Date of Award

11-1983

Degree Type

Thesis

Degree Name

Doctor of Philosophy (PhD)

Department

Chemistry

Supervisor

Professor I.D. Spenser

Abstract

The steric course of decarboxylation of L-ornithine to yield putrescine, catalysed by L-ornithine decarboxylase (E.C. 4.1.1 17) of E. coli, and of L-arginine to yield agmatine, catalysed by L-arginine decarboxylase (E.C. 4.1.1.19) of E. coli, is investigated by deuterium labelling. Replacement of the carboxyl group by a solvent derived proton occurs with retention of configuration in each case.

In conflict with an earlier report, incubation of cadaverine in deuterium oxide in the presence of L-lysine decarboxylase (E.C. 4.1.1.18) of B. cadaveris did not lead to entry of deuterium into the α-position of cadaverine. Likewise, L-ornithine decarboxylase did not catalyse exchange of the α-hydrogen of putrescine, nor did L-arginine decarboxylase catalyse such an exchange in agmatine.

The stereochemistry of hydrogen abstraction in the conversion of cadaverine into 'Δ'-piperidine, of putrescine into Δ'-pyrroline, and of agmatine into 4-guanidinobutanal, catalysed by hog kidney diamine oxidase (E.C. 1.4.3.6) is investigated. The Si-hydrogen from C-1 of the substrate is removed while the Re-hydrogen from C-1 of the substrate is maintained at the Sp² carbon atom of each of the products.

The diamine oxidase catalysed oxidative deamination of cadaverine takes place without detectable isotope effect, while an intramolecular primary hydrogen-deuterium isotope effect (kHsi./kDsi = 4) is observed in the diamine oxidase catalysed oxidation of putrescine.

Files over 3MB may be slow to open. For best results, right-click and select "save as..."

Included in

Chemistry Commons

Share

COinS