Date of Award

Fall 2011

Degree Type


Degree Name

Master of Science (MSc)




James Potvin


Peter Keir, Jim Lyons



Committee Member

Peter Keir, Jim Lyons


The primary purpose of this thesis was to measure arm strengths, in combinations of exertion directions, and to evaluate the importance of knowing the precise posture of the arm and specific joint locations in 3D space when predicting female arm strength. A stepwise multiple regression approach was utilized in the prediction of female arm strengths, using kinematic measures of hand location, arm posture and 26-force directions from 17 subjects and 8 hand locations as inputs. When including measures of arm posture, the regression model was indeed improved, explaining 75.4% of the variance, with an RMS error of 9.1 N, compared to an explained variance of 67.3% and an RMS error of 10.5 N without those postural variables. A comparison was also made between the empirical strength data from this thesis and the outputs from the University of Michigan’s Center for Ergonomics 3-Dimensional Static Strength Prediction Program (3DSSPP) software. A poor correlation (R-square = 0.305) and high RMS error (39 N) was found, indicating a definite need for further evaluation of the 3DSSPP package, as it is one of the most commonly used ergonomic tools in industry.

McMaster University Library

Files over 3MB may be slow to open. For best results, right-click and select "save as..."

Included in

Biomechanics Commons