Date of Award

Spring 2012

Degree Type

Thesis

Degree Name

Master of Applied Science (MASc)

Department

Materials Science and Engineering

Supervisor

Kenneth S. Coley

Language

English

Abstract

Recent experiment in our laboratory demonstrates that an increase in slag foamingwith carbon injection rate is limited by slag volume. The current work has identified arelationship between foam height, carbon injection rate and slag volumes, whichpredicts the critical injection rate above which foaming become inefficient. Theprediction of critical injection rate employs an extension of understanding mechanismof bubble movement in the foam by estimating average/steady-state bubble size andwall thickness. The carbon gasification model developed in our laboratory by King etal., which has been extended to include greater consideration of gas bubble burstingwhen to predict bubble size, and further improvement for calculating how fast bubblecan burst instantaneously in carbon-gas-slag halo system, has found that has importantinfluence on the predicting foaming parameters in King’s model, which is crucial taskfor continuous development in future.

McMaster University Library