Date of Award


Degree Type


Degree Name

Master of Applied Science (MASc)


Civil Engineering


Samir E. Chidiac




Concrete masonry blocks are widely used in North America and the world; however, production poses some environmental implications, specifically the depletion of natural resources and contribution to the release of carbon dioxide into the atmosphere. Accordingly, methods to improve the sustainability of the industry need to be developed. The replacement of cement with post -consumer waste glass powder and/or the replacement of fine aggregate with post-consumer waste polymer in the production of concrete blocks are proposed as potential options to reduce the environmental impact of block production while maintaining adequate block performance.
The effect of using glass powder and polymers on the block and prism properties has been analyzed to determine the most effective implementation of these post-consumer waste materials. Physical properties, mechanical properties and alkali-silica reaction of the blocks and the mechanical properties of the prisms were tested. From the experimental program, it was determined that replacing Portland cement with waste glass powder up to 25% had no detrimental effect on the block and prism properties. Replacing the sand with polymer aggregate was found to have a detrimental impact on the strength of the block. The effect of adding up to 6% polymer aggregate as sand replacement on the prism mechanical properties was found to be minimal. The reduction in block compressive strength when polymer aggregates are used is attributed to the increase in the material's porosity.

McMaster University Library

Files over 3MB may be slow to open. For best results, right-click and select "save as..."