Date of Award

Fall 2011

Degree Type

Thesis

Degree Name

Master of Science (MSc)

Department

Physics and Astronomy

Supervisor

Hugh Couchman

Co-Supervisor

James Wadsley

Language

English

Committee Member

Laura Parker

Abstract

We present a numerical study of gas accretion into galaxies using the SPH code, Gasoline. Numerical tests on shock treatment in Gasoline are run to evaluate how well cosmological-scale, high Mach number shocks are treated. We find that shock solutions are far too noisy, and in specific density and metallicity regimes, this seeds a phase separation instability of hot and cold gas. We propose this instability as the source of cold blobs seen in many numerical simulations. We find that improved shock behavior is primarily attained through increased viscosity parameters. Analysis is also performed on four cosmological simulations from the McMaster Unbiased Galaxy Simulations (MUGS) (Stinson et al. 2010). In agreement with recent literature, we find cold flows of gas seeded by dark matter filaments stretching far into the inner galaxy in all analyzed galaxies. Tracking of star and gas particles is performed, and we find that cold mode accretion makes up between 40% and 60% of total gas accretion. As well, we find that cold gas is in general very quickly formed into stars, and that between 40% and 70% of total star mass comes from cold gas accretion.

McMaster University Library

Files over 3MB may be slow to open. For best results, right-click and select "save as..."

Share

COinS