Author

Jun Li

Date of Award

2009

Degree Type

Thesis

Degree Name

Master of Applied Science (MASc)

Department

Materials Science and Engineering

Supervisor

I. Zhitomirsky

Language

English

Abstract

Nanostructured manganese oxides in amorphous or various crystalline forms have been found to be promising electrode materials for electrochemical supercapacitors (ES). Manganese dioxide nanofibers with length ranged from 0.1 to 1 μm and a diameter of about 3-10 nm were prepared by a chemical precipitation method. Electrophoretic deposition (EPD) method and mpregnation techniques have been developed to fabricate thin film and composite electrodes for ES. As-prepared nanofibers and electrodes were studied by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The capacitive behavior of electrodes was investigated by cyclic voltammetry (CV) and chronopotentiometry method using a three-electrode cell in the mild Na2SO4.

The composite electrodes fabricated by impregnation of manganese dioxide nanofibers and multi-walled carbon nanotubes (MWCNTs) into porous nickel foam and nickel plaque current collectors showed excellent capacitive performance with large material loading of 7-40 mg cm-2 in 0.1-0.5 M Na2SO4. MnO2 nanofibers and MWCNTs can form a porous fibrous network, which is beneficial for the electrolyte access to the active materials. In addition, MWCNTs formed a secondary conductivity network within the porous nickel structures. The highest specific capacitance (SC) of 185 F g-1 was obtained at a scan rate of 2 mV S-1 in the 0.5 M Na2SO4 solutions. The effect of the electrolyte concentration, scan rate and active material composition on the capacitive behavior was discussed.

Obtained thin film and composite electrodes by EPD showed a capacitive behavior in the 0.1 M Na2SO4 aqueous solutions with a potential range of 0-1.0 V. The highest SC of 412 F g-1 was obtained for the thin film electrodes at a scan rate 2 mV S-1 in the 0.1 M Na2SO4. The SC decreased with increasing deposit mass and scan rate. It was found that the addition of MWCNTs can improve the capacitive performance of manganese dioxide electrodes with smaller equivalent series resistance (ESR). The mechanisms and kinetics of all the deposition methods were discussed.

McMaster University Library

Files over 3MB may be slow to open. For best results, right-click and select "save as..."

Share

COinS