Date of Award

Spring 2012

Degree Type

Thesis

Degree Name

Doctor of Philosophy (PhD)

Department

Biology

Supervisor

Andrew J. Rainbow

Co-Supervisor

Andre Bedard

Language

English

Abstract

Ageing is associated with a progressive decline in cognitive and physical function, as well as neurodegeneration. The DNA damage theory of ageing postulates that phenotypes associated with chronological ageing result from a time dependent accumulation of DNA damage caused by endogenously generated reactive oxygen species (ROS). In this work, we have used a host cell reactivation (HCR) technique to examine base excision repair (BER), the major pathway for removal of ROS generated damage, in fibroblasts from normal individuals and from patients with Cockayne syndrome (CS). The HCR assay utilizes an adenovirus encoded β-galactosidase (β-gal) reporter gene treated with methylene blue plus visible light (MB+VL) to measure BER of 7,8-dihydro-8-oxoguanine (8-oxoG). The results presented here demonstrate that host cell repair mechanisms remove MB+VL generated 8-oxoG from viral DNA and that reactivation of gene expression correlates with cellular repair capacity and requires CSA and CSB. Using the HCR assay, we demonstrate that culturing of primary human fibroblasts in media containing low levels of MB increases BER, suggesting increased DNA repair capacity may play a role in the therapeutic application of MB in Alzheimer’s disease treatment. We also demonstrate that BER decreases in vitro with increasing number of cell divisions, and that HCR of the damaged reporter gene is lower in fibroblasts from older donors. Using a second β-gal reporter gene assay, the enhanced expression assay, we were unable to show a relationship between the degree of decreased BER in CS and severity of clinical phenotype. However, we identified an interaction between CSB and the telomere protein TRF2. Overexpression of TRF2 leads to decreased nucleotide excision repair of UVC induced damage in a CSB dependent manner. We also demonstrate defective telomeres in the absence of functional CSB. The data presented in this work provide additional support for the DNA damage theory of ageing.

McMaster University Library

Files over 3MB may be slow to open. For best results, right-click and select "save as..."

Share

COinS