Date of Award

8-2010

Degree Type

Thesis

Degree Name

Master of Applied Science (MASc)

Department

Electrical and Computer Engineering

Supervisor

Alexandru Patriciu

Language

English

Abstract

p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Times; color: #565656} p.p2 {margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Times; color: #6a6a6a} span.s1 {color: #7b7b7b} span.s2 {color: #949494} span.s3 {color: #414141} span.s4 {color: #6a6a6a} span.s5 {color: #565656}

Traditionally, robots are used to handle rigid objects, such as in automotive and manufacturing industries. Emerging robotic fields like food industry and medical robotics has inspired research into robots capable of accurately manipulating deformable objects.

This thesis fo cuses on a task known as the indirect simultaneous positioning problem. The task requires accurate deformation control of a nonrigid obj ect. The desired configuration is prescribed by control points defined within the object body. This deformation is achieved by applying forces to to manipulation points located elsewhere on the body.

This thesis approaches the problem using a linear robust output regulation framework. This framework requires the following steps:

p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Times; color: #565656} p.p2 {margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Times; color: #7b7b7b} p.p3 {margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Times; color: #6a6a6a} span.s1 {font: 10.0px Helvetica} span.s2 {color: #6a6a6a} span.s3 {color: #414141} span.s4 {color: #7b7b7b} span.s5 {color: #565656} span.s6 {color: #ababab} span.s7 {color: #949494}

1. construct a second-order dynamical model of the object

2. linearize about the equilibrium point

3. assess the controllability, observability, and solution to the regulator equations

4. compute the controller gains that solve the regulation problem

p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Times; color: #565656} span.s1 {color: #6a6a6a} span.s2 {color: #414141} span.s3 {color: #7b7b7b}

This control law approach is tested in both simulations using a nonlinear RKPM model of a deformable object, and in experiments using a robot manipulator to apply the desired forces to the manipulation points of a physical, elastic, deformable object. This thesis proves the validity of t his approach using homogeneous and nonhomogeneous planar objects, as well as multiple control point and manipulation point configurations.

McMaster University Library

Files over 3MB may be slow to open. For best results, right-click and select "save as..."

Share

COinS