Date of Award

8-1976

Degree Type

Thesis

Degree Name

Doctor of Philosophy (PhD)

Department

Geography

Supervisor

Dr. D. C. Ford

Abstract

First investigated on the ground in June 1972, the Nahanni karst of northern Canada is the most complex karst terrain yet reported from high latitudes. It is centered at 61°28' N, longitude 124°05' W and lies within the zone of discontinuous permafrost. Mean annual temperature is 24°F and mean total precipitation 22.3 inches. Principal karst forms are fracture-located karst streets and irregularly-shaped closed depression called karst platea which may be up to 600 feet in depth. Platea often contain karst towers which are residuals of wall recession. Vertical-walled pond dolines up to 120 feet deep are common in bare karst areas while subjacent karst collapse, subsidence and suffosion depressions occur on marginal shale- and drift-mantled surfaces. Three small poljes have been identified, two produced entirely by solution, the other a structural form. These are periodically inundated. There are several peripheral fluvial canyons up to 3,000 feet deep that are blocked by glacial drift and which presently drain underground. Similarity in the hydrogeological properties of Nahanni Formation limestones at a variety of scales has led to the development of morphologically-identical karst forms which range in size from inches up to hundreds of feet. Furthermore, many of these landforms are part of a developmental sequence that at one scale links vertical-walled dolines, karst streets, platea and poljes; and at another links solution pits, grikes and joint hollows on limestone pavements. The evidence suggests that poljes form by the coalescence of dolines and uvalas just as Cvijic suggested in 1918. In attempting to explain the almost "tropical" nature of the sub-arctic Nahanni karst landform assemblage, a number of facts are of importance.

(a) The Nahanni Formation limestones have been highly warped and intensively fractures during the past one million years. Open fractures have encouraged karstification by allowing easy movement of water underground. Warping has provided the relief necessary for the development of solutional forms with a distinct vertical component.

(b) The karst can not be considered relict because it was glaciated during the Pleistocene. In addition the hydrological activity in it today is comparable with that in many humid tropical karst areas.

(c) Solutional denudation rates governed by aspects of surficial and bedrock geology may in some localized areas be equivalent to rates in humid tropical carbonate regions.

(d) At present rates, the most highly developed forms could have been produced within the last 200,000 years and because there is evidence to indicate that the karst may not have been glaciated for up to 250,000 years, such a period has been available for solutional development.

Because the Nahanni region has not been glaciated for an extremely long period, it may be one of only a few high-latitude carbonate terrains that have had time to develop fully. Its very existence questions the validity of the concept that the intensity and direction of karst development is climate-controlled. In the Nahanni at least, the structural and lithological properties of the host limestone appear to have been of greater importance. The labyrinth karst type present in regions of humid-tropical to sub-arctic climate, is an outstanding example of a structurally-controlled karst landscape. It may well be that the same controls also influence the distributions of other karst types.

Files over 3MB may be slow to open. For best results, right-click and select "save as..."

Included in

Geography Commons

Share

COinS