Date of Award

Fall 2011

Degree Type


Degree Name

Master of Science (MSc)


Medical Sciences


Gregory Steinberg


Sandeep Raha, Ali Ashkar



Committee Member

Sandeep Raha, Ali Ashkar


Obesity is associated with a state of chronic, low-grade inflammation that contributes to the development of insulin resistance. Exercise is known to improve insulin resistance, and emerging evidence suggests that exercise also reduces adipose tissue inflammation. However, the relationship between exercise and inflammation has not been separated from the confounding effect of weight loss. The objectives of this study were to 1) determine whether high-intensity interval training (HIT) improves insulin sensitivity in obese mice independent of weight loss and 2) assess the effect of exercise on the relationship between adipose tissue inflammation and insulin sensitivity.

C57BL/6 mice were assigned to one of three groups: a control, chow diet (Chow), 12 weeks of high-fat diet with no exercise (HFD Sed), or 6 weeks of high-fat diet feeding followed by an additional 6 weeks of HIT (HFD Ex). In HFD-induced obese mice, HIT had no effect on body mass, epididymal fat mass, adiposity, or adipocyte size. HIT also did not alter adipose tissue inflammation, macrophage infiltration, or adipose tissue macrophage polarization/inflammation. Nevertheless, when compared to HFD Sed mice, HIT resulted in lower fasting insulin levels and improved glucose tolerance and insulin sensitivity.

In conclusion, these finding demonstrate that HIT improves whole-body insulin sensitivity and glucose homeostasis independent of changes in body mass or adipose tissue inflammation. The benefits of exercise in obese individuals are obvious; however, the mechanisms underlying the improvements in insulin sensitivity observed following chronic, HIT remain to be elucidated.

McMaster University Library

Files over 3MB may be slow to open. For best results, right-click and select "save as..."