&&ReWrAp:HEADERFOOTER:0:ReWrAp&&

Date of Award

Spring 2012

Degree Type

Thesis

Degree Name

Master of Applied Science (MASc)

Department

Electrical and Computer Engineering

Supervisor

Nicola Nicolici

Language

English

Abstract

As the number of transistors that are integrated onto a silicon die continues to in- crease, the compute power is becoming a commodity. This has enabled a whole host of new applications that rely on high-throughput computations. Recently, the need for faster and cost-effective applications in form-factor constrained environments has driven an interest in on-chip acceleration of algorithms based on Monte Carlo simula- tions. Though Field Programmable Gate Arrays (FPGAs), with hundreds of on-chip arithmetic units, show significant promise for accelerating these embarrassingly paral- lel simulations, a challenge exists in sharing access to simulation data amongst many concurrent experiments. This thesis presents a compute architecture for accelerating Monte Carlo simulations based on the Network-on-Chip (NoC) paradigm for on-chip communication. We demonstrate through the complete implementation of a Monte Carlo-based image reconstruction algorithm for Single-Photon Emission Computed Tomography (SPECT) imaging that this complex problem can be accelerated by two orders of magnitude on even a modestly-sized FPGA over a 2GHz Intel Core 2 Duo Processor. Futhermore, we have created a framework for further increasing paral- lelism by scaling our architecture across multiple compute devices and by extending our original design to a multi-FPGA system nearly linear increase in acceleration with logic resources was achieved.

McMaster University Library