moal. A multiple model
estimation can be used instead to handle maneuvering targe{28).

The Kalman lIter recursions for state estimatex{kjk) and covarianceP (kjk) are

given by
R(k+1jk) = F(K)R(Kjk) (3.39)
P(k+1jk) = Q(k)+ F(k)P(kjk)F (k)° (3.40)
Rk+1jk+1) = R(k+1jk)+ W(k+1)(z(k+1) 2k+1jk)) (3.41)
P(k+1jk+1) = P(k+1jk) W(k+1)S(k+1)W(k+1)° (3.42)
with
Ak +1jk) = H(k+21)R(k+1jk) (3.43)
Skk+1) = H(k+1DPk+1jkH((K+1)%+ (k+1) (3.44)
Wk+1) = PK+1jkH((K+1)S(k+1) * (3.45)
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3.2.5 Unscented Kalman Filter

When the state transition and/or observation models are higly nonlinear, the EKF
may perform poorly. The unscented Kalman Iter does not appximate the nonlinear
functions of state and measurement models as required by tB&F. Instead, the UKF
uses a deterministic sampling technique known as the unsteth transform to pick
a minimal set of sample points called sigma points around thenean. Here, the
propagated mean and covariance are calculated from the trsfiormed samples (65).

The steps of the UKF are described below.

Sigma Point Generation

The state vector ®(k) with mean R(kjk) and covarianceP (kjk) is approximated by

2n + 1 weighted sigma points, wheren is the dimension of the state vector, as

“(kik) = R(kjk); Wo= i) (3.46)

. O —

'(kik) = R(kjk) + (n+ )P (kjk) W= 2(n]-;- ) (3.47)
0 (i) = : P 5 - - 1

(kik) = R(kjk) (n+ )P(kjk) o Wisn = 2+ ) (3.48)

wherew; is the weight associated with tha-th point, is a scaling parameterj =

1;2;::::n, and P (n+ )P(kjk) isthei-th row or column of the matrix square root
|

of (n+ )P(kjk).

Recursion

The predicted target stateX(k + 1jk) and corresponding covarianc® (k + 1jk) are

found as follows:
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(&) The Sigma points are transformed using the process model

'(k+1jk) = f(k; "(kik) (3.49)

(b) The mean of the predicted state is given by

%o
RK+1jK) = w (k+1jK) (3.50)
i=0

(c) The covariance of the predicted state is given by

)gn
P(k+1jk)= Q(k) + wil i(k+1jk) R+ 1K i(K+1jk) R(k+1jk)]°
i=0
(3.51)

The predicted measurement(k +1jk) and the corresponding covarianc&(k +1) are

found as follows:

(a) Sigma points j(k + 1jk) are regenerated using the mear(k + 1jk) and co-
variance P (k + 1jk) in order to incorporate the e ect of Q(k). If Q(k) is zero,
the resulting j(k + 1jk) will be the same as in (3.49). If the process noise is
correlated with the state, then the noise vector must be stéaed with the state

vector ®(kjk) before generating the sigma points (65).
(b) The mean of predicted measuremert(k + 1jk) is calculated as

)@n
pk+1jk) = w' '(k+1jk) (3.52)

i=0
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where

"Ik +1jk) = h(k; '(k +1jk)) (3.53)

(c) The innovation covarianceS(k + 1) and gain W (k + 1) are calculated as

)@n
S(k+1)= ( k+1)+ wil T(k+1jk) 2k + 1jKI T(k+1jk) 2k + 1jK)]°
i=0
(3.54)
Xn , . 0
W(k+1)= wi[ '(k+1jk)  R(k+1jKI "(k+1jk) 2(k+1jk)]'S(k+1) *
i=0
(3.55)

The state ®(k+1jk+1) and the corresponding covarianc® (k+ 1jk + 1) are updated

using (3.41) and (3.42), respectively.

3.2.6 PHD Filter

The PHD is the factorial moment density found in point proces theory (59), and
provides a straightforward method of estimating the numbenpf targets in a region
under surveillance. The PHD Iter automatically handles the non-trivial tasks of both
target number estimation and data fusion (66). In this workthe Sequential Monte
Carlo (SMC) PHD lter is used (67). The SMC approach providesa mechanism to
represent the posterior probability hypothesis density by set of random samples or

particles, which consists of state information with assoaied weights.
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Let the posterior PHD, given all the measuremenZ, ; up to time stepk 1,

n 0,
Dk 1k 1(Xk 1JZ1x 1) be represented by a set of particleswff)l;x(ks>l l. That is,
s=1

1

Dk 1k 1(Xx 1JZ1x 1) = W|(<s)1 (Xk 1 X(ks)l (3.56)

s=1

where () is the Dirac Delta function.

P
In contrast to particle lters, the total weight ;zkllwl((s)l is not equal to one.

Instead, it gives the expected number of targets) , at time step (k  1).

Prediction

GenerateLy ; samples for existing targets and number of particles for new-born

targets. To generate the samples for existing targets, satapx(kﬁ( , from proposal

density q<(jx(ks>l; Zy), fors=1;:::;Lx 1, with associated weights

(s) (s) (9
&k 1(Xgk Dfik 1 (X 10X 4 1)

(s) () .
Ok Xy Xk gk 10 ZK)

(s)

Wik 1= W|(<s)1 (3.57)

where g, 1 is the target survival probability.

To generate the samples for new-born targets, sampd%l)( , from another proposal

density pe(jZk), for s= Ly 1+ 1;:::;Lx 1+ Jx with associated weights
(s)
(s) _ k(ijk 1)
Wk?k 17 (s) (358)

pk(xkjk 1jzk)

where () is the PHD of new born spontaneous targets.
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Update

With the available set of measurementZ at time stepk, the updated particle weights

can be calculated by

2 z (s) iy (8) 3
< pa(Xy Dfkik(ZLixey 1)
(s) _ 4 (s) kjk 1 J kI kjk 1 5 (s)
W = 1 Xy + . . . 3.59
k ( pd( kjk 1)) - ka(ZL)-'- k(zi() kjik 1 ( )
where
_ LkX1+Jk _
«(Z) = PaxXior Fkik(ZiiX{Gx 1)Wer 4 (3.60)
s=1

The single-target/single-sensor measurement likelihoddnction f () in (3.59) and
(3.60) are written as conditioned on the model, considering general case in which

the measurement model can also be mode dependent.

Resample

To perform resampling, since the weights are not normalized unity in PHD lters,

the expected number of targets is calculated by summing up e¢htotal weights, i.e.,

Ly Jk
Ax = w, (3.61)
s=1
n oL,
Then the updated particle set is resampled to get w¥=n*;x(® such that the
s=1

total weight after resampling remainsny . Now, the discrete approximation of the

updated posterior PHD at time stepk is given by

; X (s) (s)
Djk(XkjZ1:k) = W Xk X)) (3.62)

s=1
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Birth Model

Since the surveillance region is very large, if the partidefor new targets are dis-
tributed uniformly throughout the surveillance region, then a large number of parti-
cles will be necessary to initialize new targets. Therefqrthe particles are generated
by converting the measurement at the last time step to the sta space, which are in
turn predicted to the current time step. For each measuremerthat is unassociated
at the last time step, Jx particles are generated by adding noises to the converted
measurement state. The association of the measurement isgetenined by nding
the sum of the weights of particles updated by that measureme For the associ-
ated measurement, (1 A.)Jx particles are generated for new target as described
above andA_ Jy particles are generated using the particles of the target wwhich the

measurement is associated, wherg. is the association con dence.

Clustering and Cluster-to-Track Association

Track labeling with k-mean clustering is used for track asstation (68). Each particle
is labeled with a track number. After updating the particles particles are clustered
using the k-mean clustering algorithm. After clustering, lhe labels of the particles in
each cluster are set to the dominating track ID in its cluster If the new target, which
is labeled zero, is dominating, then a new ID is assigned toahtarget, and labels
are set to the assigned target ID.

When there are false alarms, the clusters may have some peles corresponding
to false tracks, and this will a ect the target estimate, whth is found by taking the
mean of the particles. In order to avoid such a problem, rstlaster the particles

into smallest integer, which is greater tham, groups. Then for each cluster nd
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the mean and covariance, and remove the particles that are tside a gate that was

formed using the mean and covariance.

3.3 Integrated Bias Removal and Sensor Calibra-
tion in Passive Radar Systems

In a passive radar system, a variety of measurements can beedigo estimate target
states such as DOA or angle of arrival (AOA), time di erence barrival (TDOA)
or Doppler shift. Noise and the precision of DOA estimation r@ main issues in
a PCL system and methods such as conventional beam formingRE) algorithm,
algebraic constant modulus algorithm (ACMA) are widely anbyzed in literature to
address them. In practical systems, although it is necesgatio reduce the directional
ambiguities, the placement of receivers closed to each athesults in larger bias in the
estimation of DOA of signals, especially when the targets me o bore-sight. This
phenomenon leads to degradation in the performance of theatking algorithm. In
this chapter, we present a method for removing the bias in DOANd calibrating the
senor simultaneously to alleviate the aforementioned prtgan. The simulation results
are presented to show the e ectiveness of the proposed algom with an example of
tracking airborne targets.

Multisensor systems use data fusion of multiple sensors trin accurate estimate
of a target track. To fuse multiple sensor data, each sensoatd must be expressed
in a common reference frame. The problem encountered in ma&nsor system is the
presence of errors due to sensor bias, antenna orientatigite position uncertainties

or any measurement related bias. Problem of reference framasalignment, also
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known as tilt error (92), also cause an error in the measuremis.

The smaller errors in the direction of arrival measurement M create large degra-
dation in the tracking accuracy. Especially for a large bisitic range measurement,
it will give larger errors and therefore, the DOA accuracy beomes a very important
limiting factor in long range target detection. Hence, it Wi create large errors in
detection and estimation of high range targets. Thereforet is very essential to re-
duce the angular errors in DOA estimation. The DOA measureme will have noise
and bias errors due to mutual coupling in antenna elements drantenna orientation.
Therefore, in this chapter, we propose a method for removirthe bias in DOA and
calibrating the senor simultaneously to alleviate the af@mentioned problem. An
SMC implementation of Probability Hypothesis Density (PHD Iter (59) (66) (88)
based technique is used to estimate and remove the DOA biash& simulation results
are presented to show the e ectiveness of the proposed algom with an example of
tracking airborne targets.

In (5), Howland developed a signal processing scheme thatoals airborne tar-
gets to be detected and be tracked using only the vision or sal carrier of the
television broadcast. They used Doppler shift and DOA of théarget echoes to esti-
mate the target's track. The Doppler-DOA information on thetelevision video career
signal can track the aircraft ranges up to 260 km. Target trdéng was performed
in range-Doppler-DOA domain. To e ciently remove the strong clutter signals and
interference, an adaptive lIter algorithm was described in(2) (3).

The direct signal and the echo from the target are received drprocessed for
the measurements such as bistatic range, range rate, and gat DOA. However, in

order to eliminate the ambiguities in bistatic range, bistéic Doppler and DOA, a
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PCL system can use more than one illumination source and rées. Therefore, a
multistatic PCL con guration yields an enhanced robust andredundant information,

and therefore reduces the ambiguity and enhance the trackjraccuracy.

3.3.1 Direction of Arrival

Figure 3.2 shows an isorange ellipsoids for a particular taic range measurement in
a PCL system. The DOA estimation helps to determine on whichagint of the isorange
ellipsoid the target is located. The smaller errors in the dection of arrival measure-
ment will create large errors when the bistatic range measement increases. Hence,
will create large errors in detection and estimation of highange target. Therefore, it
is very essential to reduce the angular errors in DOA estimiain. The DOA measure-
ment will have noise and bias errors due mutual coupling in gnna elements and
antenna orientation. Also the errors can be caused due to mareasons such as errors
in electromagnetic related issues, hardware or softwardated issues, mechanical and
positioning related issues and signal processing basediess

Since the accuracy of the DOA plays a major role in target tr&ing in PCL sys-
tems, this chapter focus on estimating and removing the biase DOA measurement.
In this chapter, we assume a bistatic multitarget environmat to track the target. We
consider the two dimensional environment and ignore the dtdes of the target.

Howland estimated the DOA using phase interferometry (5). fie DOA of a target
echo, , is related to the phase di erence of arrival at two suveillance antenna,

can be given by the following equation.
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- 24 sin (3.63)
whered is the distance between the dipoles and is the wavelength.

3.3.2 Problem Formulation

In general, a passive radar measures bistatic range, bistaDoppler and direction of

arrival of the signal.

Direction of arrival

The direction of arrival associated withj th target at the PCL radar receiver can be
given by, _ [

| =tan * H v, (3.64)
wherel, is the bias associated with the measuremen{ and v, , is the measurement

noise corresponding the DOA measurement.

Bistatic range

From PCL radar, the bistatic range measurement can be obta@d, and the target

will be located in a point at the ellipse given by the followig equation.

9 — : 4 — : .
R= (X xr)2+(yi yr)?+ (X XRPZ+(Yi YR)Z+ Viy o (3.65)
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Bistatic Doppler

From PCL radar also gives the bistatic Doppler measuremengnd it can be given by

R = Q(Jk XT)&L"‘(V{( yT)YL + (,Xjk XR)&L"‘(Y{; YR)YL
= 4§ &

o xr)2+ (YL vz (K xr)2+(YL  Yr)2

+

K 1 (3.66)

Target Dynamics

The general parameterized target dynamics of theth target is given by
xk=adxk w1 j =1 Ng (3.67)

Wherex{( is the target state vector at time stepk, N is the number of targets at time

stepk, a, in general, is a nonlinear function andvy ; is the process noise vector of

known statistics.

2 3
1T O OO
01 0 0O
xk=080 0 1T 04xk ;+wl (3.68)
0 00 10
0O 00 0 1

where x, = [x};xL;yl;vL;H] is the state of thej th target, which consists of target

position (xL;yl) and target velocity (x};yl) at time step k and w!, is i.i.d sequence of
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zero-mean Gaussian variable with covariance

‘o 0 0 o3
3 2
LTI, 0 0 O
=8 0 o0 T T g (3.69)
0 0 T T O
0O 0 0 0 Th

where the levels of the power spectral densities argand |, corresponding to state

and bias estimates, respectively.

3.4 Results

3.4.1 Bistatic PCL System
Simulations

In this simulation, the parameter settings are: transmitte position = [49925, -
10899]m; receiver position = [0, Olm; measurement interva 1 second; measurement
variances =400 m? and ? =1 m?s % probability of detection is 0.98; on average,
10 false alarms occur at each sampling time. The target traj®ries, transmitter and
receiver locations are given in Figure 3.3. There are two @ets in the surveillance
region, one enters the region &t = 1 and the other enters atk = 15.

In the rst scenario, a low bearing error of 2 = 0:0001 radian$ is considered.
The Root Mean Square Errors (RMSESs) of the CMKF, UKF and the PID lIter are
given in Figures 3.4, 3.5 and 3.6, respectively.

From these gures it can be seen that the performances of UKFd PHD lIters
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Figure 3.3: Target trajectories and locations of transmitr and receiver.

are better than that of the CMKF.

The performance of the PHD lIter was almost equal to the one &MKF when the
number particles used in PHD Iter was 1000. Around 4000 paitles were required
to match the performance of the UKF.

Because of the low computational complexity of the UKF compad to the particle
Iter based PHD lter, the UKF is the best choice for the errors considered in this
scenario.

In the second scenario, a high bearing error with? = 0:01 radiang is considered.
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Figure 3.4: RMSE comparison of CMKF with variances 2 = 400 m?, 2 = 0:0001
radians’ and =1 m?s 2.

The RMSEs of the CMKF, UKF and PHD lIter are shown in Figures 37, 3.8 and
3.9, respectively.

The number of times in which the tracks are found within 5000 ndistance from
the target out of 100 runs is shown in Figures 3.10, 3.11 andL3. From these gures
it can be seen that PHD Iter outperforms CMKF and UKF.

While the PHD lIter detects the targets, on average, in 96% othe runs, the
CMKF and UKF detect the targets only in 41% and 59% of the runsaspectively.
Tracks are missed due to track losses for the UKF and due to tla breakages for the

CMKF.
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Figure 3.5: RMSE comparison of UKF with variances 2 = 400 m?, 2 = 0:0001
radians’ and =1 m?s 2.

Real Data

The real data provided by TNO is shown in Figure 3.13. In the T system, only one
transmitter and one receiver are used. A large number of falslarms are observed in
a narrow region. The reason for the appearance of this cluttes unknown and it may
be an artifact due to processing errors. For simplicity, théigh false alarm region is
ignored during the processing. Integrated clutter modelgnhand target tracking can
be used to handle the non-uniform clutter. The position-degndent measurement
variances are in the range of 46QL000* m* for 7, around 1 nfs 2 for ? and in the
range of 0.0004 { 0.008 radiadsfor 2.

The tracker parameter settings are: tentative track formabn logic is 2 out of 2,
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Figure 3.6: RMSE comparison of PHD Iter with variances 2 = 400 m?, 2=0:0001
radians’ and =1 m?s 2.
tentative track maintenance logic is 4 out of 8 and con rmedrack deletion logic is 1
out of 15.

The tracks formed using the UKF are shown in Figure 3.14. Tr&s are formed
only for the targets within the coverage region of the PCL sysm. Even the formed
tracks are not smooth due to the low probability of detectiorand target maneuvers.

It can be seen that there are gaps between the tracks and theognd truth.
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Figure 3.7: RMSE comparison of CMKF with variances 2 = 400 m?, 2 = 0:01
radians and ?=1m?s 2,
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Figure 3.8: RMSE comparison of UKF with variances? = 400 m?, 2 = 0:01 radiang
and ?=1m? 2
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Figure 3.9: RMSE comparison of PHD lter with variances 2 = 400 m?, 2 =0:01
radians and ?=1m?s 2,
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Figure 3.10: CMKF: Number of runs in which tracks are found winin 5000 m distance
from the target out of 100 runs with variances 2 = 400 m?, 2 =0:01 radiang and

2=1m?3s 2
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Figure 3.11: UKF: Number of runs in which tracks are found witin 5000 m distance
from the target out of 100 runs with variances 2 = 400 m?, 2 =0:01 radiang and

2=1m?3s 2
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Figure 3.12: PHD: Number of runs in which tracks are found witin 5000 m distance
from the target out of 100 runs with variances 2 = 400 m?, 2 =0:01 radiang and

2=1m?3s 2
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Figure 3.13: TNO data.
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Figure 3.14: Estimated trajectories and ground truth for TND data.
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3.4.2 Bias Removal in PCL System

In this section, a two dimensional tracking example is prestged to demonstrate the
performance of the bias removal algorithm. The example casts of a transmitter
and two receivers, which are shown in Figure 3.15 by T, R1 and2Rrespectively. The
measurements are received at both receivers synchronouatyan interval of 1s. The
covariance associated with measurements is diag([400 0:0001 radian$ 1m?s 2]).
It is assumed that bias in the direction of arrival is charactrized by random walk
model with initial value 0.1 radians. The noise associatedith the random walk
model is zero mean Gaussian with variance 0.000001 radfanm this scenario, two
targets enter the surveillance region at time stepk = 1 and k = 30.

The PHD lter is constructed with the following parameters: the number of par-
ticles per target = 5000; the number of particles associatedith new targets = 100;
the probability of target birth = 0.01; the probability of ta rget death = 0.001.

In this example, the performances of the algorithms with andithout estimating
the bias are compared.

Figures 3.17 shows the root mean square values of the estismtvhen the bias is
ignored.

Figures 3.18 shows the root mean square values of the estismtvhen the bias is
estimated. It could be seen that estimating the bias yieldsigni cant improvement
on the performance of the tracking algorithm.

Figure 3.18 shows that the bias estimation takes around 10egts to converge.
Sudden peak ak = 31 due to clustering issues when new target enters, whichalid
be accounted towards the clustering part of the algorithm ahshould not be related

to the performance of the bias estimation.
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Figure 3.15: Target trajectories and locations of transmiér and receivers.
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Figure 3.16: Particles at the initial time step.
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Figure 3.17: RMSE of target with no bias consideration.
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Figure 3.18: RMSE of target with bias estimation.

77



Chapter 4

Multipath Assisted Tracking with

Known Re ection Points

4.1 Multipath Re ections in Tracking Environment

In this chapter an algorithm for multipath-assisted multitarget tracking using multi-

frame assignment is proposed for initiating and tracking nitiple targets using one
or more transmitters and receivers. This algorithm is capaé of exploiting multipath

target returns from distinct propagation modes that are reslvable by the receiver.
When resolved multipath returns are not utilized within the tracker, i.e., discarded
as clutter, potential information conveyed by the multipath detections of the same
target is wasted. In this case, spurious tracks are formeding target-originated

multipath measurements, but with an incorrect propagationmode assumption. Inte-
grating multipath information into the tracker instead of discarding can help improve
the accuracy of tracking and reduce the number of false tragk The challenge in

improving tracking results using multipath measurementssi the fusion of direct and
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multipath measurements from the common target. The problemwill be considered
in an environment with false alarms and missed detections. &\propose a multiframe
assignment technique to incorporate multipath informatia. The simulation results
are presented to show the e ectiveness of the proposed aligfom with an example of

tracking ground targets.

4.2 Incorporating Multipath in Tracking

4.2.1 System Model in Multipath Re ection Environment

— Reflection

Surface Reflection

Surface
Target 1 Target 2

Reflection
Surface

Transmitter

Sensor

Figure 4.1: Multipath re ection model in target tracking.

In this chapter, we considered a bistastic multipath modehi which the transmitter
and the receiver are separated by a large distance. The diresgnal from the trans-
mitter and the echo from the target are received and processéor the bistatic range

and multipath range measurements. In this model a transmiéir and a receiver are
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used for target detection and tracking. The simple con gurion of multipath model
is illustrated in Figure 4.1. In this model, bistatic range multipath range and bearing
are used to track the target. A multipath con guration yields additional information
about the target through the re ected signals. In a real wod multipath signal prop-
agation mode environment, the echo signals are buried deeprioise. There will be
other unwanted signals such as measurements from unmodefaditipath re ections,
clutter, and unwanted echoes such as re ections from grounduildings, trees, clouds
and other moving or stationary objects.

In system model, the re ected signals from the target reacthe sensor by di erent
ways such as direct path and multipath re ections. In this wok, we utilize the
multipath signal information for improving the tracking accuracy. We consider a
system with a single transmitter and a single receiver to dett and track multiple
targets with a direct and a multipath re ected signals. In ths model, the multipath
signals re ected from the target re ect at most once beforehtey arrive at the sensor.
Figure 4.1 depicts the geometry of the radar sensor system avhseparate transmitter
and receiver arrays are used. We assume that transmitter, riget, re ection surface
and receiver are on the same (ground) level. For simplicity avassume that the
ground surface is at and vertical to the ground plane and traking is performed on
the ground coordinates.

When multipath target returns from distinct propagation modes are resolved, spu-
rious tracks are formed. Associating these signals fadite better estimates of the
target states. However, in order to use this measurement ap@ropriate association of
multipath re ection model has to be identi ed. Incorrect re ection model assignment

will lead to errors in association and tracking. Hence, to ilize these measurements
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appropriately, it is important to have the measurements resdved appropriately in
multipath propagation mode assignment uncertainties. Mdalpath signal propagation
mode assignment uncertainty adds another level of complégxito the standard data
association problem. That is, there is more than one unceitdy that needs to be
resolved in order to track multiple targets. One is the measament-to-target associ-
ation and the other is the measurement-to-multipath propaation mode association.
In this work a tracking algorithm is proposed to track multide targets using more
than one target originated returns due to direct signal and anultipath re ection.

In this model (x(k);y(k)) denotes the moving target position at time stepk.
It is assumed that the sensor and the transmitter locationsra known and they
are denoted by & (k);y:(k)) and (x{(k);yi(k)), respectively. The re ection model
index is denoted byrs. Based on the re ection surface information, using ray opts
geometry, the re ection points can be evaluated. The re ed@n point coordinate
(x:s (K); yrs (K)) denotes the re ection point atk™ time step inrs™™ multipath re ection
model (re ection surface). The received signals are eithdirect signal from the target

or signals with one re ection at the re ection surface's before it arrives at the sensor.

Key Assumptions

In addition to the direct signal detection, the sensor measements contain

resolved multipath detections.

The transmitted signal directly hit the target and there is ro other re ection

point between the target and the transmitter.

The signals re ected from the target re ect at most once bef® they arrive at

the sensor.
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Complete knowledge of the re ection surface information s as the geometry

of the surface or the re ection points, and re ection coe cients are known.

The measurements are bistatic rangey(k), multipath range rn, (k), bearing from
direct signal 4(k), and multipath re ected signal (k). The measurement equations
are given below. At a given time stefX, the bistatic range measurement from the

direct target return can be given by

W) =R X @70 ()7
I T (3 L (T A )
A O ST R GO
+! (k) (4.1)

The direction of arrival (DOA) of the signal received diredy from the target is

given by

(y(k) yr(k))

a9 = tan X ()

+1 (k) (4.2)

In the above case, there is no multipath re ection between #n target and the
sensor in the signal propagation path. When there is a re eicin between target and

the sensor, the multipath range measurement can be given by
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p p
rm(k) = (x(k)  xe(K)2+(y(k) yi(k)?2 + = (xrs(k)  x(K)2+(yis(K)  y(k)?Z +
p
+ (xrs(K)  xr(k)2+ (yis(k)  yr(k)2 +
p
(xe(K)  xr(K)2+(ye(k)  yr(k)?Z +

+1 m(Kk) 4.3)

In this case, the direction of arrival (DOA) of the signal received by the sensor after

re ected from a point on the re ection surface is given by

1 (s(k)  yr(k))
(Xrs (k) xr(k))

m(k) = tan + 1 (k) (4.4)

Therefore, the measurementz(k) can be given by the following equation.
2 3

r (k) z
(k)

20 = 9§ (4.5)

where r(k) = rq(k) and (k) = 4(k) when the target return signal propagation mode is
direct and r(k) = rm(k) and (k) = (k) when the target return signal propagation mode

is multipath.

4.2.2 Multipath Re ection Points on Smooth Surface

Based on the ray optical geometry, it is possible to evaluatehe re ection points ( X;s (K); yrs (K))

on the re ection surface when the re ection surface informaion is known. Consider a at
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smooth re ecting surface leant in an angle as shown in Figure 4.2 is de ned byy = mx + c.

Figure 4.2 also shows the ray re ection path geometry where § ) is the incident an-

gle on the smooth surface, (k) is the DOA of the wall-re ected signal at the receiver
(xr (k); yr (k)), and [5 (k) is the direction of arrival angle at the re ection point. Th en the

re ection points ( Xs(k); yrs (k)) on the surface can be de ned by the following way.

Target

(x(K); y(k))

.
y=mx+c.,’
0
.

Wall-reflected signal

(% (K); yr ()

Figure 4.2: Ray optical geometry.
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m(k) =+ (4.6)
m(K) = @.7)
= tan *(m) (4.8)
y = mx+¢c (49)
_ (Yrs(K)  yr(K))
n) = tan 50 iy T ®
= tan ‘(mp,) (4.10)
yr (k) mropxr(k) c
Xrs (K) o (4.11)
_omy (k) mmdx. (k) mk
yrs(k) = m ‘;n() (4.12)

In the tracking and data association, the uncertainty in re ection point estimation due
to bearing error must be considered. However, in this chapteit is assumed that re ection
points are known to the receiver. Incorporating the re ection point uncertainty in target

tracking is considered in the next chapter.

4.3 Tracking Algorithm

The target motion model and measurement models are using thé&llowing non-linear rela-

tionship in the Cartesian coordinate system.

x(k+1) = fi(x(k)+ v(K) (4.13)

z(k) = h(x(k))+ w(k) (4.14)

where x(k) = [ x(k) x(k) y(k) y(k)]" is the state of the moving target at discrete time step

k. Here x(k) and y(k) are the positions andx(k) and y(k) are the velocities in the direction
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of X and Y coordinates. Here,f and hy are state and measurement models de ning the
non-linear functions, and v(k) and w(k) are process and measurement noise, which are
assumed to be drawn from a zero mean, statically independeraind Gaussian white noise
with covariances Qi and Ry, respectively.

To initialize the targets, we form a tentative track for each unassociated measurements
at last time step and perform the 2-D data association with curent measurements. If any
association is found, then the tentative track is con rmed as an initial track, and it is
deleted otherwise. Bistatic range and bearing measuremestfrom the direct signal are used
to initialize the target positions.

The Kalman lter is the optimal Iter when the target state an d measurement models are
linear and noises are Gaussian. When nonlinearities are psent the extended Kalman Iter
(EKF), the unscented Kalman lter (UKF), particle Iter or p  robability hypothesis density
(PHD) Iter can be used (34) (59). Multitarget tracking beco mes more di cult since which
reports from a particular sensor were generated by which tagets must be determined. Since
more than one measurement from the same sensor need to be asisted to the target and
to the di erent propagation path modes the complexity furth er increases. As we consider a
multitarget multipath system with the presence of false alams and missed detections the
complexity increases further. How many targets are presenaand how it should keep track
of it are the important issues to be addressed. The primary faus is to estimate the target
kinematic state (position and velocity) from noise corrupted measurements. In this chapter,
we implemented the UKF to track the targets using multipath m easurements.

The problem is to associate the measurements to targets andotthe appropriate signal
propagation path mode. One of the approach is tracking the tagets in the measurement
space by assuming that all the measurements from direct pattsignal model. In this case,
more than one track may be formed for each target, and then traks must be fused by

nding the appropriate multipath signal propagation model assignment. Furthermore, one
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of the other approach is tracking the targets in the state sp&e and add one more dimension
in the S-D assignment for the signal propagation model. In bth approaches, multiframe
assignment must be used. The data association gives decia® as to which of the received

measurements and propagation modes should be used to updagach track.

Target Measurement Propagation Mode

Figure 4.3: Multipath uncertainty in assignment tree.

4.4 Data Association based on Multiframe Assign-

ment

Tracking multiple targets in noisy measurements of the target together with spurious obser-
vations created by the background noise and clutter has beestudied for many years (46).
Data association problem becomes more di cult to handle when multiple targets compete
for measurements. Identi cation of which measurement belogs to which target is the con-

ventional data association problem. However, in this work,the complexity of the problem
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is increased in such a way that the the measurements compet®If target and the multi-
path distinct propagation mode. The multipath signal propagation mode measurements

add more complexity to the data association problem.

Target Measurements

Figure 4.4. Assignment tree of multipath model.

4.4.1 Formulation of the MSD Problem and Solution Tech-
nique

At a time step k, data association based on multipath multiframe assignmehwhere a single
sensor measurements in the last scan with§ 1) multiple modes are associated with the list
of established tracks € lists - S-dimensional association, denoted as S-D). Every possible
S tuple is assigned a cosC(kj (k)). When we haver number of sensors and considering
Ns 1 number of distinct propagation modes, then the multipath multiframe data association

problem will be anr Ns 1+ 1 dimensional problem (i.e., S=r Ng 1+1).
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In order to associate the existing measurements to each reaion path mode and each
target, every sensor measurements are stacked to the numbef distinct propagation modes
times (i.e., Ns 1 times), and an association is found in such a way that it minimzes the
total cost. In this current work, we assume that there is only one sensor ( = 1) and
Ns 1= S 1(i.e,thereisS 1 number of distinct propagation modes { = 1;2;::;;Ng 1).
In order to formulate the multipath S-D problem, we formulat e the assignment tree diagrams
as shown in Figure 4.3 and Figure 4.4. Since the assignmentde diagram in Figure 4.4 is
too complicated to understand and solve, we draw an equival@ assignment tree diagram
as shown in Figure 4.5. We stack the same sensor measuremeimt the number of distinct
propagation modes times as shown in Figure 4.5. The objectéris to detect and track an
unknown number of targets by estimating their positions ushg the S 1 lists of stacked
measurements. The sensor provides scans of detected andab®d signals at a discrete time
stepk =1;2;::;; K. With each detection, there is an associated measurement dfearing and
bistatic range by direct signal or multipath range by multip ath re ected signal. For every
multipath S-D problem, Ns 1 lists of stacked measurements are associated with estabtied
tracks, and each stacked measurement list hasy (the number of sensorsN = 1;2;:::;r
measurements at timek. In this case, the stacked measurement list hag; (as we consider
one sensor) measurements. It is assumed that the sensor haskaown nonunity detection
probability Pp.

A likelihood ratio test that involves the target state estim ate for the candidate asso-
ciations is used to assign cost to each feasibl8 tuple of measurements, i.e., candidate
association, and then S-D is used to minimize the cost globbl The measurementz; ,
ji=1;2,:nng 4 (23, andj1 =1;2;::ng in our case as the number of sensors are 1). Atar-
get may not be detected at every scan. For the simpli cation d the notation for incomplete
measurement to target association occurred by miss-detein from the direct or multipath

re ected signal, a dummy measurementz;y is added to each list. A dummy measurement
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from multipath re ection propagation mode measurement list Ns 1 assigned to targetp
implies that this target was not detected by the sensorr (i.e., in this caser = 1). That

is, it can be a miss-detection from the direct signal propagion mode, or a miss-detection
from the multipath re ection propagation modes. The likeli hood that anr Ns 1- tuple
of measurementsZi,,;,:;j,, ,. Originated from target p, with the known state x, at a time

step k, is the joint pdf:

r¥s 1n _ )
( Zjsjaisiing JP) = [1 Pol* “09[Ppp(zj, jxp)]07) (4.15)
i=1

where u(j;) is an indicator function. That is

8
_ 20 ifj; =0
uGi) = (4.16)
1 otherwise

The likelihood that the measurements are all spurious or irelevant to this target (i.e.,
p = 0) is given by
"VYs 1 uGn

( Zjsjajsuing JP=0) = — (4.17)
i=1 !

where  is the false alarm probability in a cell multiplied by the vol ume of the resolution
cell.

The cost of associating ther Ns 3 (r = 1 in our case) tuple to target p is given by

the negative log-likelihood ratio.

n ( Zjajajsi Ng 1jp)
( Zjsjojami Ng 1jp= 0)

Guizising , = I (4.18)
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However, xp is unknown in Eq. (4.15) therefore, will be replaced by its ML estimate

and is given by

Rp=arg max ( Zjsjaising LIP) (4.19)
p

Therefore (4.18) becomes a generalized likelihood ratio. éhce, we get the cost of the

candidate association of theNs 1 tuple of measurements 1;j2;j3;::;;jng ;) tO @ target is

Ikl( P )
Girisisting | = [uGi) 1@ Pp) u(i)n , S
i=1

u@ji) %[Ziji HRpyi 1" o Mzij, H®pyi)l (4.20)

The objective is to nd the most likely set of Ng ; - tuples such that each measurement
is assigned to unique one target one propagation mode combed pair, or declared false, and
each target receives at most one measurement from each lisbif every propagation mode,
or declared false, and each target receives at most one measment from each stacked list
and not the corresponding same measurement is used in the ath stacked list. That is, the
same corresponding measurement from the other stacked lishould not be arranged to any
target. This can be reformulated as the following assignmenproblem.

The multipath multidimensional assignment problem is a corstraint optimization prob-
lem. The solution to the problem is to associate the measureents to appropriate targets
and the multipath propagation modes. In order to nd the appr opriate assignment to the
existing targets, an assignment variable Ej;i )(k) can be de ned in such a way that it can

take either 0 or 1 depending on the di erent constraints and <enarios. It can be de ned in

the following way
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Mg =

8
E 1 if the measurementz; , (k) is assigned to a trackt'(k 1)
: and the multipath model i (4.21)

0 otherwise

The constraints can be de ned as given below.

n 1

M =1 (4.22)
j=0

wheret =1;2;::T andi =1;2;:::Ng 1
The target and multipath mode uncertainty constraints can be written as

.
Wy =1 (4.23)
t=0

wherej =1;2;:inyg , andi =1;2;::Ns 1

My =1 (4.24)
i=1

wherej =1;2;:inyg , andt =1;2;::T

The above last two constraints can be combined as given belaw
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My =1 (4.25)

Direct Multipath ~ Multipath Multipath
Measurement MeasuremeniMeasuremeniMeasurement
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Figure 4.5: Multipath model assignment tree by stacking theame measurement.

Since we assume that all the signal propagation modes are kam, there is no dummy
propagation path mode. But since there are miss-detectionswe have dummy targets and
dummy measurements in our problem. Now the solution for the poblem is to nd the

optimal assignment °P! (k) that minimizes the global cost of assignment.

n 1Ng 1

- X (i) (i)
C(kj (k) = ) (k) (4.26)
j=0 i=1 t=0
where t(j;i)(k) is the appropriate cost assignment of gj;i)(k).

The above objective function can give a suboptimal solutionif t(j;i )(k) are calculated
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independently of any other measurements that can be assodid to the same target. To

nd the optimal cost, the following equation is used:

Minimize:
X M 1N N
Ckj (k) = s CODIELENs 1 UDmans g g 5g)
t=0 j1=0 j2=0 ji=Ns 1
where' 5“)‘:1““'3 (k) is the assignment variable andNs 1 is the total number of mul-

tipath target originated signal propagation mode. We need b nd the optimal assignment

tree by satisfying the following constraints.
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Subject to:

X ”%1”%1”%1.“ e 1 Mo

. (ji)i=1:N .
t=0 j2—0 j3—0 j4—0 jNS 1 1—0jNS 1—0

(4.28)

X ”%1”%1”%1.“ e 1 M e

> v GTELENs 1 1; j2=1;2:50N ,
t=0 j1=0 j3=0 j4=0 jNS 1 1:0jNS 1:0

(4.29)

X ”%1”%1”%1.“ e 1 Mo

v (ji)i=1:Ns o 1D e
e tl l(k) 1,]NS 1 1—1,2,...,I’INS 1
t=0 j1=0 j2=0 j3=0  jng ; 270 jng ;=0

(4.30)

XTn%ln%ln%l n%l n%l o
-gll)l—l--NS 1(k)

1) jns o = 152000 0Ng
t=0 j1=0 j2=0 j3=0  jNng , 250 jng , 170
(4.31)

wheref' J=1Ns 11y g are binary association variables such thati' 7/t %Ns 1(y)g =
1if Ns 1 tuple Zj j,js:j Ns 1 is associate with a candidate target.
Its value is equal to zero otherwise. The same measurement caot be associated with

itself. Hence,

NS 10 = 0if jp= 86 a; and pig2f L2 1 (4.32)
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XTn%ln%ln%l n%l n%l

. (ji)i=1:=N . . . . . B
SJI) > (k) ] 101]201) 30120 nyy | == ] =
t=0 j1=0 j2=0 j3=0 ing 1 170 jng ;=0

where j =1;2;:5nNg -

This multipath multiframe assignment problem is formulated similar to a generalized
S-D problem. Therefore, we solve the multipath multiframe assignment problem as a series
of relaxed 2-D subproblems in two phases such as constraintetaxation phase and the

multiplier update and constraint enforcement phase (46).

4.5 Simulation and Results

In the simulation, parameter setting are: transmitter position = [49925, -10899]m; receiver
position = [0, O]m; the re ection point = [30000, 5000]m; the measurement interval is
1 second; measurement variances? = 10 m? and 2 = 0:0001 radiang; probability of
detection is 0.98; 10 false alarms at each sampling. The tagg trajectories, transmitter and
receiver locations are given in Figures 4.6 and 4.7. There artwo targets in the surveillance
region, one enters the region ak = 3 and the other enters at k = 6.

Figures 4.6 and 4.7 show the S-D association comparison oféhtracking by considering
and not considering the multipath re ection model. In both cases S-D association and
multipath S-D association are used.

Figure 4.6 shows that when the multipath measurements are asilable and if they are
not utilized within the tracker, then there are spurious tra cks formed.

But Figure 4.7 shows that with a correct propagation mode asamption, integrating

multipath information into the tracker can help improve the accuracy of tracking and reduce
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Figure 4.6: Estimated target tracks without incorporatingmultipath.

the number of false tracks.

The root mean square error (RMSE) values are compared in Figte 4.8 or Figure 4.9.
The RMSE values are lower for fused tracks that were obtainedhrough multipath multi-
frame assignment technique. It shows that the multipath S-D association based tracking
algorithm converges as the RMSE goes lower over the time. Th®MSE curves show that
multipath S-D association Iter outperform when the multip ath re ection modes informa-

tion is incorporated in tracking.

97



Ph.D. Thesis - Maheswaran Subramaniam McMaster - Electrit&ngineering

4
£ X 10
| k
al| ° Receiver
+  Transmitter
’§ 2+ * Measurement
; — Confirmed Track ° o
L — Truth
oF o
1ro\g | -
2 : : : : :
-2 0 2 4 6 8
X (m) X 104

Figure 4.7: Estimated target tracks with incorporating mutipath.
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Figure 4.8: RMSE values without incorporating multipath.
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Figure 4.9: RMSE values with incorporating multipath.
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Chapter 5

Multipath Assisted Multitarget
Tracking with Re ection Point

Uncertainty

In this chapter, the previous work multipath-assisted multitarget tracking using multiframe
assignment is extended to the case where there are uncertadi@s in multipath re ection
points at the receiver. An algorithm is proposed for initiating and tracking multiple targets
using multiple transmitters and receivers. This algorithm is capable of exploiting multipath
target returns from distinct and unknown propagation modes. When multipath returns
are not utilized appropriately within the tracker, (e.g., d iscarded as clutter or incorporated
with incorrect propagation mode assumption) the potential information in the multipath
returns is lost. In real scenarios, it is more appropriate toassume that the locations of the
re ection points/surfaces are not accurately known.

Integrating multipath information into the tracker by corr ectly identifying the multipath

mode and identifying the re ection point can help improve th e accuracy of tracking. The
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challenge in improving tracking results using multipath measurements is the fusion of direct
and multipath measurements from the common target when the naltipath-re ection mode
is unknown. The problem becomes even more challenging withafse alarms and missed
detections. We propose an algorithm to track the target with uncertainty in multipath
re ection points/surface using the multiframe assignment technique. Simulation results are
presented to show the e ectiveness of the proposed algorith on a ground target tracking
problem.

In the previous chapter, the multipath-assisted multitarg et tracking using multiframe
assignment was studied. An algorithm was proposed for initating and tracking multiple
targets using multiple transmitters and receivers. This agorithm is capable of exploiting
multipath target returns from distinct and unknown propaga tion modes. When multipath
returns are not utilized appropriately within the tracker, (e.g., discarded as clutter or in-
corporated with incorrect propagation mode assumption) the potential information in the
multipath returns is lost. In the previous work the multipat h re ection points are known
to the receiver. In real scenarios, it is more appropriate toassume that the locations of
re ection points are not exactly known. In this chapter, the proposed algorithm will track
the targets when there are uncertainties in the multipath re ection surface parameters.

This chapter mainly focuses on formulating the multipath tr acking problem with re ec-
tion points or surface uncertainties for ground or airbornetargets and deriving an assign-
ment based data association lIter. In this chapter, errors in bearing and uncertainties in
re ection surface's angle and distance from the sensor arencorporated in measurements

and tracking capabilities are analyzed.
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5.1 Multipath Re ection Surface Uncertainty

When multipath target returns from distinct propagation mo des are resolved, spurious
tracks are formed. Associating these signals facilitate hiter estimates of the target states.
However, in order to use these measurements, appropriate sgciation of multipath re ection
models have to be identi ed. Incorrect re ection model assgnment will lead to errors in
association and tracking.

Hence, to utilize these measurements appropriately, it ismportant to have the measure-
ments resolved appropriately in multipath propagation mode assignment. Multipath signal
propagation mode assignment uncertainty adds another leMeof complexity to the standard
data association problem. This problem was solved in the préous chapter. In the previous
chapter, the association uncertainties were in the measuraent-to-target association and
in the measurement-to-multipath propagation mode assocition. In typical scenarios, it is
more appropriate to assume that the re ection surface paraneters are not accurately known
(i.e.,there are uncertainties associated with re ection sirface parameters). Therefore, in this
work we considered the case where there are uncertainties sxciated with re ection surface
parameters. Hence, in such situations tracking is performg when the re ection points are

unknown.

5.1.1 System Model

Since the re ection surface parameters are not accurately kown, another level of uncer-
tainty is added to the existing problem. In this model, we assaime that the re ection

surface is smooth and can be described by a ling = mx + cin the tracking plane, where
m = (m%+ emo);c= (C+ ew). Here eno and ew are the error covariance ofm®and c® added
in the form of uncertainties. That is, the re ection surface's geometry is not accurately

known to the receiver in this system model as described in Figre 5.1.
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Figure 5.1: Uncertainty in re ection surface parameters.

When considering the target tracking with re ection surface uncertainty, it is also im-
portant to make assumptions on re ection scenarios. Figure5.2 shows that the signals
directly hit the target rst, and then the target returns are received by the sensors directly
and through the multipath re ections.

Figure 5.3 shows that the signals re ected at the wall rst before hitting the target.
Then the target returns are received by the sensor through diect and multipath propagation
modes.

Figure 5.4 shows that the signals re ect at di erent walls r st before hitting the target.
Then the target returns are received by the sensor through diect and multipath propagation
modes.

Figure 5.5 shows that the signals re ect at di erent walls and or clutter and received
by sensor. These signals are non-target returns. The Doppteshift measurements can be

used to di erentiate the target originated returns from clu tter.
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Figure 5.2: Multipath re ection scenarios: Transmitter-target.

Figure 5.6 shows a complex target re ection scenario. The sesor receives more com-
plex signals such as Transmitter-Target-Sensor, Transmiier-Target-Multiple Walls-Sensor,
Transmitter-Multiple Walls-Target-Sensor and Transmitt er-Multiple Walls-Target-Multiple
Walls-Sensor.

Figure 5.7 shows the scenario of complex multipath target raurns from another target
return signal.

In this model (x(k);y(k)) denotes the moving target position at time step k. It is
assumed that the sensor and the transmitter locations are kown and they are denoted by
(%r (K); yr (K)) and (x¢(k); Vi (K)), respectively. The re ection model index is denoted byrs.
Based on the re ection surface information, using ray optics geometry, the re ection points
can be evaluated. The re ection point coordinate (x;s(k);yrs(k)) denotes the re ection

point at k™ time step in rs™ multipath re ection model (re ection surface). For simpli city,
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Figure 5.3: Multipath re ection scenarios: Transmitter-wall-target.

it is assumed that the received signals are either direct sigal from the target or target
re ected signals with one re ection at the re ection surfac e rs before it arrives the sensor.
Key Assumptions and Scenario Description

Transmitter is located on the axis of the receiver, and the mdion of the target is in

the same plane.

The distance between the transmitter and receiver is large mough to satisfy the
bistatic range ellipse and multipath range ellipse as thesere along the transverse

diameter.

In addition to the direct signal detection, the sensor measwements contain resolved

multipath detections.
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Figure 5.4: Multipath re ection scenarios: Multiple wall re ections.

The re ections on the surface/wall are smooth and abide by the ray optical geometry

principles.

Uncertainties in the knowledge of the re ection surface paameters are known by its

covariance. i.e.,m%or the slope and the intersectc®and their covariances are known.

It is assumed that m®and c are statistically independent, uniformly distributed wit h

mean 0 and covariances of 2, and % respectively.

The measurements are bistatic range 4(k), multipath range r, (k), bearing from direct
signal ¢(k) and multipath re ected signal (k). The measurement equations are given

below. At a given time stepk, the bistatic range measurement from the direct target retun

107



Ph.D. Thesis - Maheswaran Subramaniam McMaster - Electrit&ngineering

Reflection
Surface

\

Reflection
Surface

Multiple reflections
from wall and clutter

Transmitter Sensor

Figure 5.5: Multipath re ection scenarios: Non-target retirns.

can be given by,

p
ra(k) = (x(k)  xe(k)Z+(y(k)  yi(k)? +
p
(x()  xe (k)2 +(y(k) yr(k)? +
p
(xe(k)  xr (k)2 +(yi(k) yr(k)? +1 (k) (5.1)

The DOA of the signal received directly from the target is given by

1 (k) yr(k)

ak) = tan = G0 xe (k)

+1(K) (5.2)

In the above case, no multipath re ection occur between the arget and the sensor in
the signal propagation path. When there are re ection between target and the sensor, the

multipath range measurement can be given by
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Figure 5.6: Multipath re ection scenarios: Complex re ecions.

p p
rm(k) = (x(k)  xe(kK)2+(y(k)  yi(k)? + = (Xis(k)  x(K)2+(ys(K)  y(k)2 +
p
+ o (Xs(K) xr(K)Z+(yis(K)  yr(K)Z +
p
(xe(K)  x¢ (k)2 +(ye(k)  yr(k)? + (k) (5.3)

In this case, the DOA of the signal received by the sensor aftere ected from a point

on the re ection surface is given by

1 s(k)  yr(k))

mlk) =t e ® %K)

+1 (k) (5.4)
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Figure 5.7: Multipath re ection scenarios: Target return e ections.

The measurement after two re ection between the target and he sensor can be given

by

rm(k) = ID(X(k) xe(K)Z +(y(k)  yi(k)? +
+ ID(erl(k) x(K)Z+ (yrs, (k) y(k)? +
+ ID(erl(k) Xrs; (K)Z + (Vrs1(K) Vs, (K))Z +
+ ID(erZ(k) xr (K)2+ (s, (k)  yr(K)? +
IO(Xt(k) xp (K)2+(yr(k)  yr(k)? +

+1 m(K) (5.5)
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The DOA signal received after two multipath re ection from t he target is given by

_ Wrsa () v (k)
(=tan * © o0 xy L ® (5:6)

Depends on the re ection scenario assumptions, the appropgate range and DOA mea-
surement equations will be driven. The measurementz(k) can be given by the following

equation.

2 3
r (k) z
(k)

2k) = 9§ (5.7)
wherer (k) = rg(k) and (k) = 4(k) when the target return signal propagation mode is
direct and r(k) = rm(k) and (k) = m(k) when the target return signal propagation mode

is multipath.

5.2 Multipath Re ections on Smooth Surface

Figure 5.2 shows a simple multipath re ection scenarios. Baed on the ray optical geom-
etry, the re ection points ( X;s(k);yrs(k)) on the re ection surface is evaluated when the
re ection surface information and their covariances are krown. Considering a smooth re-
ecting surface de ned by y = mx + ¢ as shown in Figure 5.2. Figure 5.2 also shows the ray
re ection path geometry where (5 ) is the incident angle on the smooth surface, m (k)
is the DOA of the wall-re ected signal at the receiver at (x;(k);y,(k)), and [ (k) is the
direction of arrival angle at the re ection point. Then the r e ection points (Xs (K); Yrs (K))
on the re ection wall or surface can be de ned by the following way.

Figure 5.2 shows a simple multipath re ection scenario whee the sensor receives a
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Figure 5.8: Direct and multipath re ected signals.

single direct and one multipath wall re ected signal. When the multipath range and its
DOA is known, the track can be initiated. As the direct signal's range and DOA is known,
these information can also be used to initialize the track. @nsider the re ection scenario
described in Figure 5.2. LetS be the sensor location andP S be the projection of S on the
line y = mx + c¢. Here, d is the distance between the pointS and its orthogonal projection

point PS on the liney = mx + c.
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Figure 5.9: Two multipath re ected signals.

nk) =+ (5.8)
m(k) = (5.9)
o - ¢
.
q = jyr(k)plm%rrg) g (5.11)
yps Mxps € = O (5.12)
myps my;(kK)+ Xxps X/(k) = O (5.13)

where the point (Xps;Yyps) is the coordinate of PS. The point (Xps;Yyps)isony = mx + c.

113



Ph.D. Thesis - Maheswaran Subramaniam McMaster - Electrit&ngineering

my; (k) + x; (k) cm

Xpg = T (5.14)
_ m?y (k) + mx,(k)+ ¢
Yps = 1+ m?) (5.15)

The re ected ray's straight line geometric equation can be gven by

_ Yy (k)
tan m(k) = X% (K) (5.16)
Hence
y tan m(k)x  yr(k)+ x(k)tan m(k)=0 (5.17)
(5.18)

Hence the intersect of the above equation ay mx ¢ =0 can be found. That is the
re ection point ( Xs(K); yrs (k)) on the re ection surface. Therefore the re ection points can

be expressed as follows.

_ Yr(k) xr(k)tan (k) c
Xrs(K) = (m mtan n(k)) (5.19)

(5.20)
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my, (k) mx;(k)tan (k) ctan n(k)

Yrs (K) (m mtan (k) (5.21)
(5.22)
sin = d (5.23)

0K xs(K)Z+(vr(K) Yrs(K))2

Let d°be the distance between the target and its orthogonal projetion P T on the line

y = mx + c. Hence

PO = jy(k), mx(k) ¢
= "’
1+ m?

(5.24)

The point (Xpt; Ypt) be the projection point PT of the targetony mx c¢=0. Hence

my (k) + x(k) cm

XPT = (1 ¥ mz) (525)
(5.26)
YT = m?y(9 + mx (k) + ¢ (5.27)

1+ m?)
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XpT = w (5.28)
(5.29)
yor = (yRT2+ Y1) (5.30)
(5.31)
Xps = M (5.32)
(5.33)
Yo = (yRs,2+ yr) (5.34)
Yes Yrs(k) _ 1 (5.35)

xps Xrs(k)  m

Based on the re ection scenario described in Figure 5.2, théollowing equations can be
driven. Let dpstors, dsiors. drstorT . OriopT b€ the distances betweerP S to RS, S to
PS, RStoPT and T to PT, respectively.

Hence,
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dpstors _ OrstoPT
= 5.36
dstor s driopT (5-36)

The points PS;RS;PT are on the liney = mx + c¢. Also the re ection points RS can

be expressed as

XrRs = XpT OrstwpT COS(tan 1m) (5.37)

(5.38)

YRs = YpT OrswpT Sin(tan 1m)

_ - 1
= YpT + dpstors Sin(tan ~m)

d m
= yYp1 + PR (5.39)

1+ m?2

Hence,dpsirs can be driven as given below.

p

Ustops (XpT  Xps)?+(YpT Yps)?
P

dstops +  (XpT  Xps)2+(YpT Yps)?

dp stors (5.40)

The signal re ection points (xrs (k); yYrs (k)) and the target projection points ( xp 1 (K); yp 1 (K))
are functions of the target. Hence, we can write the Jacobiarof it with respect to the target

location. Also for the tracking, the Jacobian can be written as,
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p
@fswrs _ @ dswps (XpT  Xps)?+(YpT YPs)?
_— = = P
@x @X dswps+  (XpT  Xps)2+(YpT Yps)?

(5.41)

Figure 5.10 shows a multipath range ellipse and a bistatic rage ellipse. The possible
target location will be one intersect of the ellipses. Basedn the smooth surface assump-
tion, we can draw a multipath range ellipse as shown in Figure5.10. This ellipse's one
focus is the transmitter (x;(k);y:(k)) and the other is the point RS, and its coordinate is
(Xrs (K); Yrs (K). In Figure 5.10, the focus point (x; (k);ys (k) of the multipath range ellipse
is the point RS. That is the coordinate of the re ected sensorS on the liney = mx + c.
Similar to the bistatic range ellipse in bistatic/multista tic radar tracking, the multipath

range ellipse can be used to track the target in multipath re ection environment.

5.3 Tracking Algorithm

The target motion model and measurement models are using thé&llowing non-linear rela-

tionship in the Cartesian coordinate system.

x(k+1) = fi(x(K)+ v(Kk) (5.42)
(5.43)
2(k) = h(x(K)+ w(k) (5.44)
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Figure 5.10: Multipath range ellipse and bistatic range efise.

where x(k) = [x(k) x(k) y(k) y(k)]T is the state of the moving target at discrete time
step k. Here x(k) and y(k) are the positions and x(k) and y(k) are the velocities in the
direction of X and Y coordinates. Here,fy and hy are state and measurement models
de ning the non-linear functions, and v(k) and w(k) are process and measurement noise,
which are assumed to be drawn from a zero mean, statically inebendent and Gaussian

white noise with covariancesQy and R, respectively.

5.4 Simulation and Results

In this section, dierent re ection scenarios are considered and the track and RMSE in-

formation are compared. In the simulation, parameter setthg are: transmitter position =
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[49925, -10899]m; receiver position = [0, O]m; the re ectio surface equation is given by
y=mx+c Herem= m%+ grandc= ®+ eomP®= 1;c®= 100000 m. The eyo and
e are 0.001 and 100 m, respectively; the measurement intervas 1 second; measurement
variances 2 =10 m? and 2 = 0:0001 radiang; probability of detection is 0.98; 10 false
alarms at each sampling. The target trajectories, transmiter and receiver locations are
given in Figures 5.11 and 5.12. There are two targets in the sweillance region, one enters
the region at k = 3 and the other enters at k = 6.

Figure 5.11 shows the S-D association comparison of the tr&ing by not considering the
multipath re ection model. In both cases S-D association arl multipath S-D association
are used. Figure 5.11 shows that when multipath measuremeantare available and if they

are not utilized within the tracker, then there are spurious tracks formed.

x 10"
7 —
,
6 o Receiver >
. <+  Transmitter
. Measurement «8
4 =
Confirmed Track
~ 3r Truth
e
N
> oL %
A 3
or o
1r +
_2 | | | | | | | J
-1 0 1 2 3 4 5 6 7
X (m) x 10*

Figure 5.11: Estimated target tracks without incorporatirg multipath.
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Figure 5.12 shows the S-D association comparison of the tr&ig by considering the
multipath re ection model. Figure 5.12 shows that with a correct propagation mode as-
sumption by considering the multipath re ection surface uncertainty. Integrating multipath
information into the tracker can help improve the accuracy o tracking and reduce the num-

ber of false tracks.

x 10*
7 —
. [ )
6 o Receiver
5l 4+  Transmitter
(] Measurement °
4 =
Confirmed Track
—~ 3r Truth
S
p
>- 2 /‘%
\.%
1 =
or o
1r +
| | | | | | | J
-1 0 1 2 3 4 5 6 7
X (m) x 10°

Figure 5.12: Estimated target tracks with incorporating mitipath.

The root mean square error (RMSE) values are compared in Fige 5.13 and 5.14.

The RMSE values are lower for fused tracks that were obtainedthrough multipath
multiframe assignment technique that incorporated the re ection surface parameter uncer-
tainty.

It shows that the multipath S-D association based tracking dgorithm converges as the
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—target 1
—target 2

. ; ; ; ;
0 10 20 30 40 50
Kk

Figure 5.13: RMSE values without incorporating multipath.

RMSE goes lower over the time. The RMSE curves show that in traking, multipath S-D as-
sociation lter outperform when the multipath re ection mo des information is incorporated

appropriately.
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Figure 5.14. RMSE values with and without multipath.
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5.5 Performance Evaluations of Multipath Multi-

target Tracking using PCRLB

In this section, the performance of the multipath-assistedmultitarget tracking using mul-

tiframe assignment for initiating and tracking multiple ta rgets by employing one or more
transmitters and receivers is studied. The basis of the techique is to use the posterior
Cramer-Rao lower bound (PCRLB) to quantify the optimal achi evable accuracy of target
state estimation. When resolved multipath signals are present at the sensors, if proper
measures are not taken, multiple tracks will be formed for a ggle target. In multipath

environment, in every scan the number of sensor measurementfrom a target is equal to
the number of resolved signals received by di erent propagion modes. The data associa-
tion becomes more complex as this is in contrary to the standal data association problem
whereas the total number of sensor measurements from a targés equal to at most one.
This leads to a challenging problem of fusing the direct and mltipath measurements from
the same target. We showed in our evaluations that incorporéing multipath information

improves the performance of the algorithm signi cantly in terms of estimation error. Sim-

ulation results are presented to show the e ectiveness of th proposed method.

5.6 Posterior Cramer-Rao Lower Bound in Multi-

path Tracking

This section study the performance of the multipath-assised multitarget tracking using
multiframe assignment for initiating and tracking multipl e targets. MSD algorithm tracks
targets with uncertainty in re ection-path-model (uncert ain-origin) measurement. Opti-

mally solving this problem is highly complex. It will be inte rest to evaluate the performance
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of the tracker and is quanti ed by the PCRLB which is de ned as the inverse of the Fisher
information matrix (FIM). The PCRLB provides a mean square error lower bound on the
performance of any unbiased estimator of the unknown targestate and for additional read-
ing (80) (87) (89) (90) (91) (93) (95) may be used. This discoers how close its mean
square estimate is to the lower bound. An unbiased estimatorcan achieve the minimum
variance for state estimates described by the PCRLB.

Let the measurement beZy =[z1; z; :::; z«] and the unbiased estimator ofxy be Xk (Zk).
It is assumed targets are well separated, hence there is no m&urement origin uncertainty
in terms of targets. The PCRLB is de ned as J(k) 1, the inverse of the Fisher Information
Matrix (FIM).

The lower bound on the error co-variance ofxg(Zx), such that,

Ck, ERK(ZK) R(ZIR(ZK) R(ZW]T J(k) * (5.45)

where E is the expectation over Xx; Zk).

The recursive PCRLB equations are given by (95)

J(k+1)= D D2YI(k)+ D) D+ J,(k+1) (5.46)
where
Dit = E X Inp(Xks1jxk) (5.47)
D = E ™ Inp(xksajxi) (5.48)
Dt = (DT (5.49)
D = E X% Inp(xienjxi) (5.50)
Ja(k+1) = E i Inp(Zke jXeea) (5.51)
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and is a second-order partial derivative operator.

5.6.1 Multipath PCRLB

Lets consider the targets moving independently. The state guation can be written into M
separate equations.

Xt = Fixk+ vl t=1;2:05M (5.52)

where F|! is a linear function and v}, is an independent white noise sequence.
At each sampling time k, the j -th measurementzli((j) has the form

8
% hd(xk;xrixe) + 1 E() if originated from target t, direct path

ze() = _ hP(xbixe;xexes) + V() if originated from target t, multipath (5.53)
-E k() if false alarm
where hd(xk; xr; xt) and h*(xk; xr; Xt; Xrs) are (in general) nonlinear functions, ! (j) is a
zero mean Gaussian random variable with covariance x and (j) is uniformly distributed
throughout the eld of view ( V) of the sensor (87). The number of false alarms in the
sensor's eld of view is Poisson-distributed with mean V .
It can be shown that if | is Gaussian with zero mean and covariance |, then the FIM

of target t, J'(k + 1), can be written as (86)

Ik +1)= | K+ F&J%{kz) YFOT ;+J§(k+1) (5.54)

Jt (k+1)

where J}(k + 1) denotes the measurement information regarding targett at sampling time
k + 1, which is given by

k) = 3L (k) + X JL (k) (5.55)
i=1 "
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where Jéd(k) is the information from direct path, J; (k) is the information from re ection
point i and n is the number of re ection surfaces.

The J; (k) is given by
h dit Ly dit T d'ti
(K= Eq’f HE' W THY (5.56)

with the (a; bth element of matrix H} being given by

@B(xL; xr; x1)(a)
@x(b)

H(a;b) = (5.57)

hi, t(a) is the a-th component of the measurement vector and (b) is the b-th component of
the state vector of targett. The variable qﬂ;t is the Information Reduction Factor (IRF) for
direct path that depends on the measurement noise (), false alarm rate ( ), probability
of detection (P} (k;i)) and the gated eld of view (V) (87).

Similarly, 3} (k) is given by

h i
T '
Iy (= E ' H' HY (5.58)

where q'(t is the IRF for multipath form re ection surface i.

In order to improve the overall tracking performance, this agorithm exploits multipath
target returns from distinct propagation modes that are resolved by the receiver. We
derived multipath PCRLB in a multipath re ection environme nt when the re ection surface
information or points are known to the receiver with an assunption that the targets are well
separated. The above equations can be used to calculate theuttipath PCRLB for all the
cases. Only the IRF will change with di erent assumption on re ection point information.
When the re ection points are accurately known, the IRF can be calculated similar to direct

path. When there is uncertainty in re ection surface parameters, calculating the IRM in
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this case is much more complicated, since we must consider ¢he ect of re ection path

model uncertainty in addition to uncertainty in the data ass ociation.

5.7 Simulation and Results

In this section, a multipath re ection scenarios is consideed and the track and the RMSE
information are compared against the PCRLB. In the simulation, parameter setting are:
transmitter position = [49925, -10899]m; receiver positimm = [0, 0Jm; the re ection surface
equation is given byy = mx + ¢. Herem = 1;¢c = 100000 m, the measurement interval
is 1 second; measurement variances? = 10 m? and 2 = 0:0001 radiang; probability of
detection is 0.98; 10 false alarms at each sampling.

The target trajectories, transmitter and receiver locations are given in Figure 5.15 when
multipath information is not incorporated. There are two ta rgets in the surveillance region,
one enters the region atk = 3 and the other enters at k = 6.

The target trajectories, transmitter and receiver locations are given in Figure 5.16 when
multipath information is incorporated. Unscented Kalman lter (UKF) is used to track the
targets by incorporating multipath measurements.

The measurements are associated to the targets and the apppoiate multipath models.
To associate the measurements to already established targg multipath S D association
(MSD) algorithm is used for UKF. Figures 5.18 and 5.17 were pitted for 100 Monte-Carlo

runs.

128



Ph.D. Thesis - Maheswaran Subramaniam

McMaster - Electrit&ngineering

Y (m)

129

x 10*
7 —
7
6 o Receiver >
c 4+  Transmitter
i Measurement 3
4 =
Confirmed Track
3r Truth
2 /%
\E
1 =
oF o
-1+
_2 | | | | | | J
1 0 1 2 3 4 6 7
X (m) x 10*
Figure 5.15: Estimated target tracks without incorporatirg multipath.
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Figure 5.16: Estimated target tracks with incorporating mitipath.
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Figure 5.17: RMSE values for comparisons.
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Figure 5.18: PCRLB values for comparisons.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, the feasibility of tracking multiple target s using transmitters of opportunity
was studied. The challenges are to handle low probability ofletection of targets of interest,
high nonlinearity due to high measurement errors, re ection path uncertainty and lack of
elevation information. In this thesis, the converted measuement Kalman lter, unscented
Kalman Iter and particle lter based PHD lIter are implemen ted for PCL radar measure-
ments and their performances are compared. Simulation redts showed that the unscented
Kalman Iter and particle Iter based PHD lter are the desir able choices for PCL systems

with small and large measurement errors, respectively.

We also implemented a bias estimation and removal techniquén direction of arrival
measurement for a PCL system. Due to the bias measurementshé measurement model
exhibits a high nonlinearity. Most of the nonlinear lter ba sed tracking require approxima-
tions. Errors in the DOA measurement leads to higher errors m tracking accuracy. Noise

and the precision of DOA estimation are main issues in a PCL sstem. We demonstrate
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that with an expensive computation, the SMC implementation of the PHD lIter tracking
algorithm provides a better approximation in target tracki ng. This approach was tested
using simulated track data. The simulation results are pregnted to show the e ectiveness

of the proposed algorithm with an example of tracking airbome targets.

The algorithm for multipath-assisted multitarget trackin g using multiframe assignment
is proposed for initiating and tracking multiple targets. T his algorithm was exploiting mul-
tipath target returns from distinct propagation modes that are resolvable by the receiver.
When resolved multipath returns were not utilized within th e tracker, i.e., discarded as
clutter, potential information conveyed by the multipath d etections of the same target was
wasted. In this case, spurious tracks were formed using tagj-originated multipath mea-
surements, but with an incorrect propagation mode assumpton. We proposed a multiframe
assignment technique to incorporate multipath information. The simulation results were
presented to show the e ectiveness of the proposed algoritin with an example of tracking

ground targets.

The algorithm for multipath-assisted multitarget trackin g using multiframe assignment
is considered when there are uncertainties in multipath re ection points at the receiver.
We considered the case when the target re ections are boundeo from smooth re ecting
wall/surface. When these measurements are not utilized winin the tracker, i.e., discarded as
clutter, these target return information from these multip ath detections of the same target
were wasted. We proposed a multiframe assignment techniqué incorporate multipath

information when there were uncertainties in re ection surface information.

The simulation results were presented to show the e ectiverss of the proposed algorithm

with an example of tracking two targets with target re ected signals in a smooth multipath
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re ection surface environment.

We studied the performance of the multipath-assisted multiarget tracking using multi-
frame assignment for initiating and tracking multiple targ ets.

In contrary to the standard data association problem, this dgorithm has to handle
uncertainties in the target as well as the re ection path/mo de. The simulation results are
presented to show the e ectiveness of the proposed algorith with an example of tracking

two targets in a multipath re ection environment.

We derived multipath PCRLB in a multipath re ection environ ment when the re ection
surface information or points are known to the receiver withan assumption that the targets
are well separated, and showed that the RMSE values followshie PCRLB. We showed that
incorporating multipath information improves the perform ance of the algorithm signi cantly

in terms of estimation error.

6.2 Future Work

Tracking using range (i.e., multipath range and bistatic range) and angle measurements and
appropriately combining them by considering the multipath re ection is challenging when
the re ection surface parameters are unknown. Performing he tracking when the re ection
surface information or territorial information is complet ely unknown will be considered as

future work.

Calculating the multipath PCRLB for the closely spaced targets and when there are
uncertainties in the re ection points or surface parameters will be considered in the fu-

ture works. Target tracking using complex multipath re ect ion signals from multistatic
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con guration in multitarget environment will be also consi dered in the future work.

Non-Smooth Reflection Surface

S

Figure 6.1: Re ection on non-smooth surface.

Figure 5.10 shows a re ection model on a smooth surface wheass Figure 6.2 shows
the re ection on a non-smooth surface. When the sensor recee¢s the TDOA and DOA
measurements consistently from signals re ecting from a nn-smooth surface, for a specic
value of a multipath range, the target lies on multipath range ellipse as shown in Figure 6.2.
When the re ection surface is not smooth, we cannot assume tht the incident and re ection
angles are equal. In the case when the surface is not smoothhd incident rays scatter on
the surface and re ect in di erent directions. The concentrated energy's re ection angle

depending on various factors such as the nature of the re ed¢bn surface and incident angle.

In Figure 6.2, ;{6 ..

On a smooth surface re ection, the focus of this multipath range ellipse will be the
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transmitter and the other focus is the mirror location of the sensor on the re ection surface

dened by y= mx + c.

On a non-smooth surface re ection, the received TDOA measuement will be used to
calculate the new multipath range to nd possible target's location that will lie on the
multipath range ellipse as shown in Figure 6.2. In this casepne focus of the multipath
range ellipse will be the transmitter and the other focus is te re ection point on the surface
de ned by y = mx + c. The initialization and tracking the target in such environ ment is

left for future work.

A range of very simple to more complex re ection scenarios tt may occur during a
multipath re ection environment were illustrated in Figur es 5.2 5.3 5.4, 5.5, 5.6 5.7. In this
thesis, the case as in Figure 5.2 was considered. Howeverhet scenarios that are discussed
in Figures 5.3, 5.4, 5.5, 5.6 and 5.7 can be considered for tking. These can be done easily

by modifying this developed algorithms. This will be consicered for future work.
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